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Abstract 

In this paper we proposed an integrator backstepping technique for the 

realization of multiswitching and synchronization of double compound 

combination of 5-dimensional hyperchaotic systems with application to 

5-dimensional hyperchaotic magnetohydrodynamic systems to verify 

our analytical method. Using the Runge-Kutta algorithm, our 

numerical results confirm the effectiveness of the proposed analytical 

technique. 
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1.0 Introduction 

It has been shown in [1-5] that deterministic dynamical systems exhibit sensitive dependence on initial conditions with 

proofs in the fields of sciences (physical and natural), medicine,  and engineering  Various attributes of nonlinear dynamical 

systems such as chaos, bifurcation, multistability, pattern formation, control, and synchronization have been investigated 

due to their potential applications in many disciplines. Due to its applications in information processing, secure 

communication, chemical reactions, and modeling brain activity, it was noted in [6] that there is an increasing interest in the 

study of synchronization of chaotic systems which has led to the discovery of various types of synchronization including 

complete synchronization, lag synchronization, phase synchronization, generalized synchronization, measure 

synchronization, projective synchronization, anticipated synchronization, reduced-order synchronization, compound and 

double compound as mentioned in [7,8]  

To achieve stable synchronization between two or more chaotic systems, researchers have used several methods, 

including adaptive control and active control, sliding mode control, impulsive control,  linear feedback control, 

backstepping control, open plus close loop control, adaptive fuzzy feedback   and passive control [9-16] respectively. 

Notable among these methods is the backstepping control technique which has outstanding performance in the 

synchronization of identical and non identical chaotic systems as mentioned in [17] and [18].  

Further to our works on Multiswitching Combination Synchronization in High Dimensional Hyperchaotic Systems as 

noted in [19,20],  in this paper, we present Multiswitching Double Compound Combination Synchronisation of 5-

Dimensional Hyperchaotic Systems with application  to 5-dimensional Hyperchaotic magnetohydrodynamic systems via 

integrator backstepping technique, with an intention that the result will ensure better security when employed in 

communications applications. We used the Runge-Kutta algorithm and our numerical results confirmed the effectiveness of 

the proposed analytical technique, the synchronization was achieved. 

2.0 Definition, formulation and design of controllers for the multiswitching double compound combination 

synchronisation of 5-Dimensional hyperchaotic systems in application to 5-Dimensional hyperchaotic 

magnetohydrodynamic systems 

The compound-combination synchronisationscheme for five chaotic systems as proposed in [21] and the double 

compound synchronisation scheme for six systems proposed in [22] serve as the guide in this work. Consider systems (1), 

(2), (3) and (4) as drive systems and systems (5) and (6) as two response systems 
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𝑥̇  =  𝑓(𝑥)            (1) 
𝑦̇  =  𝑓(𝑦)            (2) 
𝑧̇  =  𝑓(𝑧)            (3) 
𝑝̇  =  𝑓(𝑝)            (4) 
𝑞̇ =  𝑓(𝑞)  +  𝑈!           (5) 
𝑤̇ =  𝑓(𝑤)  +  𝑈2           (6) 

where𝑥(𝑥1, 𝑥2, 𝑥3 … 𝑥𝑖)
𝑇 , 𝑦 =  (𝑦1 , 𝑦2, 𝑦3 … 𝑦𝑖)𝑇 , 𝑧 =  (𝑧1, 𝑧2, 𝑧3 … 𝑧𝑖)

𝑇 , 𝑝 = 𝑝1, 𝑝2, 𝑝3 … 𝑝𝑖)𝑇 , 𝑞 =  (𝑞1, 𝑞2, 𝑞3 … 𝑞𝑖)
𝑇 

and 𝑤 =  (𝑤1, 𝑤2, 𝑤3 … 𝑤𝑖)
𝑇 , are the state variables Of systems (1) − (6) respectively, 

𝑓(𝑥)𝜖ℜ𝑙 , 𝑓(𝑦)𝜖ℜ𝑚, 𝑓(𝑧)𝜖ℜ𝑛, 𝑓(𝑝)𝜖ℜ𝑜, 𝑓(𝑞)𝜖ℜ𝑠and 𝑓(𝑤)𝜖ℜ𝑡 are continous functions of the systems, 𝑈1 =
 (𝑢1, 𝑢2, 𝑢3 … 𝑢𝑞)𝑇 𝜖ℜ𝑞 , 𝑈2 =  (𝑢1, 𝑢2, 𝑢3 … 𝑢𝑤)𝑇 𝜖ℜ𝑤 are the controllers to be designed.Suppose 𝑥 =  𝑑𝑖𝑎𝑔(𝑥1, 𝑥2 … 𝑥𝑛),

𝑦 =  𝑑𝑖𝑎𝑔(𝑦1 , 𝑦2 … 𝑦𝑛), 𝑧 =   𝑑𝑖𝑎𝑔(𝑧1, 𝑧2 … 𝑧𝑛), 𝑝 =
 𝐷𝑖𝑎𝑔(𝑝1, 𝑝2 … 𝑝𝑛), 𝑞   𝑑𝑖𝑎𝑔(𝑞1, 𝑞2. . . 𝑞𝑛)and 𝑤  𝑑𝑖𝑎𝑔(𝑤1, 𝑤2. . . 𝑤𝑛)are n−dimensional diagonal matrices Zhang and Deng 

(2014) gave an error definition of the synchronisationfor double compound as 

Definition 1:If there exist six constant matrices 𝐴, 𝐵, 𝐶, 𝐷, 𝑀, 𝑁𝜖ℜ𝑛𝑋ℜ𝑛 such that 

lim
𝑡→∞

‖𝑒‖ =  lim
𝑡→∞

‖(𝐴𝑥 +  𝐵𝑦)(𝐶𝑧 +  𝐷𝑝)  − 𝑀𝑞 −  𝑁𝑤‖  =  0      (7) 

then the drive systems (1) − (4) are said to be in double compound synchronisationwith the response systems (5) and 

(6),where ‖ · ‖ expresses the matrix norm, the driver systems (1) and (2) are called the scaling driver systems and the driver 

systems (3) and (4) are called the base driver systems and in one of their remarks, Zhang and Deng (2014) explained that 

(7) could be written as 

lim
𝑡→∞

‖𝑒‖  =  lim
𝑡→∞

‖𝑀𝑞 +  𝑁𝑤 − (𝐴𝑥 +  𝐵𝑦)(𝐶𝑧 +  𝐷𝑝)‖ =  0     (8) 

Comment 1: Following our definitions and comments in Ogundipe (2017), one can write (8) as 

lim
𝑡→∞

‖𝑒‖  =  lim
𝑡→∞

‖𝑀𝑞𝑛𝑟  +  𝑁𝑤𝑛𝑟 −  (𝐴𝑥𝑛𝑑1 + 𝐵𝑦𝑛𝑑2)(𝐶𝑧𝑛𝑑3 +  𝐷𝑝𝑛𝑑4)‖ =  0    (9) 

This represents error dynamics for six indices being the number of systems in consideration. The error dynamics is 

lim
𝑡→∞

‖𝑒𝛼𝛽𝛾𝛿𝜆𝜇‖ = lim
𝑡→∞

‖𝑀𝑞𝛼𝑟 + 𝑁𝑤𝛽𝑟 − (𝐴𝑥𝑑1 +  𝐵𝑦𝑑2)(𝐶𝑧𝑑3 + 𝐷𝑝𝜇𝑑4)‖  = 0    (10) 

so that the indices are now members taken from the dimension 𝑛 of the systems. For easy identification of the mathematics 

function, assume that the maximum variable state space is five (5), each denoted by dimensions 1, 2, 3, 4, 5 =  𝑖, 𝑗, 𝑘, 𝑙, 𝑚 

for the five (5) dimensional systems in consideration. 

Definition 2:If the error states in relation to definition 1 and the comments above are redefined such that for𝑒𝛼𝛽𝛾𝛿𝜆𝜇, any, 

combination of, or all of the equality signs as described in comment 1 is changed, different from the dimension of the 

corresponding response sub-system, in at least one of the sub-systems, and 

lim
𝑡→∞

‖𝑒𝛼𝛽𝛾𝛿𝜆𝜇‖ = lim
𝑡→∞

‖𝑒‖ 𝑀𝑞𝛼𝑟 + 𝑁𝑤𝛽𝑟 − (𝐴𝑥𝛾𝑑1 +  𝐵𝑦𝛿𝑑2)(𝐶𝑧𝜆𝑑3 +  𝐷𝑝𝜇𝑑4)𝑘 = 0   (11) 

then, systems (1), (2), (3), (4), (5) and (6) are said to be in double compound multiswitching combination synchronisation 

state. 

Comment 2: The conditions in definition 2 is referred to as generic conditions that must be met and which are dependent on 

the choice of the dimension, as the indices of the error system and (a) It follows that for a complete set of the 5D system, 

we have five 5 sets of 6-indices 𝛼, 𝛽, 𝛾, 𝛿, 𝜆 and 𝜇 made up of choices from 𝑖, 𝑗, 𝑘, 𝑙, 𝑚. (b) This means that one determining 

factor for a complete set mentioned in comment 2(b) is the arrangement of the dimensions in the six 6 indices of the 5D 

system and  (c) It is notable also that in synchronisation, the arrangement of the response system is kept in order and that 

the arrangements of the driver systems can be varied for varieties, each driver to be treated on its own merit. 

In line with the above definitions and comments, we generate all possible arrangement, henceforth referred to as switches, 

for the first driver system as 3125 switches. It is notable also that the same number and type of switches exist for the 

second, third and fourth driver systems. This is because the systems are identical. The number of switches and groups are as 

presented in section Ogundipe (2017) 

Now applying the above on the following 5D hyperchaotic magnetohydrodynamics system in Bekki (2001) 

𝑎̇ =  𝜎(−𝑎 +  𝑟𝑏 − 𝑞𝑑(1 +
𝑤(3 − 𝑤)

𝜉2(4 − 𝑤)
𝑒)) 

𝑏̇ =  −𝑏 +  𝑎 − 𝑎𝑐 

𝑐̇ =  𝑤(−𝑐 +  𝑎𝑏) 

𝑑̇ =  −𝜉(𝑑 − 𝑎)  −
𝑤

𝜉(4 − 𝑤)
𝑎𝑒 
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𝑒̇ =  −𝜉(4 − 𝑤)(𝑒 − 𝑎𝑑)          (12) 

Let the parameters be described as𝜎 =  𝑎, 𝑟 =  𝑏, 𝑞 =  𝑐 𝑎𝑛𝑑 𝜉 =  𝑑. Also, let 

𝑎1 =  (1 +
𝑤(3 −𝑤)

𝜉2(4 −𝑤)
𝑒), 𝑎2 =

𝑤

𝜉(4 −𝑤)
𝑎𝑒 and 𝑎3 = (4 −  𝑤)and redefine the variables 

of system (3.144) as follows,𝑎 =  𝑦(1), 𝑏 =  𝑦(2), 𝑐 =  𝑦(3), 𝑑 =  𝑦(4), 𝑒 =  𝑦(5)for the master system 1,𝑎 =
 𝑦(6), 𝑏 =  𝑦(7), 𝑐 =  𝑦(8), 𝑑 =  𝑦(9), 𝑒 =  𝑦(10) for themaster system 2,𝑎 =  𝑦(11), 𝑏 =  𝑦(12), 𝑐 =  𝑦(13), 𝑑 =
 𝑦(14), 𝑒 =  𝑦(15) for themaster system 3,𝑎 =  𝑦(16), 𝑏 =  𝑦(17), 𝑐 =  𝑦(18), 𝑑 =  𝑦(19), 𝑒 =  𝑦(20) for themaster 

system 4,𝑎 =  𝑦(21), 𝑏 =  𝑦(22), 𝑐 =  𝑦(23), 𝑑 =  𝑦(24), 𝑒 =  𝑦(25) for theslave system 1 and 𝑎 =  𝑦(26), 𝑏 =
 𝑦(27), 𝑐 =  𝑦(28), 𝑑 =  𝑦(29) 𝑎𝑛𝑑 𝑒 =  𝑦(30) 

for the slave system 2.Consequently, one can write the master systems as follows,𝑎̇ = 𝑦̇(1), 𝑏̇  =  𝑦̇(2), 𝑐̇ = 𝑦̇(3), 𝑑̇ =

𝑦̇(4), 𝑒̇ = 𝑦̇(5) for master system 1,𝑎̇ = 𝑦̇(6), 𝑏̇ = 𝑦̇(7), 𝑐̇ = 𝑦̇(8), 𝑑̇ = 𝑦̇(9), 𝑒̇ = 𝑦̇(10) for the master system 2, 𝑎̇ =

 𝑦̇(11), 𝑏̇  = 𝑦̇(12), 𝑐̇ =  𝑦̇(13), 𝑑̇  =  𝑦̇(14), 𝑒̇ = 𝑦̇(15) for the master system 3, 𝑎̇ = 𝑦̇(16), 𝑏̇  = 𝑦̇(17), 𝑐̇ = 𝑦̇(18), 𝑑̇ =

𝑦̇(19), 𝑒̇ = 𝑦̇(20) for the master system 4, 𝑎̇  =  𝑦̇(21), 𝑏̇ =  𝑦̇(22), 𝑐̇ = 𝑦̇(23), 𝑑̇ = 𝑦̇(24), 𝑒̇ = 𝑦̇(25) for the slave 

system 1,𝑎̇  =  𝑦̇(26), 𝑏̇  = 𝑦̇(27), 𝑐̇  = 𝑦̇(28), 𝑑̇ = 𝑦̇(29) and 𝑒̇ = 𝑦̇(30) for the slave system 2. 

Thus, for the double compound situation of the five dimensional magneto-hydrodynamicsystem defined in (12), the scaling 

driver systems are given by 

𝑦̇(1)  =  𝑎(−𝑦(1)  +  𝑏𝑦(2)  −  𝑐𝑦(4)𝑎1𝑦(5)) 
𝑦̇(2)  =  −𝑦(2)  +  𝑦(1)  −  𝑦(1)𝑦(3) 
𝑦̇(3)  =  𝑑(−𝑦(3)  +  𝑦(1)𝑦(2))          (13) 
𝑦̇(4)  =  −𝑒(𝑦(4)  −  𝑦(1))  − 𝑎2(𝑦(1)𝑦(5)) 
𝑦̇(5)  =  −𝑒𝑎3(𝑦(5)  −  𝑦(1)𝑦(4)) 

and 

𝑦̇(6)  =  𝑎(−𝑦(6)  +  𝑏𝑦(7)  −  𝑐𝑦(9)𝑎1𝑦(10)) 
𝑦̇(7)  =  −𝑦(7)  +  𝑦(6)  −  𝑦(6)𝑦(8) 
𝑦̇(8)  =  𝑑(−𝑦(8)  +  𝑦(6)𝑦(7))          (14) 
𝑦̇(9)  =  −𝑒(𝑦(9)  −  𝑦(6))  − 𝑎2(𝑦(6)𝑦(10)) 
𝑦̇(10)  =  −𝑒𝑎3(𝑦(10)  −  𝑦(6)𝑦(9)), 
the base driver systems are 

𝑦̇(11)  =  𝑎(−𝑦(11)  +  𝑏𝑦(12)  −  𝑐𝑦(14)𝑎1𝑦(15)) 
𝑦̇(12)  =  −𝑦(12)  +  𝑦(11)  −  𝑦(11)𝑦(13) 
𝑦̇(13)  =  𝑑(−𝑦(13)  +  𝑦(11)𝑦(12))         (15) 
𝑦̇(14)  =  −𝑒(𝑦(14)  −  𝑦(11))  −  𝑎2(𝑦(11)𝑦(15)) 
𝑦̇(15)  =  −𝑒𝑎3(𝑦(15)  −  𝑦(11).∗  𝑦(14)) 
and 

𝑦̇(16)  =  𝑎(−𝑦(16)  +  𝑏𝑦(17)  −  𝑐𝑦(19)𝑎1𝑦(20)) 
𝑦̇(17)  =  −𝑦(17)  +  𝑦(16)  −  𝑦(16)𝑦(18) 
𝑦̇(18)  =  𝑑(−𝑦(18)  +  𝑦(16)𝑦(17)) (3.148)       (16) 
𝑦̇(19)  =  −𝑒(𝑦(19)  −  𝑦(16))  −  𝑎2(𝑦(16)𝑦(20)) 
𝑦̇(20)  =  −𝑒𝑎3(𝑦(20)  −  𝑦(16)𝑦(19)) 

while the response systems are given by 

𝑦̇(21)  =  𝑎(−𝑦(21)  +  𝑏𝑦(22)  −  𝑐𝑦(24)𝑎1𝑦(25)) 
𝑦̇(22)  =  −𝑦(22)  +  𝑦(21)  −  𝑦(21)𝑦(23) 
𝑦̇(23)  =  𝑑(−𝑦(23)  +  𝑦(21)𝑦(22))         (17) 
𝑦̇(24)  =  −𝑒(𝑦(24)  −  𝑦(21))  −  𝑎2(𝑦(21)𝑦(25)) 
𝑦̇(25)  =  −𝑒𝑎3(𝑦(25)  −  𝑦(21)𝑦(24)) 

and 

𝑦̇(26)  =  𝑎(−𝑦(26)  +  𝑏𝑦(27)  −  𝑐𝑦(29)𝑎1𝑦(30))  +  𝑢1 
𝑦̇(27)  =  −𝑦(27)  +  𝑦(26)  −  𝑦(26)𝑦(28)  +  𝑢2 
𝑦̇(28)  =  𝑑(−𝑦(28)  +  𝑦(26)𝑦(27))  +  𝑢3       (18) 
𝑦̇(29)  =  −𝑒(𝑦(29)  −  𝑦(26))  −  𝑎2(𝑦(26)𝑦(30))  +  𝑢4 
𝑦̇(30)  =  −𝑒𝑎3(𝑦(30)  −  𝑦(26)𝑦(29))  +   𝑢5 

Where 𝑢1,  𝑢2,  𝑢3,  𝑢4 and  𝑢5 are the set of nonlinear controllers. From Ogundipe (2017) the switching combinations are 

chosen as follows: 
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𝐺𝑟𝑜𝑢𝑝 1: 𝑖 =  𝑗 =  𝑘 =  𝑙 =  𝑚, 𝑠𝑤𝑖𝑡𝑐ℎ (1,1,1,1,1), 
𝐺𝑟𝑜𝑢𝑝 49: 𝑖 ≠  𝑗 ≠  𝑘 ≠  𝑙 ≠  𝑚. , 𝑠𝑤𝑖𝑡𝑐ℎ (1,2,3,4,5) 
We can write the error dynamics as 

𝑒111111 =  𝑦(21)  +  𝑦(26)  +  𝛼(𝑡)[𝑦(1)  +  𝑦(6)][𝑦(11)  +  𝑦(16)]  + 𝑢1; 
𝑒221122 =  𝑦(22)  +  𝑦(27)  +  𝛼(𝑡)[𝑦(1)  +  𝑦(6)][𝑦(12) +  𝑦(17)]  + 𝑢2; 
𝑒331133 =  𝑦(23) +  𝑦(28)  +  𝛼(𝑡)[𝑦(1)  +  𝑦(6)][𝑦(13)  +  𝑦(18)]  + 𝑢3;     (19) 
𝑒441144 =  𝑦(24) +  𝑦(29)  +  𝛼(𝑡)[𝑦(1)  +  𝑦(6)][𝑦(14)  +  𝑦(19)]  + 𝑢4; 
𝑒551155 =  𝑦(25) +  𝑦(30)  +  𝛼(𝑡)[𝑦(1)  +  𝑦(6)][𝑦(15)  +  𝑦(20)]  + 𝑢5. 
Using the back stepping method of synchronisation as presented in Vincent et al. (2015) and considering (19) with the 

appropriate notations. Differentiating the error variables of (19), 𝑒̇111111  =  𝐴1 −  𝐵1𝐴2 − 𝑒221122(1 −  𝐶1)  +  𝐷1 +
 𝑢1; 

𝑒̇221122 =  𝐴2 −  𝐵2𝐴1 −  𝑒111111(1 −  𝐵2)  −  𝐶2 +  𝑢2; 
𝑒̇331133 =  𝐴3 −  𝐵3𝐴4 +  𝑒441144 (1 +  𝐵3) −  𝐶3 + 𝑢3;       (20) 

𝑒̇441144 =  𝐴4 −  𝐵4𝐴5 +  𝑒551155 (1 +  𝐵4) −  𝐶4 + 𝑢4; 
𝑒̇551155  =  𝐴5 −  𝐵5𝐴3 + 𝑒331133 (1 +  𝐵5) −  𝐶5 + 𝑢5. 

Where𝐴1 =  𝑦̇(21)  + 𝑦̇(26); 𝐴2 =  𝑦̇(22)  + 𝑦̇(27); 𝐴3 =  𝑦̇(23)  + 𝑦̇(28); 𝐴4 = 𝑦̇(24) +  𝑦̇(29); 𝐴5 = 𝑦̇(25)  +
 𝑦̇(30); 𝐵1 =  𝐴2(𝑘1 ∗  (𝑦(11)  +  𝑦(16))  −  𝑘2((𝑦̇(11)  +  𝑦̇(16))))/𝑘1(𝑦̇(12)  + 𝑦̇(17)); 𝐶1 =  𝑒2(𝑘1(𝑦(11)  +
 𝑦(16))  −  𝑘2(𝑦̇(11)  + 𝑦̇(16)))/𝑘1(𝑦̇(12)  + 𝑦̇(17)); 𝐷1 =  𝑘2(𝑦(11)  +  𝑦(16))(𝑦̇(1)  + 𝑦̇(6)); 𝐵2 =
 𝐴1(𝑘1(𝑦(12)  +  𝑦(17))  +  𝑘2(𝑦̇(12)  +  𝑦̇(17)))/𝑘1(𝑦̇(11)  + 𝑦̇(16)); 𝐶2 =  𝑘2(𝑦(12) +  𝑦(17))(𝑦̇(1)  +
 𝑦̇(6)); 𝐵3 =  𝐴4(𝑘1(𝑦(13)  +  𝑦(18))  +  𝑘2(𝑦˙(13)  +  𝑦̇(18)))/𝑘1(𝑦̇(14)  + 𝑦̇(19)); 𝐶3 =  𝑘2(𝑦(13)  +
 𝑦(18))(𝑦̇(1)  +  𝑦̇(6)); 𝐵4 =  𝐴5(𝑘1(𝑦(14)  +  𝑦(19))  +  𝑘2(𝑦̇(14)  + 𝑦̇(19)))/𝑘1(𝑦̇(15)  + 𝑦̇(20)); 𝐶4 =
 𝑘2(𝑦(14)  +  𝑦(19))(𝑦̇(1)  +  𝑦̇(6)); 𝐵5 =  𝐴3(𝑘1(𝑦(15)  +  𝑦(20))  +  𝑘2(𝑦̇(15)  +  𝑦̇(20)))/𝑘1(𝑦̇(13)  +
𝑦̇(18)); 𝐶5 =  𝑘2(𝑦(15)  +  𝑦(20))(𝑦̇(1)  + 𝑦̇(6)); 𝑘1 =  𝛼(𝑡); 𝑘2 =  𝛼˙ (𝑡); 
With the error dynamics (20), if appropriate 𝑢1, 𝑢2, 𝑢3, 𝑢4 and 𝑢5 are chosen suchthat equilibrium (0, 0, 0, 0, 0) of the error 

system is stable and unchanged thenstabilization would be realized leading to stable synchronisation of the system. If  𝜂1 =
𝑒111111, its time derivative is 𝑒̇111111 and we can write the first part of (20) as 

𝜂̇1  =  𝐴1 −  𝐵1𝐴2 − 𝑒221122(1 −  𝐶1) +  𝐷1 + 𝑢1,       (21) 

Stabilise (21) using the Lyapunov function 

𝑣1 =
1

2
𝜂1

2           (22) 

By substituting for 𝜂̇1 in the derivative of (22), choosing 𝑒221112 =  𝛼1(𝜂1)  =  0 as a virtual controller and𝑢1 =
−𝑒111111 − 𝐴1 + 𝐵1𝐴2 + 𝑒221122(1 − 𝐶1) − 𝐷1 + 𝑒111111𝑘, to have 

𝑣̇1 =  −(1 −  𝑘)𝜂1
2 ≤  0.          (23) 

Thus, 𝑣̇1 is negative definite if 𝑘 ≤  0 showing that the subsystem (𝜂̇1) is asymptotically stable. Since the error between 

𝑒221122 and 𝛼1(𝜂1) is estimative as 𝜂2 = 𝑒221122and its derivative is written as𝜂̇2 = 𝑒221122, the (𝜂̇1, 𝜂̇2) subsystems is 

𝜂1̇  =  −𝜂1(1 −  𝑘) + 𝜂2,          
𝜂2̇  =  𝐴4 − 𝐵2𝐴1 + 𝑒111111(1 −  𝐵2) − 𝐶4 + 𝑢2;       (24) 
Stabilise (24) by choosing the second Lyapunov function given as 

𝑣2  =  𝑣1 +
1

2
𝜂2

2           (25) 

By substituting for 𝜂2̇ in the derivative of (25) choosing 𝑒111111= 𝛼2 (𝜂2) = 0 as a virtual controller and choosing 𝑢2  =

 −𝑒2  −  𝐴2 +  𝐵2 ∗  𝐴1 + 𝑒111111(1 −  𝐵2)  + C2 +  e221122k; 𝑣̇2  =  −(1 −  𝑘)(𝜂1
2  +  𝜂2

2 )  ≤  0,  (26) 

Thus, 𝑣̇2 is negative definite if k ≤ 0 showing that the subsystem (𝜂1, 𝜂2) is assymptotically 

stable. 𝐿𝑒𝑡 𝜂3 =  𝑒331133 and its derivative is written as  =  𝜂2𝑒331133,the (𝜂1, 𝜂2,𝜂3) subsystem is 

𝜂1̇  =  −𝜂1(1 −  𝑘) + 𝜂2, 
𝜂2̇  =  −𝜂2(1 −  𝑘) + 𝜂1          
𝜂3̇  =  𝐴3 − 𝐵3𝐴4 + 𝑒441144(1 +  𝐵3) − 𝐶3 + 𝑢3;        (27) 
Stabilise (27) by choosing the third Lyapunov function given as 

𝑣3  =  𝑣2 +
1

2
𝜂3

2  (28) 

By substituting for 𝜂3̇in the derivative of (28) choosing 𝜂4 =  𝛼3(𝜂4 )  =  0 as avirtual controller 𝑎𝑛𝑑 𝑢3 =  −𝑒331133 −
𝐴3 + 𝐵3𝐴4 − 𝑒441144(1 + 𝐵3) + 𝐶3 + 𝑒331133𝑘;,  
𝑣̇3  =  −(1 −  𝑘)(𝜂1

2  +  𝜂2
2  +  𝜂3

2 )  ≤  0,                  (29) 
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Thus, 𝑣̇3 is negative definite if k ≤ 0 showing that the subsystem (𝜂1, 𝜂2𝜂3) is 

assymptotically stable. Let𝜂4= 𝑒441144and its derivative𝑒̇412. The(𝜂1, 𝜂2𝜂3,𝜂4) subsystem Is  

𝜂1̇  =  −𝜂1(1 −  𝑘)  +  𝜂2, 
𝜂2̇  =  −𝜂2(1 −  𝑘)  + 𝜂1, 
𝜂3̇  =  −𝜂3(1 −  𝑘) − 2𝜂4,          
𝜂4̇  =  𝐴4 − 𝐵4𝐴5 + 𝑒551155(1 +  𝐵5) − 𝐶4 + 𝑢4;        (30) 
Stabilise (30) by defining the fourth Lyapunov function given as 

𝑢4  =  𝑢3 +
1

2
𝜂4

2            (31) 

By substituting for 𝜂̇4 in the derivative of (31) and choosing 𝑢4=−𝑒441144−A4+ 

𝐵4𝐴5 − 𝑒551155(1 +  𝐵4)  +  𝐶4 +  𝑒441144𝑘; to have 

𝑣̇4  =  −(1 −  𝑘)(𝜂1
2  +  𝜂2

2  +  𝜂4
2 )  ≤  0,                     (32) 

Thus, 𝑣̇4is negative definite if k ≤ 0, showing that the subsystem (𝜂1,𝜂2,𝜂3,𝜂4)  is 

assymptotically stable. Let 𝜂5 = 𝑒551155and its derivative be 𝑒551155, the whole system is 

𝜂1̇  =  −𝜂1(1 −  𝑘)  +  𝜂2, 
𝜂2̇  =  −𝜂2(1 −  𝑘)  + 𝜂1, 
𝜂3̇  =  −𝜂3(1 −  𝑘) − 𝜂4,           (33) 
𝜂4̇  =  −𝜂4(1 −  𝑘) − 𝜂5, 
𝜂5̇  =  𝐴5 − 𝐵5𝐴3 + 𝑒331133(1 +  𝐵5) − 𝐶5 + 𝑢5 …  
Stabilise (33) by defining the fifth Lyapunov function given as 

𝑢5  =  𝑢4 +
1

2
𝜂5

2            (34) 

By substituting for 𝜂5̇in the derivative of (34) and choosing 𝑢5 = −𝑒551155 − 𝐴5 + 
𝐵5𝐴3 − 𝑒331133(1 +  𝐵5)  +  𝐶5 +  𝑒551155𝑘,to have 

𝑣5̇  =  −(1 −  𝑘)(𝜂1
2  +  𝜂2

2  +  𝜂3
2  +  𝜂4

2 +  𝜂5
2)  ≤  0,       (35) 

Thus, 𝑣5̇is negative definite if k ≤ 0. The whole system is expressed as 

𝜂1̇  =  −𝜂1(1 −  𝑘)  +  𝜂2, 
𝜂2̇  =  −𝜂2(1 −  𝑘)  + 𝜂1, 
𝜂3̇  =  −𝜂3(1 −  𝑘) − 𝜂4,           (36) 
𝜂4̇  =  −𝜂4(1 −  𝑘) − 𝜂5, 
𝜂5̇  =  −𝜂5(1 −  𝑘) − 𝜂3. 
Summarily, the controllers for multiswitching combination synchronisation of the hyperchaotic magneto-hydrodynamical 

system is 

𝑢1 =  −𝑒111111 −  𝐴1 +  𝐵1𝐴2 + 𝑒221122(1 −  𝐶1) −  𝐷1 +  𝑒111111𝑘, 
𝑢2 =  −𝑒2 −  𝐴2 +  𝐵1 ∗ 𝐴1 + 𝑒111111(1 −  𝐵2) +  𝐶2 +  𝑒221122𝑘, 
𝑢3 =  −𝑒331133 −  𝐴3 +  𝐵3𝐴4 − 𝑒441144(1 + 𝐵3) +  𝐶3 + 𝑒331133𝑘, 
𝑢4 =  −𝑒441144 −  𝐴1 +  𝐵1𝐴5 − 𝑒551155(1 +  𝐵4) +  𝐶4 + 𝑒441144𝑘, 
𝑢5 =  −𝑒551155 −  𝐴5 +  𝐵5𝐴3 − 𝑒331133(1 +  𝐵5) +  𝐶5 +  𝑒551155𝑘     (37) 

 

3. Numerical simulation and results 

The numerical simulations are presented here in order to verify the effectiveness of the controllers u1, u2, u3, u4 and u5 for 

this study are presented in (37). Using the Matlab at ode45 for the numerical simulation and the system parameters chosen 

asa = 1.0,b = 14.47, c = 5.0,d = 0.1081,e = 0.0108 when the initial conditions were y(1) = −0.1, y(2) = 0.0,  y(3) = 0.0,  y(4) 

= 0.0,  y(5) = 0.0,  y(6) = −0.1, y(7) = 0.0,  y(8) = 0.0,  y(9) = 0.0,  y(10) = 0.0, y(11) = −0.1, y(12) = 0.0, y(13) = 0.0,  y(14) 

= 0.0, y(15) = 0.0, y(16) = 0.1, y(17) = 0.0, y(18)= 0.0, y(19) = 0.0, y(20) = 0.0, y(21) = 0.1, y(22) = 0.0, y(23) = 0.0, y(24) 

= 0.0, y(25) = 0.0, y(26) = 0.1, y(27) = 0.0, y(28) = 0.0, y(29) = 0.0 and y(30) = 0.0. The controllers 𝑢𝑖 (𝑖 =  1, 2, . . .5) 

were activated at t ≥ 200. Theresult for multi-switching combinationsynchronised states 𝑒111111 and 𝑒221122are shown in 

figure 4.16, for𝑒331133and 𝑒441144 in figure 4.17, the result for𝑒551155 and a combined result for the whole system are 

shown in figure 4.18. The choice of t ≥ 200s wasto allow an appreciable transient of thetime series before the controllers 

were activated. This results signify thatmulti-switching combination double compound synchronisation of the 

5Dhyperchaotic magnetohydrodynamic system has been achieved. 
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Figure 1 (a) Multi switched double compound combination synchronisation for state 

𝑒 111111    (b) Multi switched double compound combination synchronisation for state 𝑒221122  of the 5d 

magnetohydrodynamic system. when c = 5.0, d = 0.1081, e = 0.0108 when the initial conditions were y(1) = −0.1, y(2) = 

0.0, y(3) = 0.0,  y(4) = 0.0,  y(5) = 0.0,  y(6) = −0.1, y(7) = 0.0,  y(8) = 0.0,  y(9) = 0.0,  y(10) = 0.0, y(11) = −0.1, y( 12) = 

0.0, y(13) = 0.0, y(14) = 0.0, y(15) = 0.0, y(16) = 0.1, y(17) = 0.0, y(18)= 0.0, y(19) = 0.0, y(20) = 0.0, y(21) = 0.1, y(22) = 

0.0, y(23) = 0.0, y(24) = 0.0, y(25) = 0.0, y(26) = 0.1, y(27) = 0.0, y(28) = 0.0, y(29) = 0.0 and y(30) = 0.0.  

 
Figure 2 (a) Multi switched double compound combination synchronisation for state 

e𝑒331133 (b) Multi switched double compound combination synchronisation for state 𝑒441144  of the 5d 

magnetohydrodynamic system. when c = 5.0, d = 0.1081, e = 0.0108 when the initial conditions were y(1) = −0.1, y(2) = 

0.0, y(3) = 0.0,  y(4) = 0.0,  y(5) = 0.0,  y(6) = −0.1, y(7) = 0.0,  y(8) = 0.0,  y(9) = 0.0,  y(10) = 0.0, y(11) = −0.1, y(12) = 

0.0, y(13) = 0.0, y(14) = 0.0, y(15) = 0.0, y(16) = 0.1, y(17) = 0.0, y(18)= 0.0, y(19) = 0.0, y(20) = 0.0, y(21) = 0.1, y(22 ) = 

0.0, y(23) = 0.0, y(24) = 0.0, y(25) = 0.0, y(26) = 0.1, y(27) = 0.0, y(28) = 0.0, y(29) = 0.0 and y(30) = 0.0. 
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Figure 3 (a) Multi switched double compound combination synchronisation for state𝑒551155 ,(b) Multi switched double 

compound combination synchronisation for the whole system of the 5d magnetohydrodynamic system. when c = 5.0, d = 

0.1081, e = 0.0108 when the initial conditions were y(1) = −0.1, y(2) = 0.0, y(3) = 0.0,  y(4) = 0.0,  y(5) = 0.0,  y(6) = −0.1, 

y(7) = 0.0,  y(8) = 0.0,  y(9) = 0.0,  y(10) = 0.0, y(11) = −0.1, y(12) = 0.0, y(13) = 0.0, y(14) = 0.0, y(15) = 0.0, y(16) = 0.1, 

y(17) = 0.0, y(18)= 0.0, y(19) = 0.0, y(20) = 0.0, y(21) = 0.1, y(22) = 0.0, y(23) = 0.0, y(24) = 0.0, y(25) = 0.0, y(26) = 0 .1, 

y(27) = 0.0, y(28) = 0.0, y(29) = 0.0 and y(30) = 0.0. 
 

4. Conclusion 

In this paper, we presented the results of Multiswitching Double Compound Combination Synchronisation of 5-

Dimensional Hyperchaotic Systems in Application to 5-Dimensional Hyperchaotic Magnetohydrodynamic Systems which 

uses the Lyapunov stability theory. We have illustrated numerically the effectiveness of the proposed method for the 

multiswitching and synchronization of the systems. The multiswitching and synchronization of the systems were achieved. 
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