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Abstract

We have employed the techniques of exact quantization rule to obtain closed
form expression for the bound state ro-vibrational energy eigenvalues of the
improved Tietz potential. By considering the Morse potential as a special case of
the improved Tietz potential, we have deduced closed form expression for the ro-
vibrational energy of Morse potential from the results of improved Tietz
potential. We have also solved the Riccati equation via ansatz solution and
obtained closed form expressions for the unnormalized radial wave functions for
the improved Tietz and Morse potentials. We have computed ro-vibrational
energies for the improved Tietz and Morse potentials and obtained results for
four diatomic molecules including HCI, LiH, H, and CO, our computed results
are in near perfect agreement with available data of the diatomic molecules in
the literature.
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1. Introduction

The wave function is an important formulation in quantum mechanics because of the useful information they give regarding
the quantum mechanical system under review [1-3]. Given a potential energy function, the Schrédinger or other wave
equations must be solved, analytically or numerically to obtain eigenfunctions and eigenenergies of the system [2, 4]. The
nature of the solution of the Schrédinger equation is characterized by the rotational quantum number ¢£. Such a solution may
be exact [5, 6] or approximate [7, 8].

For all values of ¢, the harmonic oscillator and Coulomb potentials are known to have exact solution with Schrédinger
equation, other potential models also have, but with a restriction. Exact analytical solutions of the Schrédinger equation are
also possible with most potential models for the special case ¢ = 0 only, the solutions are known as s-wave solutions [9]. On
the other hand, for nonzero rotational quantum numbers, only approximate numerical solutions [10, 11], or approximate
analytical solutions [12-14] can be realized for the wave equations.

The first step to obtaining analytical solution of the Schrédinger equation is to model the centrifugal (or pseudo spin-orbit)
term of the Schrédinger equation with an appropriate approximation scheme. The Pekeris approximation [15], Greene-
Aldrich approximation [16] have been successful in eliminating the centrifugal term of the wave equation. other model of the
Pekeris-type has also been used by researchers [17]. Various solution methods have been proposed for the wave equation,
among the vast list include functional analysis (ansatz) method [18], generalized pseudospectral method (GPS) [7], exact
quantization rule (EQR) [19-25] and path integral approach [26].
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The solution of Schrédinger equation has been obtained in the presence of different potential energy functions. The main
focus of the present study is the improved Tietz potential. The potential has important applications in the atomic, molecular
and chemical physics. In previous studies, solution of Schrédinger equation has been obtained in the presence of the improved
Tietz potential [13, 26]. It is pertinent to point out that equations of bound state ro-vibrational energies, also known as energy
eigenvalues of atomic oscillators and radial wave functions hold for nonzero values of deformation parameters (q) of the
oscillator. However, if q = 0, the improved Tietz potential is finite, but the solution obtained in previous studies is infinite
both for the eigenenergies and eigenfunctions.

In this paper, the concept of EQR and functional analysis methods are employed to obtain expressions of bound state ro-
vibrational energies and radial wave functions of the Schrédinger equation. Cases in which q # 0 and q = 0 are specially
considered, to the best of our knowledge, this approach has not been studied in the literature. Numerical data of bound state
ro-vibrational energies obtained for the improved Tietz potential in this study are compared with available literature data for
the potential where they exist.

2.0 Theoretical Formalism

2.1 Review of the concepts of exact quantization rule

Here we give a summary of the important concepts of exact quantization rule, the complete detail is given by Ma and Xu
[19]. The exact quantization rule was proposed to solve the one-dimensional Schrédinger equation given as:

e, (X)+ K2, (X)p, (X) =0, )

where prime denotes derivative with respect to the argument jn brackets, and the linear momentum of the system is given by
2

knr (X): ?f{ En/ 7Veff (X)} ! (2)

u being the mass of the system, E, is the energy eigenvalue, Ve (X) is the effective potential energy function which is a
piecewise continuous real function of x. Eqg. (1) can be reduced to the well-known Riccati nonlinear differential equation
given by

@, (X)+kZ, () +¢, (x) =0, @)

where ¢,e (X) = e (X) [ wae (X) is the logarithmic derivative of the wavefunction . (x), it is also known as the phase angle.
Due to Sturm-Liouville theorem, ¢, (x) decreases monotonically with respect to x between two turning points determined by
the equation E,r > Vet (X). Specifically, x increases across a node of the wavefunction w,. (X), where E,; > Vet (X), dne (X)
decreases to — oo and jumps to +oo and then decreases again. By carefully studying the one-dimensional Schrédinger equation,
Ma and Xu [19] proposed an exact quantization rule given by:

jk dx—Nn+fz/;" [dk”'(x)}[dw"’(x)]ldx' (4)

dx dx

where Xna and xng are two turning points determined by solving the equation E,; = Vet (X) and Xna < Xng. N is the number of
nodes of ¢,¢ (x) in the neighborhood of E,., > Vet (X) and it is larger by one than the number of nodes n of the wavefunction
wne (X), clearly, N =n + 1. The first term, Nz, relates to the contribution from the nodes of the wave function, and the second
term is referred to as the quantum correction. Ma and Xu [19] have found that the quantum correction is independent of the
number of nodes for the exactly solvable systems, therefore, it can be evaluated for the ground state (n = 0), the second term
in Eq. (4) can thus be represented by:

T Tl

Where Qc is the quantum correction term. In three dimensional spherical coordinates, the exact quantization rule is given by:

J'kn, dr—Nn+rf<p0 [ dr( ):H:d(p;r( ):‘ dr’ (6)
In simplified form, Eqg. (6) can be expressed
l,, =Nn+Q,, (7
where the momentum integral is given by
I, = "fkn,(r)dr’ (8)
and the quantum correction is:

_T dk,, (1) ][ den (D], . 9)
o~ fo () “ L0 o
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The Schrddinger equation in three dimensions for a spherically symmetric potential is given as [12]
_na _ . (10)

{ 2# drz +Veff (r)}un/ (I’)- En/ Un/ (I‘)

U, (r) being the radial wave function.

2.2 The effective improved Tietz potential
The effective improved Tietz rotating oscillator [13] is given by

Vo () =V (r)+V,(r), (11)
where V (r) and V, (r) are respectively the improve Tietz potential and centrifugal term potential respectively, they are given by
Voot (12)
e“"+q
where
b=e"" +q, (13)

with D. as the dissociation energy, r. is the molecular bond length, r is the internuclear separation, « and g are respectively
the potential screening and deformation parameters expressed as [13]

B A .

: 2.3
a-o, 2u)’ Adrcp'riao 1, (15)
D 3n? r.

e e

where we and a. are the equilibrium harmonic vibrational frequency, and rotation-vibration coupling constant. The centrifugal
term potential is given by [13, 20]

LA 16
V()= g (16)
where L = £ (¢ + 1). Oupon substituting Eq. (12) and Eq. (16) into Eq. (11), this translates to

~ b ) LA (17)
Ve (r)=D, [1_7&' +qj + 27

Eq. (10) when used with the effective potential of Eq. (17) has no exact solution except for the case of s-wave (¢ = 0), to
obtain analytical solution for all quantum states, one must use a suitable approximation scheme on the centrifugal term given
by [13]

SRE NS S T 19)

e”"+q (ewr +q)

where the adjustable parameters Do, D1 and D, read [13]

D, =1—%(3—3a rL+6ge " +3¢°e " —2qare "t +q’ are” "), (19)
alr
D, =——(-99+3qar, —3e"" +2are " —9¢° “* -3¢’ *** —q’are "), (20)
alr
D. = 1 (18 2 12qe*" +3 Zare72 ar, _ et 419 3,-ar, 3 4 2ar, 2 3 —ar, 4 2ar , (21)
Z—azrz qQ-+1lzq9e" * +o€ qar.e ar.e +1zQ% +aQq'e +2Q9°ar.e +q are )
Substituting Eq. (18) in Eq. (17), this leads to:
2 2
Ve"(r):De[l— mb ]Jr Lhz D, + ,Pl + D, =’ (22)
e +q) 2ur, €7 +a (e +q)

Using the following transformation equation,

r -1
y:(e" +q) . (23)
Eq. (22) transforms to:

L#?
Veff(y):DE(lfby)ZJrﬁ(DoJrDl)'*Dzyz). (24)
Eq. (24) can be generalized as:
2 2 2 2 2 2 2
Vo (9)= o LD, o UL B e (2wt Db Ky 200D, (25)
2ur; n 2ur; h 2ur; h
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By defining the following constants

,72:|_D2+L2fobz, (26)
2
K2:|_D1,4fure72Deb, (27)
i
2
EZZLDOjLZLEZDG. (28)
i
Eqg. (25) can be expressed in the more compact form as:
V (Y)=Ay*+By+C, (29)
where
L (30)
2ur?
L (31)
2ur?
Czﬁﬁ. (32)
2ur,
The turning points needed to solve Riccati equation are obtained by solving the following equation.
Vi (Y)=E,,. (33)
Putting Eq. (27) in Eq. (31), we have that
Ay’ +By+C-E,, =0. (34)

The turning points yna and yns (> Yna) Which are roots Eq. (34) are given by

ynA=—B+ ,B 74A(C7En,)’ (35)

2A
and
B—JBZ—4A C-E,
YnB = ( ) ’ (36)
2A
From Eq. (35) and Eq. (36), it is obvious that
B
ynA+ynB:_Z’ (37)
C-E,
Yoa Yos :T[' (38)
For the ground (n = 0) state, Eq. (37) and Eqg. (38) gives respectively
B
Yoa + Yo :_Z’ (39)
C-E,,
Yoa Yos = A = (40)

The expression for the momentum is given by, following Eq. (2), this gives:
k, (y)= %‘(Em -Ay’-By-C)" (41)

Eg. (41) can be written in terms of the turning points which will be required in what will follow, thus,

2uA(C-E, , B ). (42)
k"'(y):\/:2 [ A YA ]
Using Eqg. (37) and Eq. (38) in Eq. (42), this gives:
2uA
kn/(Y):\/ f/;lz (y_ynA)(ynB_y)' (43)
The derivative of Eq. (43) with respect to y is given by
()= LR ) (@4)

(Y= Yar) (Vs - ¥)
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Since the ground state derivative of the momentum is required for evaluating the quantum correction, Eq. (44) gives for the
ground state (n = 0), and employing Eq. (39)

ké,(y):—q/ZﬂA y+B/2A ) (45)
h (y_yoA)(yos_Y)
Using Eqg. (2) and Eqg. (3), the Riccati equation in three dimensional spherical coordinates [22] is

0 (1)+ 22 {E, Vi (1)} 4 (1) =0 (46)

To obtain the corresponding Riccati equation in terms of variable y, we substitute Eq. (23) in Eq. (46), this results in the
following first order nonlinear differential equation given by

, 2
~ay(1-y)g}, (v)+ 25 (E, ~ Ay’ ~By-C)+ i (y)=0. (47)

where we have used Eq. (29) to eliminate Vy¢ (y)
Eq. (47) gives for the ground state

~ay(1-ay) (¥)+ 24 By - Ay ~By-C) i, (y)=0- (48)
Since ¢o¢ (y) has one zero and no pole, it has to assume a linear form in y, for a trial solution, we assume
¢o&(y)=_c1 y+C,- (49)
ci1 and ¢, being constants, substituting Eq. (49) in Eq. (48), get

ac(y-q y2)+%( E, ~C—Ay —By)+cly’ -2¢,c,y+¢; =0- (50)

Eqg. (50) simplifies to
[—aclq—2€A+cijz+[acl—Z;B—chczjy+2—“(Eo, -C)+c;=0- (51)

h n

By equating corresponding coefficients of y?, y and y° respectively on both sides of Eq. (51), this results in the following
relations

c? -aqe, =242, (52)
ac, —2¢,C, :2;728’ (53)
2
Cg = hiél(c - EO/)' (54)
Therefore, solving for ¢; in Eq. (52), one obtains
2 42 %
qzeﬂ_‘gjL+2ﬁA . (55)
2 4 h

We have chosen the negative square root in solving for ¢ in order to satisfy the monotonicity requirements.
It follows that by inserting Eq. (30) in Eq. (55), this yields

2 )2
clzaq{l_(“ 4n j} (56)
2 a’r.q
ae V1, 57
a):;{l—(uazrzqzj} 67

Eq. (56) assumes the form

C,=a(fw. (56)
Evidently, Eq. (57) leads to
77:05req(a)2 —a))i. (59)

Eq. (53) gives
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a uB

C,=—— .
22 on
Having obtained c; and ¢z, we are now in position to compute the various integrals appearing in Eq. (7), starting with the
right hand side of this relation, Eq. (9) can be used to obtain the quantum correction, by employing the transformation relation

given by Eq. (23) in Eq. (9), we have

ynB

(60)

_ 1 _[ ‘/’o« K’ dy (61)
a o y (1-ay)
Using Eq. (45) and Eq (49) in Eq. (61), we have
JZ/jA ,[ *(y—c,/c)(y+B/2A) dy ) (62)

Yoa 1 qy) \/(y_yoA)(yos_Y)
After substituting Eq. (30) in Eg. (62) and dividing out the numerator by the denominator, we find

Q =1 yJ'B{ 1 ¢cB +(c1_qcz)(2A+qB)} dy . (63)
Car g 2c Ay 2quA(1—C{Y) (y—VOA)(yos_y)

€ Yoa
The integral in Eq. (63) can be evaluated by means of the following standard integral [24]
y]; dy _ 1 . (64)
i (PQY)Y(Y=¥on)(Yos —¥)  (P+Q¥us)(P+QY,)
Application of Eq (64) in Eq. (63) results in the following

Qc_ﬂ{ 1 N qC)(2A+qB),2}, (65)
ar, | q 2c1 A 2q¢, A
where
C-E
1_2 = Yoa Yo ETW' (66)
Thus, by putting Eq. (54) and Eg. (30) in Eqg. (66), we find
=1 (67)
CZ re
Similarly, we have
1> =1-q (yOA+yOB)+q2 Yoa Yos- (68)
On substituting Eq. (35) and Eq. (36) in Eq. (64), this gives
’(c-E
|£2 :l_{_qB_;’_q('Aw). (69)
To further simplify Eq. (69), divide Eq. (53) and Eq. (54) each by Eq. (52), and the results substituted in Eq. (69), gives
12 o1h q( 1=26,6), o' _(o-ac), (70)
ozqc1 ¢ -aqc, c’-aqc,
Using Eq. (52) in Eq. (70) foIIowed by Eq. (30), we find
n
l,=——. (71)
* r(c,-qc,)
Substituting Eq. (67) and Eq. (71) in Eq. (65) and eliminate ¢, from Eq. (58), we have for the quantum correction
Q,nﬂ[ 1, ] (72)
ar,l 9 aq’or,
The other integral on the right hand side of Eq. (7) is obtained in terms of variable y as
L ; A (73)

y (- qy)
Putting Eq (43) in Eq (73) and using Eq. (30) to eliminate A in the result, this gives

__n j» w? y- ynA ynB (74)
ar

.y y(l-ay)
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In order to evaluate the integral in Eq. (74) we use the following standard integral [25]

A=), { R () <ovns+1>} 75)

o Y(@+Qy)
Therefore, by using the definite integral of Eq. (75) we obtained,

an | 1 1.8
Iza_re{_a-’_\’ynAynB_ q_2+q_A+ynAynB}' (76)

Substitute Eq. (72) and Eq. (76) in Eq. (7) to get

1 B Nar, n
- | =+—+ = & —", I
Yo Yoo ,/qz gAY =T (77

Eqg. (77) can be solved for the ro-vibrational energy E, of the improve Tietz potential, by substituting Eq. (59) on the right
hand side of Eq. (77) and recalling that N = n + 1, this transforms to

Ny - |2 By y =Nt (78)
nA JnB qz qA nA JnB qm

Solving for yna yne and using Eq. (38), we find

w2 ha? [qreo(w-1) n+w ?
E.. 2B = 2 a ( )_ ' (79)
2ur?  2u | 2(n+w) 2
where E,qrp designates the ro-vibrational energy of the improved Tietz potential, and
o1 ’Lj . (80)
a n

If we replace the parameters; 7, w, A and subsequently, # and « in Eq. (79), the rotation-vibration energy levels of the improved
Tietz potential, derived by Tang et al. [13] which was obtained using the approach of ansatz solution, is exactly reproduced.
It must be emphasized that Eq. (79) is only valid for g # 0. However, if g = 0, the expression on the right hand side of Eq.
(79) becomes infinite (this is immediately evident from Eq. (80) and also from Eq. (25) of ref. [13]. In the event of letting q
=0in Eq. (12), the improved Tietz potential reduces to the well-known Morse oscillator [1, 7], viz.

V(r) =V, (r)=D,{1-e "), (81)

where Vv (r) is the Morse potential, as a result, Eq. (14) gives

S _w{zﬂ] (82)
De

In all subsequent notations, when the subscript “M” is used, it refers to “Morse”. In order to deduce the ro-vibrational energy
eigenvalues of the Morse potential, we will re-evaluate the quantum correction Qem and the momentum integral Iy and re-
write the exact quantization rule of Eq. (7) for the Morse potential as

Iy=Nn+Q,,. (83)
First it must be noted that with q = 0, Eq. (52) gives, with c; replaced by cim
Gy = V2uA ./ (84)
i r,
The quantum correction in Eq. (62) gives
Q. = . ynB(y_CZM /ClM)(y+B/2A) dy . (85)
oany, y (Y= Yon) (Yo — )

Dividing out the integrand in Eq. (85) leads to
A T )
ar, ;, w20 (Y= Yo )(Yos - ¥)
The integral of Eq. (86) can be evaluated by means of the following standard integral [22]
T ydy
s (Y= You ) (Yas = ¥)

:%n(YnA_"ynB), (87)
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Ynb

4y ., (88)
Yna (y_ynA)(ynB _y)
Ynb
dy n , (89)

y;[A y\/(y_ynA)(y”B —Y) ) \/ynA e
Vj,h (y—YnAz(y"B_y) dy=n{%(ynA+ynB)_m } -

Yna
By applying the integrals defined in Eq. (87)-Eq. (89) on Eq. (86), we obtained
_mn ), B Gu GuB 1 | (91)
O =, {2(y°A+y°B)+2A Cu  2CuA ymyoa}
Using Eq. (53) and Eq. (54) with g = 0 while c1, and c; are replaced by cim and cam respectively, get

=T, 92
QcM 2 ( )

similarly, the momentum integral of Eq. (74) with q = 0, gives

y :,Lyns wdy. (93)

ar, y

€ Yna

Using the standard integral of Eq. (70) on Eq. (93), get

2
an( «
IM:_are[2n2+\’ynAynBJ' (94)

Inserting the results in Eq. (92) and Eq. (94) in Eq. (83) and remembering that N = n + 1, we find the ro-vibrational energy
eigenvalues of the Morse potential as

2 42 242 2\
:Z hz_ah neis K , (95)
2ur, 2u 2nar,

n‘/M
where «a is given by Eq. (82).

2.3 The radial wave functions of the improved Tietz potential
We can obtain the radial wave functions corresponding to the energy eigenvalues of the improved Tietz potential by solving
the Riccati equation, therefore, in Eq. (47), therefore, if we let

z=1-qy, (96)
and use the logarithmic definition of the phase angle, ¢.. (y) to recover the wave function U, (y) in terms of the variable z,
we have

2(1-2)U, (2)+(1-22) U}, (z)+(gl_&;”3_%]um (2)=0" (97)
where the constants &1, &2 and &3 are given by
g = 2HA (98)
1 a2h2q2
L _2uB, (99)
27 232
a‘h q
g =21 (c-ET)- (100)
a’h
Eq. (97) is satisfied by the following ansatz [9] solution
U, (2)=N,, 27 (1-2) Q,,(2), (101)
where the constants o, » and the function ©Q,, (z) are chosen such that
o=(g-¢+& )% : (102)
v=¢z, (103)
and
Q,,(2)=,F(-nn+20+20+L20+12). (104)
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N being the normalization constant and 2F1 is the hypergeometric function. In the event that g = 0, both &1 and &2 are infinite, thus, making
Ux¢ (2) infinite, which is unphysical for a wave function. In order to have a physically acceptable wave functions we insert g = 0 in Eq.
(47), using Eq. (23) and the logarithmic definition of the phase angle, we find

y2ur, (¥)+yuy, (v)+(=& ¥ +& y—& )u,, (¥) =0, (105)
where
2uA
&= a7 (106)
__2uB, (107)
5 a2h2
&, =22—:Z(C—E”,M)- (108)
In order to solve Eq. (105), following [1, 15], we assume ansatz of the form
Uy (¥) = Nosy €27y 2, (¥). (109)
Eg. (109) is a solution of Eq. (105) if constants f3, v and the function Quem (y) are chosen so that
1
B=2¢;, (110)
v=2&¢, (111)
and
anM(y): 1F1(_an+1;ﬂY)a (112)

where 1F; is the hypergeometric function and Nyem is the normalization constant.

3.0 Results and Discussion
Table 1 shows the input spectroscopic model parameters of diatomic molecules used in the present work.
Table 1: Spectroscopic model parameters of diatomic molecules used in the present work

property Molecule

HCI LiH co H,

u (@amu) [7] 0.9801045 | 0.8801221 | 6.8606719 0.50391
D, (eV) [7] 4.61907 2515287 | 11.2256 4.7446
r. (A) [7] 1.2746 1.5956 1.1283 0.7416
w. (cmD) [27] | 2990.9 14055 2169.8 4401.2
a. (cm™) [27] | 0.3069985 | 0.2163911 | 0.01750513 | 3.0622

The data in Table 2 shows computed values of g and « obtained from Eq. (14) and Eq. (15) respectively applied to four diatomic molecules
viz: HCI, LiH, CO and H, also shown in the table are, corresponding to q = 0, the values of a calculated from Eq. (15) and from the
literature. The result shows that our computed values of a at g = 0 are in close agreement with those in the literature.

Table 2: Computed values of potential parameters

Molecules | q#0 g=0
o (A
q a (A PR [71
HCI 0.01141643 | 1.87014967 | 1.86818303 2.238057
LiH -0.29507995 | 1.06671325 | 1.12736073 | 1.7998368
co -0.26900708 | 2.25129679 | 2.30008783 2.59441
H, -0.40887291 | 1.72339457 | 1.94492460 1.440558

To further ascertain the validity of our results, Table 3 shows computed bound states ro-vibrational energies in the form of - (E.c — De) of
the improved Tietz potential calculated using Eq. (79) and Eq. (80), where q # 0 and g = 0 respectively, the computation was carried out
for four diatomic molecules viz. HCI, LiH, CO, and Ha. To enable us compare results with available data, we have included columns for
the results of - (E.c — De) adopted from the literature corresponding to q = 0 which was obtained by generalized pseudospectral (GPS)
method [17] for Morse potential, the results show an excellent agreement between the present result (PR) and the literature data. It is also
worthy to note the peculiar results of HCI, here, q (0.01141643) is numerically small, thus, the ro-vibrational energy eigenvalues
corresponding to g # 0 quite agree with those of q = 0 for all quantum states, however, this remarkable trend does not hold for Hz, LiH and
CO since | q | for this molecules is relatively large. Figures 1-3 shows graphical representation of unnormalized wave functions of the HCI
molecule for 2s, 3p and 4d quantum states, except for the different scales used for the plots, the shapes of the unnormalized wave functions
for the improved Tietz and Morse potentials are quite identical.
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Table 3 Bound states energy eigenvalues — (Ear — De) (in €V) of improved Tietz potential

J. of NAMP

State HCI LiH CcO H,
q#0 q=0 q#0 q=0 q#0 q=0 q#0 q=0
nj¢ PR 7 PR [7 PR 71 PR [7
0 | 0 | 4.43551688 | 4.43551688 | 4.43556394 | 2.60317357 | 2.42891174 | 2.42886321 | 11.36051089 | 11.09149515 | 11.09153532 | 5.02141451 | 4.47568270 | 4.47601313
1 | 4.43292800 | 4.43293039 | 4.43297753 | 2.60139954 | 2.42707057 | 2.42702210 | 11.36003817 | 11.09101858 | 11.09105875 | 5.00866166 | 4.46089838 | 4.46122852
2 | 4.42775180 | 4.42775896 | 4.42780630 | 2.59785406 | 2.42339075 | 2.42334244 | 11.35909276 | 11.09006547 | 11.09010565 | 4.98329734 | 4.43146360 | 4.43179975
5 | 4.39673856 | 4.39677438 | ... 257665351 | 2.40138265 | ... 1135342078 | 11.08434731 | ... 4.83494763 | 4.25847387 | ...
10 | 4.29390333 | 4.29403464 | 4.29440924 | 2.50686824 | 2.32888569 | 2.3288546 | 11.33452050 | 11.06529309 | 11.0653333 | 4.38306134 | 3.72153731 | 3.7247470
1|0 | 407955996 | 4.07957467 | 4.07971006 | 2.78383063 | 2.26068851 | 2.26054805 | 11.63282097 | 10.82570300 | 10.82582206 | 5.60284482 | 3.96138272 | 3.96231534
1 | 4.07704796 | 4.07706518 | 4.07720144 | 2.78200252 | 2.25889518 | 2.25875559 | 11.63234403 | 10.82523051 | 10.82534959 | 558930757 | 3.94715064 | 3.94811647
2 | 4.07202550 | 4.07204776 | 4.07218579 | 2.77834895 | 2.25531102 | 2.25517324 | 11.63139018 | 10.82428554 | 10.82440465 | 5.56238326 | 3.91881415 | 3.91986423
5 | 4.04193429 | 4.04198674 2.75650150 | 2.23387547 11.62566758 | 10.81861628 5.40491329 | 3.75224506
10 | 3.94216718 | 3.94232023 | ... 2.68458017 | 2.16327014 | ... 11.60659855 | 10.79972503 | ... 4.92529748 | 3.23482034 | ...
2 | 0 | 3.73847558 | 3.73851783 | 3.73873384 | 2.97092289 | 2.09850164 | 2.09827611 | 11.90842813 | 10.56313425 | 10.56333028 | 6.22081378 | 3.47846220 | 3.47991882
1 | 3.73604046 | 3.73608534 | 3.73630382 | 2.96904027 | 2.09675617 | 2.09653304 | 11.90794697 | 10.56266584 | 10.56286190 | 6.20646352 | 3.46478238 | 3.46633875
2 | 373117177 | 3.73122192 | 3.73144539 | 2.96527774 | 2.09326766 | 2.09304950 | 11.90698467 | 10.56172903 | 10.56192516 | 6.17792241 | 3.43754417 | 3.43932836
5 | 3.70200272 | 3.70208446 2.94277819 | 2.07240466 11.90121140 | 10.55610866 6.01100221 | 3.27739571
10 | 3.60530418 | 3.60549119 2.86870371 | 2.00369097 11.88197351 | 10.53738039 5.50267667 | 2.77948283
3| 0 | 3.41226561 | 3.41234635 3.16448853 | 1.94235114 12.18733495 | 10.30378892 6.87613872 | 3.02692115
1 | 3.40990740 | 3.40999087 3.16255095 | 1.94065353 12.18684956 | 10.30332458 6.86094517 | 3.01379358
2 | 3.40519249 | 3.40528145 3.15867858 | 1.93726068 12.18587881 | 10.30239591 6.83072716 | 2.98765366
5 | 3.37694573 | 3.37706756 3.13552165 | 1.91697022 12.18005484 | 10.29682445 6.65400764 | 2.83392584
10 | 3.28331621 | 3.28354752 3.05927661 | 1.85014817 12.16064792 | 10.27825915 6.11593562 | 2.35552479
5| 0 | 2.80447648 | 2.80465948 357119448 | 1.64815927 1275505784 | 9.79476847 8.30226528 | 2.21797747
1 | 2.80227210 | 2.80245802 3.56914564 | 1.64655735 12.75456399 | 9.79431228 8.28528729 | 2.20595441
2 | 2.79786484 | 2.79805660 3.56505084 | 1.64335581 1275357632 | 9.79339991 8.25152109 | 2.18201106
5 | 2.77146306 | 2.77168984 354056286 | 1.62421046 1274765080 | 9.78792624 8.05407414 | 2.04112450
10 | 2.68397288 | 2.68431627 3.45992321 | 1.56117167 12.72790544 | 9.76968691 7.45315832 | 1.60174713
7 | 0 | 2.25620765 | 2.25651408 4.00426120 | 1.37811287 13.33601026 | 9.29864165 0.88833728 | 1.53455167
1 | 2.25415715 | 2.25446664 4.00209921 | 1.37660666 13.33550794 | 9.29819361 9.86943160 | 1.52363311
2 | 2.25005762 | 2.25037321 3.99777825 | 1.37359643 13.33450332 | 9.29729755 9.83183274 | 1.50188633
5 | 2.22550134 | 2.22585358 3.97193682 | 1.35559618 13.32847609 | 9.29192167 9.61200670 | 1.37384105
10 | 2.14415224 | 2.14462648 3.88682900 | 1.29634066 13.30839173 | 9.27400829 8.94334700 | 0.97348735
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Figure 1: Unnormalized radial wave function of the HCI molecule for 2s state Figure 2: Unnormalized radial wave function of the HCI molecule for 3p state
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Figure 3: Unnormalized radial wave function of the HCI molecule for 4d state[

4.0 Conclusion

We have applied exact quantization rule and ansatz solution method to obtain bound state ro-vibrational energy
eigenvalues and unnormalized radial wave functions of the improved Tietz potential, by considering the special case of
g = 0, we have also deduced the energy eigenvalues of the molecular Morse potential and also its radial wave function.
The results of this work might be useful in areas of solid state, molecular or chemical physics.
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