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Abstract 

Increase in demands of smart devices, due to their current needs in every aspect of human 

endeavours has opened new opportunities for advances in semiconductor technology. In this 

study, bound states of a one-dimensional finite square well system, with a varying potential 

depth were determined, taking the width of the potential to be constant. The allowed energies 

were determined implicitly as the solutions to the transcendental equations; 

    1tan
2
 zzz o

and     1cot
2
 zzz o

. Energy eigenvalues are higher for odd solutions 

than for even solutions. The deeper a potential well is, the higher the energy eigenvalues. At 

varying depth of a potential well, for each corresponding level of bound states, the deepest well 

possesses the highest energy. Generally, z0 controls the number of bound states, as z0 grows, 

for the even solutions, the solutions tend to singularities   212 k , where k is natural 

number. For the odd solutions, as z0 grows, solutions tend to singularities that are integer 

multiples of .  

 
1.0 Introduction 

Applications of smart devices, arising from advances in semiconductor technology are very vast in every aspect of human endeavours 

[1]. For instance, deterministic location of specific deep center in arsenic-on-gallium-site (AsGa or arsenic antisite), using the potential 

well model has found important applications in high speed light-emitting-diodes (LEDs), photodetectors, optical modulators, and 

nonlinear optics [2, 3]. The finite quantum well is of great practical importance because it forms the basis for understanding the structures 

of quantum well devices [4]. 

Bonfim and Griffiths [5] investigated the problem of a quantum particle in a one-dimensional finite square well. These authors used the 

standard approach of numerically solving transcendental equations but at a single well parameter. Palma and Raff [6] also developed a 

Fourier integral representation scheme for determining bound states in semiconductor materials. Applications of potential well models 

are vast in semiconductor technology, whereby free electrons are modeled to move freely in semiconductor materials but consistently 

localize electrons within a semiconductor material. Varying the well parameters and correspondingly determining the eigen energies will 

bring about robust characterization of semiconductor materials. To this end, this study determines bound states of a one-dimensional 

finite square well system of varying potential depth and constant width. The allowed energies were numerically determined by solving 

the transcendental equations:     1tan
2
 zzz o

 

and     1cot
2
 zzz o

. The findings from this study are expected to 

support the development of future models that will lead to the designs of semiconductor devices with optimum efficiency.  
 

2.0 Formulation of the Problem  
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Figure 1: A finite square well potential model for electrons in a metal; the electrons are free inside the metal, occupying 

states up to a certain energy level En; the highest occupied energy level. 
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The potential can be expressed as: 
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The time-independent Schrodinger equation for a finite square potential can be expressed as: 

 
   xExV

dx

xd

m
nno 


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2

22

2



      (1)

 

From Figure 1, in region I, 𝑥 < −𝑎, the potential is zero, equation (1) becomes; 

 
 xE

dx

xd

m
nn




2

22

2



       (2) 

 
  02

2

2

 xk
dx

xd




       (3) 

where the wave vector  nmEmEk 22   (E = -En) is real and positive. The general solution of equation (3) is of 

the form: 

  kxkx BAx expexp  
      (4)

 

The term   kxAx  exp  blows up as x approaches negative infinity; hence it has no physical meaning in this direction. 

For this reason, it is suppressed. Hence, 

  kxBx exp
              (5)

 

In region II, axa  , equation (1) becomes;  
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where the wave vector    



noo EVmVEm
k







22 . The solution is of the form

 

     xkDxkCx  cossin
         

 By Symmetry, the solution of equation (1) in region III, where 𝑥 > 𝑎 is of the form: 

  kxkx GFx expexp  
      (8)  

where, again, mEk 2 . The term   kxGex   blows up as x approaches positive infinity; hence, the term is 

suppressed, therefore; 

  kxFex 
           (9)

 

Using the boundary conditions, and matching the wave functions and their derivatives at the boundaries of the potential 

well ( a ), we have the even and odd solutions, B=F for even solutions and B=-G for odd solutions, where B, C, D, F, and 

G are constants. 
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The solution with cosine term is even, while the solution with sine term is odd. The above constants can be found by 

normalizing the odd and even wave functions for the bound states. To solve for the allowed energies, the boundaries 

conditions will be imposed. At x = a, the wave function and its derivative are continuous. 

   akDFex ka   cos        (11) 

Also,  
 akDkkFe

dx

xd ka   cos
       (12) 
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Dividing equation (12) by equation (11), we have  akkk  tan  

This is the equation for the allowed energies. Since k and k  are both functions of E, we can solve for E by introducing the 

following variables; akz  ,
   

oo mV
a

z 2


 . From the definitions of k  and k  , the even solution is in tangent form, while 

the odd solution is in a negative cotangent form, 
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3.0 Computational Method  

The transcendental equations (13a & b) cannot be solved analytically but graphically [5]:    zzf tan ,    zzg cot , 

  1

2











z

z
zq o  are plotted against z, for varying value of z0 (2, 4, 8, 16, 32). Values of z on the horizontal axis are carefully 

taken to be a little above z0 at a major axis tick size of 2  and an equal step-size of 10 . z0 is the potential well 

parameter, defined as; 
oo mV

a
z 2


 , while akz  . We assume that the well’s width is 2 nm, and constant all through the 

simulation scheme, with varying well depth V0, all other parameters are constant. Each point of intersection of the plots on 

the z axis implies a bound state, and each of the bound state can be used to infer an allowed energy value. The energy 

eigenvalues were numerically determined by using 
nn mE

a
z 2


  

4.0 Results and Discussion 

In this finite square potential problem formulation, we determined the bound states for varying potential depth for a 

quantum particle in a one-dimensional finite square well [7]. In the standard approach the allowed energies are determined 

implicitly as the solutions to the transcendental equations (13a & b) [8]. The parameter z0 defines the depth, V0 and width, 

2a of the well, with a particle of mass m inside the potential well. By implication, a very deep and/or wide potential has 

very large z0, while a very shallow and/or narrow potential has small z0. However, in this study, the author has assumed a 

situation whereby the width of the potential well is 2 nm, and constant all through the numerical experiment. Consequently, 

the only varying term is the depth of the well. In Figures 2–6, as the well gets deeper, z0 grows to create more bound states. 

The bound states are represented by the intersections in the plot with red heavy dots for both the even and odd solutions. 

   
Figure 2: Plots of g(z), f(z), and q(z) against z for z0 = 2 Figure 3: Plots of g(z), f(z), and q(z) against z for z0 = 4 
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Figure 4: Plots of g(z), f(z), and q(z) against z for z0 = 8            Figure 5: Plots of g(z), f(z), and q(z) against z for z0 = 16  

 
Figure 6: Plots of g(z), f(z), and q(z) against z for z0 = 32 
 

In Figure 2, for z0 = 2, there is one point of intersection each for both even and odd solutions, which means single bound 

state each for the even and odd solutions, at z1 = 1.03 and 1.90, respectively, with energy eigenvalues of 0.010 eV  and 

0.034 eV . The summary of the bound state values and their energy eigenvalues is presented in Tables 1 and 2. Thus, at 

least one bound state exists; irrespective of how shallow a finite well is, because an intersection of the functions always 

exists. As z0 increases, the number of points of intersection also increases. From Figure 6, when z0 = 32, for the even 

solutions, the first intersection was recorded at z1 = 1.52 and energy eigenvalue of 0.022 eV (Table 1). The second 

intersection is z2 is 4.57 with a corresponding energy eigenvalue of 0.200 eV. On the other hand, for the odd solutions at 

large z0 (z0 = 32), the first intersection takes place at z1 = 3.05 and energy eigenvalue of 0.089 eV (Figure 6, Table 2). The 

second intersection is z2 is 6.09 with a corresponding energy eigenvalue of 0.354 eV.  
 

From Tables 1 and 2, for instance, at z0 = 2, 8, and 32 for the even solutions; E1 = 0.010, 0.019, and 0.020, respectively, and 

the corresponding E3 = nil, 0.445, and 0.552. For the odd solutions; E1 = 0.034, 0.074, and 0.089, respectively, and the 

corresponding E3 = nil, 0.604, and 0.796. Comparatively, energy eigenvalues are higher for odd solutions than for even 

solutions. Furthermore, the deeper a potential well is, the higher the associated energy eigenvalues. We can also see from 

Tables 1 and 2, that for z0 = 2, 4, 8, 16, and 32; the least energy eigenvalue, say at bound state z1 was recorded for z0 = 2 and 

the highest for z0 = 32. This trend repeated all though our numerical experiment for all zn. Consequently, at varying depth of 

a potential well, for each corresponding level of bound state, the deepest well possesses the highest energy. 
 

Generally, z0 controls the number of bound states, as z0 grows, for the even solutions, the points of intersection of  zf

curve with the  zq -curves tends to singularities   212 k , where k is natural number. The odd solutions showed a feature 

of a shift in the even solutions by 2 . For the odd solutions, as z0 grows, the points of intersection of  zg curve with the 

 zq -curves tends to singularities that are integer multiples of . 
 

In semiconductor technology, the numerical scheme from this study can be used to model free electrons as they move freely 

in semiconductor materials at predetermined potential wells and barriers [9]. The electrons occupy states up to a certain 

energy level En [10], the highest occupied energy level (Fermi energy). As shown in the problem formulation (Figure 1), for 

an electron to be released from a semiconductor material/metal, energy W, representing the work function of the metal must 

be overcome.  
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Table 1: Energy eigenvalues derived from the points of intersection of the even bound states solutions for a 2 nm width 

potential well of varying depth.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 2: Energy eigenvalues derived from the points of intersection of the odd bound states solutions for a 2 nm width 

potential well of varying depth 
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5.0 Conclusion 

This study determined the bound states of a one-dimensional finite square well system, with a varying potential depth [11, 

12]. We assumed a situation whereby the width of the potential well is 2 nm, and constant all through the numerical 

experiment, so that the only varying term is the depth of the well. As the well gets deeper, more bound states were 

generated [13]. Irrespective of how shallow a finite well may be, there is always at least one bound state. Comparatively, 

energy eigenvalues are higher for odd solutions than for even solutions. Furthermore, the deeper a potential well is, the 

higher the energy eigenvalues. At varying depth of a potential well, for each corresponding level of bound state, the deepest 

well possesses the highest energy. Generally, z0 controls the number of bound states, as z0 grows, for the even solutions, the 

solutions tend to singularities   212 k , where k is natural number. For the odd solutions, as z0 grows, solutions tend to 

singularities that are integer multiples of . This numerical scheme is expected to enhance future modeling of the 

behaviours of free electrons in semiconductor technology.  
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