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Abstract 
 

We have employed the techniques of exact quantization rule to obtain closed 

form expression for the bound state ro-vibrational energy eigenvalues of the 

improved Tietz potential. By considering the Morse potential as a special case of 

the improved Tietz potential, we have deduced closed form expression for the ro-

vibrational energy of Morse potential from the results of improved Tietz 

potential. We have also solved the Riccati equation via ansatz solution and 

obtained closed form expressions for the unnormalized radial wave functions for 

the improved Tietz and Morse potentials. We have computed ro-vibrational 

energies for the improved Tietz and Morse potentials and obtained results for 

four diatomic molecules including HCl, LiH, H2 and CO, our computed results 

are in near perfect agreement with available data of the diatomic molecules in 

the literature. 
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1.  Introduction 

The wave function is an important formulation in quantum mechanics because of the useful information they give regarding 

the quantum mechanical system under review [1-3]. Given a potential energy function, the Schrödinger or other wave 

equations must be solved, analytically or numerically to obtain eigenfunctions and eigenenergies of the system [2, 4]. The 

nature of the solution of the Schrödinger equation is characterized by the rotational quantum number ℓ. Such a solution may 

be exact [5, 6] or approximate [7, 8]. 

For all values of ℓ, the harmonic oscillator and Coulomb potentials are known to have exact solution with Schrödinger 

equation, other potential models also have, but with a restriction. Exact analytical solutions of the Schrödinger equation are 

also possible with most potential models for the special case ℓ = 0 only, the solutions are known as s-wave solutions [9]. On 

the other hand, for nonzero rotational quantum numbers, only approximate numerical solutions [10, 11], or approximate 

analytical solutions [12-14] can be realized for the wave equations. 

The first step to obtaining analytical solution of the Schrödinger equation is to model the centrifugal (or pseudo spin-orbit) 

term of the Schrödinger equation with an appropriate approximation scheme. The Pekeris approximation [15], Greene-

Aldrich approximation [16] have been successful in eliminating the centrifugal term of the wave equation. other model of the 

Pekeris-type has also been used by researchers [17]. Various solution methods have been proposed for the wave equation, 

among the vast list include functional analysis (ansatz) method [18], generalized pseudospectral method (GPS) [7], exact 

quantization rule (EQR) [19-25] and path integral approach [26]. 
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The solution of Schrödinger equation has been obtained in the presence of different potential energy functions. The main 

focus of the present study is the improved Tietz potential. The potential has important applications in the atomic, molecular 

and chemical physics. In previous studies, solution of Schrödinger equation has been obtained in the presence of the improved 

Tietz potential [13, 26]. It is pertinent to point out that equations of bound state ro-vibrational energies, also known as energy 

eigenvalues of atomic oscillators and radial wave functions hold for nonzero values of deformation parameters (q) of the 

oscillator. However, if q = 0, the improved Tietz potential is finite, but the solution obtained in previous studies is infinite 

both for the eigenenergies and eigenfunctions. 

In this paper, the concept of EQR and functional analysis methods are employed to obtain expressions of bound state ro-

vibrational energies and radial wave functions of the Schrödinger equation. Cases in which q ≠ 0 and q = 0 are specially 

considered, to the best of our knowledge, this approach has not been studied in the literature. Numerical data of bound state 

ro-vibrational energies obtained for the improved Tietz potential in this study are compared with available literature data for 

the potential where they exist. 
 

2.0 Theoretical Formalism 

2.1 Review of the concepts of exact quantization rule 

Here we give a summary of the important concepts of exact quantization rule, the complete detail is given by Ma and Xu 

[19]. The exact quantization rule was proposed to solve the one-dimensional Schrödinger equation given as: 

     2 0n n nx k x x    ,         (1) 

where prime denotes derivative with respect to the argument jn brackets, and the linear momentum of the system is given by 

    eff2

2
n nk x E V x


  ,         (2) 

μ being the mass of the system, Enℓ is the energy eigenvalue, Veff (x) is the effective potential energy function which is a 

piecewise continuous real function of x. Eq. (1) can be reduced to the well-known Riccati nonlinear differential equation 

given by 

     2 2 0n n nx k x x     ,         (3) 

where ϕnℓ (x) = ψ′nℓ (x) / ψnℓ (x) is the logarithmic derivative of the wavefunction ψnℓ (x), it is also known as the phase angle. 

Due to Sturm-Liouville theorem, ϕnℓ (x) decreases monotonically with respect to x between two turning points determined by 

the equation Enℓ ≥ Veff (x). Specifically, x increases across a node of the wavefunction ψnℓ (x), where Enℓ ≥ Veff (x), ϕnℓ (x) 

decreases to – ∞ and jumps to +∞ and then decreases again. By carefully studying the one-dimensional Schrödinger equation, 

Ma and Xu [19] proposed an exact quantization rule given by: 

   
   

1

d k d
k d π d

d d

n B n B

n A n A

x x

n n

n n

x x

x x
x x N x x

x x






   
     

      
 

,       (4) 

where xnA and xnB are two turning points determined by solving the equation Enℓ = Veff (x) and xnA < xnB. N is the number of 

nodes of ϕnℓ (x) in the neighborhood of Enℓ ≥ Veff  (x) and it is larger by one than the number of nodes n of the wavefunction 

ψnℓ (x), clearly, N = n + 1. The first term, Nπ, relates to the contribution from the nodes of the wave function, and the second 

term is referred to as the quantum correction. Ma and Xu [19] have found that the quantum correction is independent of the 

number of nodes for the exactly solvable systems, therefore, it can be evaluated for the ground state (n = 0), the second term 

in Eq. (4) can thus be represented by: 

 
   

 
   0

0

1 1

0 0

0

d k d d k d
Q d d

d d d d

n B B

n A A

x x

n n

c n

x x

x x x x
x x x x

x x x x

 
 

 

       
        

              
 

,     (5) 

where Qc is the quantum correction term. In three dimensional spherical coordinates, the exact quantization rule is given by: 

   
   

1

0 0

0

d d
k d π d

d d

n B n B

n A n A

r r

n

r r

k r r
r r N r r

r r






   
     

      
 

.       (6) 

In simplified form, Eq. (6) can be expressed 

cI π Qn N  ,          (7) 

where the momentum integral is given by 

 I k d

n B

n A

r

n n

r

r r 
,          (8) 

and the quantum correction is: 

 
   

1

0 0

c 0

d d
Q d

d d

n B

n A

r

r

k r r
r r

r r






   
    

      


.        (9) 
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The Schrödinger equation in three dimensions for a spherically symmetric potential is given as [12] 

     
2 2

eff2

d
U U

2 d
n n nV r r E r

r

 
   
 

,        (10) 

Unℓ (r) being the radial wave function. 
 

2.2 The effective improved Tietz potential 
The effective improved Tietz rotating oscillator [13] is given by 

     effV r V r V r  ,         (11) 

where V (r) and Vℓ (r) are respectively the improve Tietz potential and centrifugal term potential respectively, they are given by 

 
2

e 1
r

b
V r D

e q

 
  

 

,         (12) 

where 

ee
r

b q


  ,          (13) 

with De as the dissociation energy, re is the molecular bond length, r is the internuclear separation, α and q are respectively 

the potential screening and deformation parameters expressed as [13] 
1
2

ee

e

1 e
2

rD
q



 

   
   

   

,         (14) 

e

eee

e

e
r

rc

D

1

3

42
2

322

1


















,        (15) 

where ωe and αe are the equilibrium harmonic vibrational frequency, and rotation-vibration coupling constant. The centrifugal 

term potential is given by [13, 20] 

 
2

2

L

2
V r

r
 ,          (16) 

where L = ℓ (ℓ + 1). Oupon substituting Eq. (12) and Eq. (16) into Eq. (11), this translates to 

 
2 2

eff e 2

L
1

2r

b
V r D

e q r 

 
   

 

.        (17) 

Eq. (10) when used with the effective potential of Eq. (17) has no exact solution except for the case of s-wave (ℓ = 0), to 

obtain analytical solution for all quantum states, one must use a suitable approximation scheme on the centrifugal term given 

by [13] 

 
1 2

02 2 2

e

1 1

e e
r

r

D D
D

r r q q




 
 

   
   

,        (18) 

where the adjustable parameters D0, D1 and D2 read [13] 

 e e e e2 22 2

0 e e e2 2

e

1
1 3 3 6 e 3 e 2 e e

r r r r
D r q q q r q r

r

     


   
       ,    (19) 

 e e e e e2 22 3 3

1 e e e2 2

e

2
9 3 3e 2 e 9 e 3 e e

r r r r r
D q q r r q q q r

r

      


  
        ,   (20)

 e e e e e e e e2 2 22 3 4 3 4

2 e e e e2 2

e

1
18 12 e 3e 2 e e 12 e 3 e 2 e e

r r r r r r r r
D q q q r r q q q r q r

r

          


    
         . (21) 

Substituting Eq. (18) in Eq. (17), this leads to: 

 
 

2 2

1 2

eff e 02 2

e

L
1

e 2 e e
r r

r

D Db
V r D D

q r q q
 



 
   

      
     

,      (22) 

Using the following transformation equation, 

 
1

e ry q


  .          (23) 

Eq. (22) transforms to: 

     
2

2 2

eff e 0 1 22

e

L
1

2
V y D b y D D y D y

r
    

.       (24) 

Eq. (24) can be generalized as: 

 
2 2 2 22 2 2

2e e e e e e

eff 2 2 02 2 2 2 2 2

e e e

2 4 2

2 2 2

r D b r D b r D
V y L D y L D y L D

r r r

  

  

     
          

     

.   (25) 

Journal of the Nigerian Association of Mathematical Physics Volume 63, (Jan. – March, 2022 Issue), 1 –12 



4 

 

Ro-Vibration Energies…                                       Ojar, Najoji and Eyube                            J. of NAMP 

 
 

By defining the following constants 
2 2

2 e e

2 2

2 r D b
L D


   ,         (26) 

2

2 e e

1 2

4 r D b
L D


   ,         (27) 

2

2 e e

0 2

2 r D
L D


   .         (28) 

Eq. (25) can be expressed in the more compact form as: 

  2

effV y A y B y C   ,         (29) 

where 
2 2

2

e2
A

r




 ,          (30) 

2 2

2

e2
B

r




 ,          (31) 

2 2

2

e2
C

r




 .          (32) 

The turning points needed to solve Riccati equation are obtained by solving the following equation. 

 eff nV y E .          (33) 

Putting Eq. (27) in Eq. (31), we have that 

02  nECyByA .         (34) 

The turning points ynA and ynB (> ynA) which are roots Eq. (34) are given by 

 2 4

2

n

n A

B B A C E
y

A

  
  ,         (35) 

and 

 2 4

2

n

n B

B B A C E
y

A

  
  .         (36) 

From Eq. (35) and Eq. (36), it is obvious that 

A

B
yy BnAn  ,          (37) 

A

EC
yy

n

BnAn


 .         (38) 

For the ground (n = 0) state, Eq. (37) and Eq. (38) gives respectively 

A

B
yy BA  00

,          (39) 

A

EC
yy BA

0

00


 .         (40) 

The expression for the momentum is given by, following Eq. (2), this gives: 

   2

2

2
kn ny E A y B y C


   

.         (41) 

Eq. (41) can be written in terms of the turning points which will be required in what will follow, thus,  

  2

2

2
k

n

n

C EA B
y y y

A A

  
   

 

.        (42) 

Using Eq. (37) and Eq. (38) in Eq. (42), this gives: 

    2

2
kn n A n B

A
y y y y y


   .        (43) 

The derivative of Eq. (43) with respect to y is given by 

 
 

  

1
22

k
n A n B

n

n A n B

y y yA
y

y y y y

  
  

 

.       (44) 
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Since the ground state derivative of the momentum is required for evaluating the quantum correction, Eq. (44) gives for the 

ground state (n = 0), and employing Eq. (39) 

 
  

0

0 0

2 / 2
k

A B

A y B A
y

y y y y

 
  

 

.       (45) 

Using Eq. (2) and Eq. (3), the Riccati equation in three dimensional spherical coordinates [22] is 

      2

eff2

2
0n n nr E V r r


      .       (46) 

To obtain the corresponding Riccati equation in terms of variable y, we substitute Eq. (23) in Eq. (46), this results in the 

following first order nonlinear differential equation given by 

       2 2

2

2
1 0n n ny q y y E A y B y C y


          .     (47) 

where we have used Eq. (29) to eliminate Vnℓ (y) 

Eq. (47) gives for the ground state 

       2 2

0 0 02

2
1 0y q y y E A y B y C y


          .     (48) 

Since ϕ0ℓ (y) has one zero and no pole, it has to assume a linear form in y, for a trial solution, we assume 

  210 cycy  .         (49) 

c1 and c2 being constants, substituting Eq. (49) in Eq. (48), get 

   2 2 2 2 2

1 0 1 1 2 22

2
2 0c y q y E C A y B y c y c c y c


          .     (50) 

Eq. (50) simplifies to 

 2 2 2

1 1 1 1 2 0 22 2 2

2 2 2
2 0

A B
c q c y c c c y E C c

  
 

   
            
   

.     (51) 

By equating corresponding coefficients of y2, y and y0 respectively on both sides of Eq. (51), this results in the following 

relations 

21

2

1

2



A
cqc


  ,          (52) 

2211

2
2



B
ccc


  ,         (53) 

 


02

2

2

2
ECc 


.         (54) 

Therefore, solving for c1 in Eq. (52), one obtains 

2

1

2

22

1

2

42 











Aqq
c

 .        (55) 

We have chosen the negative square root in solving for c1 in order to satisfy the monotonicity requirements. 

It follows that by inserting Eq. (30) in Eq. (55), this yields 



























2

1

222

2

1

4
11

2 qr

q
c

e

 .        (56) 

Letting 



























2

1

222

2

2
1

4
11

qre




,         (57) 

Eq. (56) assumes the form 

 qc 1 .          (56) 

Evidently, Eq. (57) leads to 

 2

1
2   qre .         (59) 

Eq. (53) gives 
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2

1

2
2 c

B
c


 .          (60) 

Having obtained c1 and c2, we are now in position to compute the various integrals appearing in Eq. (7), starting with the 

right hand side of this relation, Eq. (9) can be used to obtain the quantum correction, by employing the transformation relation 

given by Eq. (23) in Eq. (9), we have 

 

 
 

 
0

0

c 0

0

1 d
Q

1

n B

A

y

y

y y
k y

y y q y



 
 

  .       (61) 

Using Eq. (45) and Eq. (49) in Eq. (61), we have 

  

    0

2 1

c

0 0

/ / 22 d
Q

1

n B

A

y

y
A B

y c c y B AA y

y q y y y y y





 


  


.      (62) 

After substituting Eq. (30) in Eq. (62) and dividing out the numerator by the denominator, we find 

  

    0

1 22

c

1 1
0 0

21 d
Q

2 2 1

n B

A

y

e y
A B

c q c A q Bc B y

r q c A y q c A q y y y y y





   
    

    


.     (63) 

The integral in Eq. (63) can be evaluated by means of the following standard integral [24] 

       

d π
n B

n A

y

y
n A n B n B n A

y

P Q y y y y y P Q y P Q y


    
 .     (64) 

Application of Eq. (64) in Eq. (63) results in the following 

  1 22

c 1 2

e 1 1

2π 1
Q

2 2

c qc A q Bc B
I I

r q c A qc A





   
    

  

,      (65) 

where 

A

EC
yyI BA

0

00

2

1


 . ``        (66) 

Thus, by putting Eq. (54) and Eq. (30) in Eq. (66), we find 

1

2 e

I
c r


 .          (67) 

Similarly, we have 

  BABA yyqyyqI 00

2

00

2

2 1 
.       (68) 

On substituting Eq. (35) and Eq. (36) in Eq. (64), this gives 

 
A

ECq

A

Bq
I

0

2

2

2 1


 .        (69) 

To further simplify Eq. (69), divide Eq. (53) and Eq. (54) each by Eq. (52), and the results substituted in Eq. (69), gives 

   

1

2

1

2

21

1

2

1

2

2

2

1

2

1

2112

2

2
1

cqc

cqc

cqc

cq

cqc

cccq
I
















 .      (70) 

Using Eq. (52) in Eq. (70) followed by Eq. (30), we find 

 
2

e 1 2

I
r c q c





.         (71) 

Substituting Eq. (67) and Eq. (71) in Eq. (65) and eliminate c1 from Eq. (58), we have for the quantum correction 

2

e e

π 1
cQ

r q q r

 

  

 
   

 

.         (72) 

The other integral on the right hand side of Eq. (7) is obtained in terms of variable y as 

 
 

1 d
k

1

n B

n A

y

n

y

y
I y

y q y
 

    .       (73) 

Putting Eq. (43) in Eq. (73) and using Eq. (30) to eliminate A in the result, this gives 

  
 e

d
1

n B

n A

y
n A n B

y

y y y y
I y

r y q y





 
 

 .        (74) 
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In order to evaluate the integral in Eq. (74) we use the following standard integral [25] 

  
 

  1 11
d π

1

n B

n A

y
n A n B n A n B

n A n B

y

y y y y Q y Q y
y y y

y Q y Q Q

     
    

  
 


.    (75) 

Therefore, by using the definite integral of Eq. (75) we obtained, 

2

e

π 1 1
n A n B n A n B

B
I y y y y

r q q Aq





  
      

  

.      (76) 

Substitute Eq. (72) and Eq. (76) in Eq. (7) to get 

e

2 2

e

1
n A n B n A n B

N rB
y y y y

q Aq r q

 

  
     ,      (77) 

Eq. (77) can be solved for the ro-vibrational energy Enℓ of the improve Tietz potential, by substituting Eq. (59) on the right 

hand side of Eq. (77) and recalling that N = n + 1, this transforms to 










22

1

q

n
yy

Aq

B

q
yy BnAnBnAn

,      (78) 

Solving for ynA ynB and using Eq. (38), we find 

 
 

2
22

2

22

22

1

22 





 



















 n

n

q

r
EE

e

ITPnn




,      (79) 

where EnℓITP designates the ro-vibrational energy of the improved Tietz potential, and 

2

21




 

q

.          (80) 

If we replace the parameters; τ, ω, λ and subsequently, η and κ in Eq. (79), the rotation-vibration energy levels of the improved 

Tietz potential, derived by Tang et al. [13] which was obtained using the approach of ansatz solution, is exactly reproduced. 

It must be emphasized that Eq. (79) is only valid for q ≠ 0. However, if q = 0, the expression on the right hand side of Eq. 

(79) becomes infinite (this is immediately evident from Eq. (80) and also from Eq. (25) of ref. [13]. In the event of letting q 

= 0 in Eq. (12), the improved Tietz potential reduces to the well-known Morse oscillator [1, 7], viz. 

      e
2

e 1 e
r r

MV r V r D
 

   ,        (81) 

where VM (r) is the Morse potential, as a result, Eq. (14) gives 
1
2

e

e

2
M

D


  

 
   

 

.         (82) 

In all subsequent notations, when the subscript “M” is used, it refers to “Morse”. In order to deduce the ro-vibrational energy 

eigenvalues of the Morse potential, we will re-evaluate the quantum correction QcM and the momentum integral IM and re-

write the exact quantization rule of Eq. (7) for the Morse potential as 

M cMI π QN  .          (83) 

First it must be noted that with q = 0, Eq. (52) gives, with c1 replaced by c1M 

1M

e

2 A
c

r

 
  .          (84) 

The quantum correction in Eq. (62) gives 

  

  0

2 1

c M

e
0 0

/ / 2 d
Q

n B

A

y

M M

y
A B

y c c y B A y

r y y y y y





 


 


.     (85) 

Dividing out the integrand in Eq. (85) leads to 

  0

2M 2M

c M

e 1M 1M
0 0

d
Q

2 2

n B

A

y

y
A B

c c BB y
y

r A c c A y y y y y





  
    

    
 .     (86) 

The integral of Eq. (86) can be evaluated by means of the following standard integral [22] 

  
 1

2

d
π

nb

n A

y

n A n B

y
n A n B

y y
y y

y y y y
 

 


,        (87) 
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  

d
π

nb

n A

y

y
n A n B

y

y y y y


 


,         (88) 

  

d π
nb

n A

y

y n A n Bn A n B

y

y yy y y y y


 
 ,        (89) 

  
  1

2
d π

nb

n A

y
n A n B

n A n B n A n B

y

y y y y
y y y y y

y

 
   .      (90) 

By applying the integrals defined in Eq. (87)-Eq. (89) on Eq. (86), we obtained 

  2M 2M1
c M 0 02

e 1M 1M 0 0

π 1
Q

2 2
A B

A B

c c BB
y y

r A c c A y y





  
     

  

.      (91) 

Using Eq. (53) and Eq. (54) with q = 0 while c1, and c2 are replaced by c1M and c2M respectively, get 

c M

π
Q

2
  ,          (92) 

similarly, the momentum integral of Eq. (74) with q = 0, gives 

  
M

e

I d

n B

n A

y
n A n B

y

y y y y
y

r y





 
  

.        (93) 

Using the standard integral of Eq. (70) on Eq. (93), get 
2

M 2

e

π
I

2
n A n By y

r

 

 

 
   

 

.        (94) 

Inserting the results in Eq. (92) and Eq. (94) in Eq. (83) and remembering that N = n + 1, we find the ro-vibrational energy 

eigenvalues of the Morse potential as 
2

2 2 2 2 2

1
M 22

ee
2 22

nE n
rr

  

 

 
    

 

,        (95) 

where α is given by Eq. (82). 
 

2.3 The radial wave functions of the improved Tietz potential 

We can obtain the radial wave functions corresponding to the energy eigenvalues of the improved Tietz potential by solving 

the Riccati equation, therefore, in Eq. (47), therefore, if we let 

yqz 1 ,          (96) 

and use the logarithmic definition of the phase angle, ϕnℓ (y) to recover the wave function Unℓ (y) in terms of the variable z, 

we have 

         1 2 3 3

11 U 1 2 U U 0
1

n n nz z z z z z
z z

   


  
        

 

,     (97) 

where the constants ε1, ε2 and ε3 are given by 

2221

2

q

A




  ,          (98) 

q

B
222

2




 

,          (99) 

 ITP

3 2 2

2
nC E





  .         (100) 

Eq. (97) is satisfied by the following ansatz [9] solution 

     U 1n n nz N z z z
   ,         (101) 

where the constants σ, υ and the function Ωnℓ (z) are chosen such that 

 2

1

321   ,         (102) 

2

1

3  ,           (103) 

and 

   znnFzn ;12;122,12  
.      (104) 
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Nnℓ being the normalization constant and 2F1 is the hypergeometric function. In the event that q = 0, both ε1 and ε2 are infinite, thus, making 

Unℓ (z) infinite, which is unphysical for a wave function. In order to have a physically acceptable wave functions we insert q = 0 in Eq. 

(47), using Eq. (23) and the logarithmic definition of the phase angle, we find 

       2 2

4 5 6u u u 0n n ny y y y y y y         ,     (105) 

where 

224

2






A
 .          (106) 

225

2






B


,          (107) 

 6 M2 2

2
nC E





  .          (108) 

In order to solve Eq. (105), following [1, 15], we assume ansatz of the form 

   
1 1
2 2

M Mu e
y

n n M ny N y y
 

  .       (109) 

Eq. (109) is a solution of Eq. (105) if constants β, ν and the function ΩnℓM (y) are chosen so that 

2

1

42  ,          (110) 

2

1

62  ,          (111) 

and 

   M 1 1F , 1;n y n y     ,        (112) 

where 1F1 is the hypergeometric function and NnℓM is the normalization constant. 

 
3.0 Results and Discussion 

Table 1 shows the input spectroscopic model parameters of diatomic molecules used in the present work.  

Table 1: Spectroscopic model parameters of diatomic molecules used in the present work 
property Molecule 

HCl LiH CO H2 

μ (amu) [7] 0.9801045 0.8801221 6.8606719 0.50391 

De (eV) [7] 4.61907 2.515287 11.2256 4.7446 

re (Å) [7] 1.2746 1.5956 1.1283 0.7416 

ωe (cm-1) [27] 2990.9 1405.5 2169.8 4401.2 

αe (cm-1) [27] 0.3069985 0.2163911 0.01750513 3.0622 
 

The data in Table 2 shows computed values of q and α obtained from Eq. (14) and Eq. (15) respectively applied to four diatomic molecules 

viz: HCl, LiH, CO and H2, also shown in the table are, corresponding to q = 0, the values of α calculated from Eq. (15) and from the 

literature. The result shows that our computed values of α at q = 0 are in close agreement with those in the literature. 
  

Table 2: Computed values of potential parameters 
Molecules q ≠ 0 q = 0 

α (Å-1) 

q α (Å-1) PR [7] 

HCl 0.01141643 1.87014967 1.86818303 2.238057 

LiH -0.29507995 1.06671325 1.12736073 1.7998368 

CO -0.26900708 2.25129679 2.30008783 2.59441 

H2 -0.40887291 1.72339457 1.94492460 1.440558 
 

To further ascertain the validity of our results, Table 3 shows computed bound states ro-vibrational energies in the form of - (Enℓ – De) of 

the improved Tietz potential calculated using Eq. (79) and Eq. (80), where q ≠ 0 and q = 0 respectively, the computation was carried out 

for four diatomic molecules viz. HCl, LiH, CO, and H2. To enable us compare results with available data, we have included columns for 

the results of - (Enℓ – De) adopted from the literature corresponding to q = 0 which was obtained by generalized pseudospectral (GPS) 

method [17] for Morse potential, the results show an excellent agreement between the present result (PR) and the literature data. It is also 

worthy to note the peculiar results of HCl, here, q (0.01141643) is numerically small, thus, the ro-vibrational energy eigenvalues 

corresponding to q ≠ 0 quite agree with those of q = 0 for all quantum states, however, this remarkable trend does not hold for H2, LiH and 

CO since | q | for this molecules is relatively large. Figures 1-3 shows graphical representation of unnormalized wave functions of the HCl 

molecule for 2s, 3p and 4d quantum states, except for the different scales used for the plots, the shapes of the unnormalized wave functions 

for the improved Tietz and Morse potentials are quite identical. 
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Table 3 Bound states energy eigenvalues – (Enℓ – De) (in eV) of improved Tietz potential 
State HCl LiH CO H2 

q ≠ 0 q = 0 q ≠ 0 q = 0 q ≠ 0 q = 0 q ≠ 0 q = 0 

n ℓ PR [7] PR [7] PR [7] PR [7] 

0 0 4.43551688 4.43551688 4.43556394 2.60317357 2.42891174 2.42886321 11.36051089 11.09149515 11.09153532 5.02141451 4.47568270 4.47601313 

1 4.43292800 4.43293039 4.43297753 2.60139954 2.42707057 2.42702210 11.36003817 11.09101858 11.09105875 5.00866166 4.46089838 4.46122852 

2 4.42775180 4.42775896 4.42780630 2.59785406 2.42339075 2.42334244 11.35909276 11.09006547 11.09010565 4.98329734 4.43146360 4.43179975 

5 4.39673856 4.39677438 … 2.57665351 2.40138265 … 11.35342078 11.08434731 … 4.83494763 4.25847387 … 

10 4.29390333 4.29403464 4.29440924 2.50686824 2.32888569 2.3288546 11.33452050 11.06529309 11.0653333 4.38306134 3.72153731 3.7247470 

1 0 4.07955996 4.07957467 4.07971006 2.78383063 2.26068851 2.26054805 11.63282097 10.82570300 10.82582206 5.60284482 3.96138272 3.96231534 

1 4.07704796 4.07706518 4.07720144 2.78200252 2.25889518 2.25875559 11.63234403 10.82523051 10.82534959 5.58930757 3.94715064 3.94811647 

2 4.07202550 4.07204776 4.07218579 2.77834895 2.25531102 2.25517324 11.63139018 10.82428554 10.82440465 5.56238326 3.91881415 3.91986423 

5 4.04193429 4.04198674 … 2.75650150 2.23387547 … 11.62566758 10.81861628 … 5.40491329 3.75224506 … 

10 3.94216718 3.94232023 … 2.68458017 2.16327014 … 11.60659855 10.79972503 … 4.92529748 3.23482034 … 

2 0 3.73847558 3.73851783 3.73873384 2.97092289 2.09850164 2.09827611 11.90842813 10.56313425 10.56333028 6.22081378 3.47846220 3.47991882 

1 3.73604046 3.73608534 3.73630382 2.96904027 2.09675617 2.09653304 11.90794697 10.56266584 10.56286190 6.20646352 3.46478238 3.46633875 

2 3.73117177 3.73122192 3.73144539 2.96527774 2.09326766 2.09304950 11.90698467 10.56172903 10.56192516 6.17792241 3.43754417 3.43932836 

5 3.70200272 3.70208446 … 2.94277819 2.07240466 … 11.90121140 10.55610866 … 6.01100221 3.27739571 … 

10 3.60530418 3.60549119 … 2.86870371 2.00369097 … 11.88197351 10.53738039 … 5.50267667 2.77948283 … 

3 0 3.41226561 3.41234635 … 3.16448853 1.94235114 … 12.18733495 10.30378892 … 6.87613872 3.02692115 … 

1 3.40990740 3.40999087 … 3.16255095 1.94065353 … 12.18684956 10.30332458 … 6.86094517 3.01379358 … 

2 3.40519249 3.40528145 … 3.15867858 1.93726068 … 12.18587881 10.30239591 … 6.83072716 2.98765366 … 

5 3.37694573 3.37706756 … 3.13552165 1.91697022 … 12.18005484 10.29682445 … 6.65400764 2.83392584 … 

10 3.28331621 3.28354752 … 3.05927661 1.85014817 … 12.16064792 10.27825915 … 6.11593562 2.35552479 … 

5 0 2.80447648 2.80465948 … 3.57119448 1.64815927 … 12.75505784 9.79476847 … 8.30226528 2.21797747 … 

1 2.80227210 2.80245802 … 3.56914564 1.64655735 … 12.75456399 9.79431228 … 8.28528729 2.20595441 … 

2 2.79786484 2.79805660 … 3.56505084 1.64335581 … 12.75357632 9.79339991 … 8.25152109 2.18201106 … 

5 2.77146306 2.77168984 … 3.54056286 1.62421046 … 12.74765080 9.78792624 … 8.05407414 2.04112450 … 

10 2.68397288 2.68431627 … 3.45992321 1.56117167 … 12.72790544 9.76968691 … 7.45315832 1.60174713 … 

7 0 2.25620765 2.25651408 … 4.00426120 1.37811287 … 13.33601026 9.29864165 … 9.88833728 1.53455167 … 

1 2.25415715 2.25446664 … 4.00209921 1.37660666 … 13.33550794 9.29819361 … 9.86943160 1.52363311 … 

2 2.25005762 2.25037321 … 3.99777825 1.37359643 … 13.33450332 9.29729755 … 9.83183274 1.50188633 … 

5 2.22550134 2.22585358 … 3.97193682 1.35559618 … 13.32847609 9.29192167 … 9.61200670 1.37384105 … 

10 2.14415224 2.14462648 … 3.88682900 1.29634066 … 13.30839173 9.27400829 … 8.94334700 0.97348735 … 
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Figure 1: Unnormalized radial wave function of the HCl molecule for 2s state       Figure 2: Unnormalized radial wave function of the HCl molecule for 3p state 

 
Figure 3: Unnormalized radial wave function of the HCl molecule for 4d state[ 

 

4.0 Conclusion 

We have applied exact quantization rule and ansatz solution method to obtain bound state ro-vibrational energy 

eigenvalues and unnormalized radial wave functions of the improved Tietz potential, by considering the special case of 

q = 0, we have also deduced the energy eigenvalues of the molecular Morse potential and also its radial wave function. 

The results of this work might be useful in areas of solid state, molecular or chemical physics. 
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