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Abstract 
 

This paper presents the computational analysis approach to the solution of 

higher order Integro- Differential Equations (IDES) via the canonical 

polynomial basis function. The canonical polynomial basis function 

generated by re-defining the differential part in operator form. The analytical 

results of the equations have been obtained in terms of convergent series with 

easily computable components. Two numerical examples were considered 

with the use of Mathematical Software (MATLAB 2009b) to illustrate the 

performance, efficiency and implementation of the method. Hence, the 

results showing the performance and effectiveness of the technique were 

presented in tabular form. The technique has approachable better 

performance than variational iteration method when compared. 
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Introduction 

In recent years, there has been a growing interest in the Integro-Differential Equations (IDEs). IDEs play an important role 

in many branches of linear and nonlinear functional analysis and their applications in the theory of engineering, mechanics, 

physics, chemistry, astronomy, biology, economics, potential theory and electrostatics. The higher-order integro differential 

equations arises in mathematical, applied and engineering sciences, astrophysics, solid state physics, astronomy, fluid 

dynamics, fiber optics and chemical reaction diffusion models; [1-6] and references therein. The mentioned integro-

differential equations are usually difficult to solve analytically; so a numerical method is required. 

The developments of the collocation tau method (see Taiwo et al[7] and Ortiz and Samara [8]) with bases functions 

(Canonical and Chebyshev ) for the numerical solution of linear integro-differential equations (IDEs). Also, variational 

iteration method (VIM) is a simple and yet powerful method for solving a wide class of nonlinear problems, first 

envisioned by He [9-13] which successfully applied to many situations. For example He [9] solved the classical Blasius' 

equation using VIM. He [10] used VIM to obtained approximate solutions for some well-known nonlinear problems. He [4] 

used VIM on autonomous ordinary differential systems. He [11] combined iteration method with the perturbation method 

to solve the well-known Blasius equation. He [13] solved nonlinear equations by discretizing the problem using VIM. 

Soliman [14] applied the VIM to solve the KDV-Burger's and lax's seventh-order KDV equations. The VIM has recently 

been applied for solving nonlinear coagulation problem with mass loss by Abulwafa et al. [15]. The VIM applied in solving 

nonlinear differential equations of fractional order by Odibat et al.[16]. Bildik et al. [17] used VIM for solving different 

types of nonlinear partial differential equations. Dehghan and Tatari [18] used VIM to solve a Fokker-Planck equation. 

Wazwaz [19] also worked on comparative study between the variational iteration method and Adomian decomposition 

method. Tamer et al.[20] introduced a modification of VIM. Abbasandy [21] solved one example of the quadratic Riccati 

differential equation by He's VIM by using Adomian's polynomials. Moreover, application of the Chebyshev and canonical 

polynomials and their numerical merits in solving ODEs and PDEs numerically have been discussed in a series of papers 

[4,13, 16, 17, 22-26]. 

In the paper, we are, therefore, motivated to work in this direction of extending the collocation proposed in the literatures to 
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handle IDEs numerically especially higher-order equations. As variational iteration method were developed [4, 10, 26-30] 

to solve effectively, easily and accurately a large class of linear, nonlinear, partial, deterministic or stochastic differential 

equations with approximate solutions which converge very rapidly to accurate solutions so also Chebyshev Tau method and  

Legendry polynomial shows similar with small error. Hence, higher-order integro differential equations are equivalent to 

the system of integral equations which can be solved efficiently using the canonical polynomial with the given problems.. 

 

Problem to be considered 

Let D be a linear differential operator of order v with polynomial coefficients defined by  
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Unless otherwise stated, x will always be the independent variable of the functions which appear throughout this paper and 

will be defined in a finite interval. 

Let )(xy be the exact solution of the integro-differential equation, 
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Where  xf and  txm ,  are given continuous functions 21 ,,,, jmjm ccba and jd some given constants. 

Matrix representation for the different parts 

Let     ,...,: 10 xvxvV   be a polynomial basis by ,: XVV  where V is a non-singular lower triangular matrix and degree 

   ,ixvi   for ,....2,1,0i . Also for any matrix P, 1VPVPv
. 

Now we convert the Eq. (3) and (4) to the corresponding linear algebraic equations in three parts; (a), (b) and (c). 

(a) Matrix representation for )(xDy : 

Ortiz and Samara proposed in an alternative for the Tau technique which they called the operational approach as it reduces 

differential problems to linear algebraic problems. The effect of differentiation, shifting and integration on the coefficients 
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We recall now the following theorem given by Ortiz and Samara. 

(b) Matrix representation for the integral term: 

Let us assume that 

),()(),(
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With, 
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(c) Matrix representation for the supplementary conditions: 
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Where for j = 1, …,v, 
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We refer to B as the matrix representation of the supplementary conditions and jB  as its  column. The following 

relations for computing the elements of the matrix can be deduced from (7): 
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We introduce 
, the vector that contains right hand sides of conditions. Then the supplementary 

conditions take the form 
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Let  and  stands for its ith column and let  with . Then 

the coefficient of exact solution of problem (3) and (4) satisfies the following infinite algebraic system: 
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We can write instead of (13) 

         (14)
 

Remark: 

 For and Eq. (3) is transformed into a  Fredholm  integral equation of second kind and for , it is 

transformed into a differential equation. 

 

Approximation by Canonical polynomial basis 

For the purpose of our discussion, we illustrate the basic concept of the technique consider the following general 

differential equation  

Lu + Nu = g (x)          (15) 

Where L is a linear operator, N a nonlinear operator and g(x) is the forcing term. According to canonical polynomial 

method, we can construct a correct functional as follows: 
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The canonical polynomial used to solve the form includes: 
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Solution of Integro Differential Equations: 

We consider the linear boundary value problem for the higher-order integro differential equation 
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We rewrite the above higher-order boundary value problem as a system of differential equations: 
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For example with k = 0 we obtain 
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Error Estimate 

In this section, an error estimator for the approximate solution of (16) is obtained. We defined )()()( xyxyxe NN  as the 

error function of the approximate solution )(xyN  to )(xy , where, )(xy  is the exact solution and )(xyN is the 

approximate solution computed for various values of N. 

Numerical Examples: Given below are numerical examples to illustrate the simplicity and the applicability of the 

discussed method. The experiments were carried out by the Mathematical software (MATLAB 2009b) and the results were 

presented. 

Example1:  Consider the following integro differential equation 
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With boundary conditions: 

y(0) = 1, y’(0) = 1, y(1) = 1 + e , y’(1) = 2e 

The exact solution for this problem is: y(x) = 1 + xex. 

Using the transformation yyyyyyyy  4321 ,,,  

We rewrite the above problem as a system of differential equations: 

 

 
 

 

Journal of the Nigerian Association of Mathematical Physics Volume 63, (Jan. – March, 2022 Issue), 79 –86 



84 
 

Computational Analysis of…                      Raji, Fagbemiro and Olajuwon                     J. of NAMP 
 

 


























x

xx dttyxyeex
dx

dy

xy
dx

dy

xy
dx

dy

xy
dx

dy

0

11
4

4

3

3
2

2
1

.)()(3)1(

)(

)(

)(

 

 

The above system of differential equations can be written as a system of canonical polynomial  λi= 1 i = 1,2,…,n 
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Consequently, we obtain the following approximations: 

12,,1,1 1

4

1

3

1

2

1

1  xexeDyDxCyCxyxy xx  

62
4

,
2

3,
2

1,
2

1

32
2

4

2
2

3

2
2

2

2
2

1

xx
xexeDy

x
x

exeDxCy
Dx

Cxy
Cx

xy

xx

xx



  

. 

Using the boundary conditions at x = 1, we have 

C = 1.9999999 D = 3.000002 

 

Table 1: Numerical comparison of the exact solution, existing method, canonical method and its error 

 

X Exact Solution VIM Canonical Method Error of VIM Error of Canonical Method 

0 1.00000000 1.00000000 1.00000000 0.00000000 0.00000000 

0.1 1.11105170 1.11105170 1.11105172 2.0E-09 2.0E-08 

0.2 1.24428055 1.24428054 1.24428057 1.5E-09 2.02E-08 

0.3 1.40495764 1.40495760 1.40495769 4.0E-08 5.15E-08 

0.4 1.59672987 1.59672985 1.59672990 2.1E-08 3.1E-08 

0.5 1.82436063 1.82436060 1.82436069 3.2E-08 6.5E-08 

0.6 2.09327128 2.09327006 2.09327120 1.2E-06 8.3E-08 

0.7 2.40962689 2.40962585 2.40962588 1.4E-06 1.01E-06 

0.8 2.78043274 2.78043070 2.78043175 2.0E-06 9.90E-07 

0.9 3.21364280 3.21364261 3.21364354 1.9E-07 7.45E-07 

1.0 3.71828182 3.71828180 3.71828193 2.0E-09 1.13E-07 

 

Example2:  Consider the following integro differential equation 




x

xiv dttyexy
0

2)( )(1)(  

With boundary conditions: 
eyeyyy  )1(,)1(,1)0(,1)0(  

The exact solution for this problem is: y(x) = ex. 
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Transform into system of equation to have yyyyyyyy  4321 ,,,  

We rewrite the above problem as a system of differential equations: 
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The above system of differential equations can be written as a system of integral equations with canonical polynomial 

generated above λi= 1,  i= 1,2,…,n 
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Consequently, we obtain the following approximations: 
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Using the boundary conditions at x = 1, we have 

M = 0.99708595, N = 1.0109940. 

Table 2: Numerical comparison of the exact solution versus the approximation method  

X Exact VIM CANONICAL Error VIM Error of Canonical 

0 1.00000000 1.00000000 1.00000000 0.00E+00 0.00E+00 

0.1 1.10515818 1.10515817 1.10515815 1.00E-08 3.00E-08 

0.2 1.22140227 1.22140225 1.22140221 2.00E-08 6.00E-08 

0.3 1.34985880 1.34985778 1.34985868 1.02E-06 1.20E-07 

0.4 1.49182469 1.49182437 1.49182395 3.20E-07 7.40E-07 

0.5 1.64872127 1.64872034 1.64871992 9.30E-07 1.35E-06 

0.6 1.82211880 1.82211777 1.82211689 1.03E-06 1.91E-06 

0.7 2.01375270 2.01375078 2.01374995 1.92E-06 2.75E-06 

0.8 2.22554092 2.22554083 2.22553894 9.00E-08 1.98E-06 

0.9 2.45960311 2.4596031 2.45959874 1.00E-08 4.37E-06 

1.0 2.71828182 2.71828153 2.71827964 2.90E-07 2.18E-06 
 

Conclusion: 

In this paper, canonical polynomial was successfully employed for solving higher-order integro-differential equations. The 

numerical results in the tables compared the new method of canonical polynomial with the existing variational iterative 

method where both methods show that they have highly accurate numerical solutions for solving Integro Differential 

equations. 
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