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Abstract

In this paper, we introduce and study strong convergence analysis for finding a
common element of the set of fixed points of asymptotically nonexpansive
mapping, the set of solutions of generalized mixed equilibrium problem and the
set of solutions of variational inequality problem. We prove that the sequence
generated converges strongly to the common element of the three
aforementioned problems. Furthermore, an optimization problem is solved

using the theorems in real Hilbert spaces.
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1. INTRODUCTION

Let K be a nonempty subset of a real Hilbert space H. A mapping A: K — H is called;

(i) Monotone, if

(Ax —Ay,x—y)=0Vx,yeK (1.1)

(i) Inverse-strongly monotone if there exists a positive real number A such that

(Ax —Ay,x —y) = Al Ax — Ay II*> Vx,y € K.

(iii) Relaxed (A, y)-cocoercive, if there exist A, y > 0 such that

(Ax — Ay, x —y) = -2l Ax — Ay I>+y lx—y |l Vx,yeK.

(iv) p-Lipschitzian, if there exists p > 0 such that

lAx —Ay lISullx—yll Vx,yeK.

(v) Nonexpansive, if | Tx =Ty lISlx—y |l Vx,y€eK.

Let A: K —H be a nonlinear mapping. The variational inequality problem is to find an x* € K such that

(Ax*,y —x")=0Vx,yeK (1.2)

We shall denote the set of solutions of the variational inequality problem (1.2) by VI(K; A) and the set of fixed points of T
by F(T). One important generalization of the class of nonexpansive mappings that has appeared in the literature is the class
of asymptotically nonexpansive mappings introduced in [1].

Let K be a nonempty subset of a real normed linear space E. A mapping T: K — E is called asymptotically nonexpansive
[1] if there exists a sequence {k,}; k,, > 1, such that }qig} k,=1, and

ITx —Tyll<k,llx—yll Vx,yeK.

Many authors have studied the approximation of fixed points of asymptotically nonexpansive maps [1, 2, 3, 4, 5, and 6].
A monotone mapping A: H — H is said to be maximal if the graph G (A) is not properly contained in the graph of any
other monotone map, where G(A) := {(x,y) € H X H:y € Ax} -for a multi-valued mapping A. It is also known that A is
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maximal if and only if for (x,f) e H x H,(x —y,f — g) = 0 for every (x,y) € G(A) which implies that f € Ax.
Let A be a monotone mapping defined from K into H and N, q be a normal coneto Kat g e K; i.e., Nyg = {pe H: {(q —
u,p) =0, VueK} Definea mapping M by

. Aq+ N.q, q € K,
Mg "{ 8,  ifq &K
Then, M is maximal monotone. Furthermore, x* e M~1 (0) & x* € VI(K,A) [7].
The computation of fixed points is important in the study of many problems including inverse problems.
In particular, construction of fixed points of nonexpansive mappings is applied in image recovery, signal processing and
in transition operators for initial value problems of differential
Inclusions [8]. Finding a common element of the set of fixed points of nonexpansive mappings and the set of solutions of
variational inequality problem has been studied extensively in the literature [9, 10, 11, 12, 13, 14] and the references
contained therein.
Similarly, the strong convergence of the set of solutions of equilibrium problem and fixed point problem has also been
obtained by many researchers recently [15, 16] and references therein).
Let o: K > R U {+oo} be a real-valued, proper, lower semi-continuous and convex function and A: K — H be a
nonlinear mapping. Suppose F: K X K - R U {+oo} is an equilibrium bifunction, that is, F (x,x) = 0,V x € K.
The generalized mixed equilibrium problem is to find x € K, [17] such that
Fx,y) + o) —p(x) +{(Ax,y —x) 20,Vy €K (1.3)
We shall denote the set of solutions of this generalized mixed equilibrium problem by GMEP.
Thus{x* € K: F(x*,y) + p(y) — o(x*) + (Ax*,y —x*) = 0,Vy € K}
The generalised mixed equilibrium problem includes fixed point problems, optimization problems, variational inequality
problems, Nash equilibrium problems as special cases [17] and the references therein. Some methods have been proposed
to solve the generalised mixed equilibrium problem [17] and the references therein. For solving the generalised mixed
equilibrium problem for a bifunction F: K X K » R U {+}.
Let us assume that F, ¢ and K satisfy the following conditions:
(Al):F(x,x) =0 forallx € K;
(A2) : F is monotone; i.e; F(x,y) + F(y,x) 2 0,Vx,y €K.
(A3) : Foreachx,y € K,lti_r)r(}F(tz +(1-1t),y) <F(xy);

(A4) : Foreach x € K,y — F(x,y) is a convex and lower semicontinuous.
(B1) : For each x € K and r > 0 there exists a bounded subset Dy of K and y, € K such that for any

1
ZEKFZy) + o0 —9@) + - —22-x) <0 (14)
(B2): K is a bounded set.

Several weak convergence results have been proved for finding a common element of the set of fixed points of
nonexpansive mappings and either the set of solutions of equilibrium problem or the set of solutions of generalised mixed
equilibrium problem in certain Banach spaces [18,19, 20] and the references therein). In order to obtain strong
convergence theorems for finding a common element of the set of solutions of equilibrium problem (or generalised
mixed equilibrium problem), variational inequality problem and fixed point problem, many authors have obtained their
results using the hybrid method of CQ algorithm and viscosity approximation methods [21, 22] and the references
therein. The CQ method involves the computation, at each step of the iteration process, two convex subsets C and Q of
H, computation of CQ and projecting the initial vector onto CQ. This is certainly not convenient to implement in
application.

In [23], the author introduced an algorithm which does not involve either the CQ algorithm or the viscosity
approximation method and proved strong convergence of the scheme to a common element of the fixed points set of a
nonexpansive mapping, the set of solutions of a variational inequality problem for a lipschitzian, relaxed (A, y) cocoercive
mapping and the set of solutions of a GM EP in the framework of Hilbert spaces. He proved the following theorem.

Theorem [23]: Let K be a closed convex subset of a real Hilbert space H. Let F be a bifunction from K x K satisfying
(A1) - (Ad), ¢: K » R U {400} be a proper lower semicontinuous and convex function with assumptions (B1) or (B2)
, let A be a u-Lipschitzian, relaxed ( A,y )-cocoercive mapping of K into H and be an a-inverse, strongly monotone
mapping of K into H. Let T be a nonexpansive mapping of K into H such that F = F(T ) nV I(A, K) n GMEP # @. Let
{x,} njl, {n} =, and {w,,} ~, be generated byx; € K,
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Un = T (yn = 5ayn) (1.5)
Xn1 = a- .Bn)xn + .BnTPK(un - SnAun)
foralln > 1, where {a,,} ~. and {8,} =, aresequences in [0,1], {s,} = , {r} =, < (0,00) satisfying:
(I) lim an = O'Z?f:l Ap = X

n—-oo

(i)  0< liminfB, < lim supB, <1
n—oo

n—-oo

i) 0<c<nr <d<2almlr.,—1rl=0
n n+1 n
n—-oo
. -2 .
(iv) o<asSnSb<%,%ﬂ|snﬂ—sn|=o.

Then {x,,} =, converges strongly to z € F.

We observe that under the hypothesis of theorem [23], the map I — s, 4 is a strict contraction map.

Consequently, the map Px(I —s,A) is also a strict contraction map. By the Banach contraction mapping principle,

Py (I — s, A) has a unique fixed point. Furthermore, it can be shown that A is §- strongly monotone, for some & > 0;

using the assumptions on A: Hence A is u- Lipschitzian and §- strongly monotone. It is well known that with such a

map, x* € VI(K,A), x* = Py (I — s,A)x". Hence, the solution of VI(K, A); under the setting of theorem [23] is unique.

So, VI(K, A) is a singleton which implies that F is a singleton and there are simpler algorithms than the one studied in

theorem [23] for approximating such a solution.

But we also observe that;

(i)  The assumption that A is inverse strongly monotone is weaker than the assumption that A is k- lipschitz imposed
in [23],

(i)  The class of asymptotically nonexpansive map is more general than the class of nonexpansive map considered in
[23].

In this paper, we introduce a new iterative scheme for the class of asymptotically nonexpansive maps and prove strong

convergence theorems for approximating a common element of the set of fixed points of asymptotically nonexpansive

maps, the set of solutions of variational inequality problem when A is assumed to be an inverse strongly monotone map,

and the set of solution of generalised mixed equilibrium problem in a real Hilbert space. Our theorems improve

significantly the results of [20, 23], and a host of other authors from the class of nonexpansive maps to the more general

class of asymptotically nonexpansive maps. Moreover, the condition rlll_r}go | Sp41-Sn| = 0 imposed in [23] is dispensed

with. Furthermore, our iterative scheme does not involve the CQ method and the conditions imposed on the operator A
do not make the set VI(K; A) a singleton, which is the case in [23].

2. PRELIMINARIES

Let H be a real Hilbert space with inner product {.,.) and norm |I.I and let K be a nonempty closed convex subset of H. It
is known that for any point u € H, there exists a unique point Pyu € K such that

lu—Prull<llu—y Il Vy €K 2.1)

Pk is called the metric projection of H onto K. It is also know that Pk is a nonexpansive mapping of H onto K and
satisfies the following inequality:

(x —y,Pxx — Pgy) = Il Pex — Py 12 (2.2)

for all x,y € H: Furthermore, Pxx is characterised by the properties Pyx € K and
(x — Pgx,y — Pxy) =0 (2.3)

Forall k € K.

In the context of the variational inequality problem,
x* €VI(K,A)o x* = Py(x" — s, Ax*)V 1> 0 (2.4)

In what follows, we shall make use of the following lemmas.
Lemma2l. [24] Let {x,} ~ and {y,},~, be bounded sequences in a Banach space E and let {5,} ,~, be a

sequence in [0,1] with 0 < lim infd,, < lim suod, < 1. Suppose x,., = (1 — 8,)y + d,x, for all
n—-oo

n—-oo

integersn > 0 rlgr()lg sup(ll X410 — %n | =l Y5uy1 — ¥ II) < 0. Then, rllggo Il vy, —x, lI=0.

Lemma 2.2. [25] Let {a,} n";’l be a sequence of nonnegative real numbers such that
Api1 < (1 - Sn)an + 6nan +Ywn€ N
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Where
(i) {6, € (0,1),lim 6, =0, X7o6, =
n—-oo
(i) lim sup, o, < 0;
n—oo

(iii) Yn=0,n=>1,3y, +o. Then, lima, =0
n—-oo

Lemma 2.3. [2,3] Let E be a uniformly convex Banach space, K be a nonempty closed con-vex subset of Eand T : K —
K be an asymptotically nonexpansive mapping. Then, (I — T) is demi-closed at zero.
Lemma 2.4. [26] Suppose E is a Banach space with uniform normal structure, K a nonempty bounded subset of E and T:

1
K — K is uniformly L- Lipschitzian mapping with L < N(E)z.
Suppose also there exists a nonempty closed convex subset A of K with the following property
x € Aimpliesw,, (x) € A,

Where w,, (x) is the weak-limit set of T at x, that is the set {y € E:y = weak — limT™x for some n;_}. Then, T has
a fixed point in A.
Lemma 2.5. Let H be real Hilbert space. Then
Il x+y I2<ll x 1>+ 2(y,x + y),Vx,y € K
Lemma 2.6. [11] Let (a4, ay, ...,) € I® be such that u,(a,) < 0 for all Banach limit g and let lim sup(a,.; —a,) <
n—-oo

0. Then, lim sup a, < 0.

n—oo
Lemma 2.6. [27] Let K be a nonempty closed convex subset of H and let F be a bifunction of K x K into R satisfying
(Al)- (Ad) and ¢: K > R U {40} be a proper lower semicontinuous and convex function. Assume that either B1 or B2
holds. Let r > 0. Define a mapping Tr(F"”): H - 2Kas follows;

1
19 () = {2 € KiFGy) + 00) = 9@) +-{y 7,2 =) = 0,y € K]
For all x € H. Then, the following hold:

1) Foreach x € H, T (x) # ¢

) 79 s single valued

3) T,(F"p) is firmly nonexpansive, i.e., for each x,y € H
I TT(F’(p)x _ TT(F.tp)y 12< (Tr(Fxp)x _ TT(F“p)y,x —y);

(4) %) = GMEP(F)

(5) GMEP(F) is closed and convex.

3. MAIN RESULT

Theorem 3.1. Let K be a closed convex subset of a real Hilbert space H. Let F be a bifunction from Kx K into R
satisfying the following: (A1)-(A4), let ¢: K » R U {4} be a proper lower semicontinuous and convex function with
assumptions (B1) or (B2) , let A be a p-inverse strongly monotone mapping of K into H and i be an a-inverse, strongly
monotone mapping of K into H. Suppose T is an asymptotically nonexpansive mapping of K into K such that
I':=FT)nVI(A K)nGMEP # @. Let {x,} n°=°1’ {u} =, and {u,,} =, be generated by x; € K,

Yo = Pr(1 — ap)x,

_ m(F.9) _

up = T, O — 0 ¥¥n) 3.1
Xpe1 = (1 = Bp)xn + B T" Py (uy, — spAuy)

foralln > 1, where {a,} ,”, and {8,} 2, are sequences in [0,1], {s,} =, , {r} =, < (0, ) satisfying:

() lima, = 0,550, @y = 0,55, af < o
(i) 0<c<nr<d<2alim|r,—1rn|=0
n—-oo

(iii) 0<a<s,<b<2y

(iv) 0 < lim inf B, < lim supf, <1;
n—-oo n—-oo

(v) Toza(ki — 1) < oo.

Then {x,,} =, converges strongly to u €T.

Proof. We divide our proof into six (6) steps;
Step 1. We prove that {x,} 7 isbounded.
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We remark that with restriction on the sequences {s,,} n‘:l‘and {r,} n‘:l‘, (I — s,A) and (I — 1, A) are nonexpansive maps
foralln > 1.

Furthermore, x™ € I', using (3.1), we obtain:

"xn+1 —-x" I=Il (1 - ﬁn)(xn - X*) + ﬁn[TnPK([ - SnA)un - TnPK([ - SnA)x*] I

< (I - ﬁn) I Xn — x* I +Bnkn I Up — x* Il

< (1 - Bn) I Xn — x| +Bnkn((1 - an) Il Xn — x| +an Il x* ”)

< (1= B + Bukn(1 = @) Il Xy — x* 1| +Bpayky I x™ |

< [1 - ﬁn + ﬂnkn(l - an) + ﬂnankn]max{” Xn — x* I, 1 x* ”}

<[1 jl-ﬁn(kn — D max{ll x, —x* II, I x* I}

< nj=1(1 + (kj — 1)ymax{ll x, — x* 1,1l x* I}

< X2 5 Dman{)l x, — x* I, 1| x* I} < oo

Hence, {x,} is bounded. Consequently {y, }, {u,,} and {Au,} are bounded.

Step 2. We prove that lim || u,, — y,, | = 0. Let p,, = Py (u,, — s,Au,). Clearly,
n—oo

I Pn+1 — Pn =l Upy1 — Up .

From w, = T\ (v — 5yn) and unsy = T (41 — Tws1¥Ynss) and using Lemma (2.7), we obtain:

Tn+1

1
F(un'y) + fp(J’) - <P(Un) + (¢Yn'}’ - un) + 7(}1 — Up, Up _yn> =0, Vy € K. (33)
and

F(up+1, ) + () — 0(Uns1) + (YVns1, Y — Unyr) + ” (Y = Uns1, Uns1 — Yns1) 2 O, VY EK. (3.4)
n+1

Substituting y = u, 4, in(3.3) and y = u,, in (3.4), we have;
1

F(un' un+1) + (p(un+1) - ¢(un) + (lpyn' Upt+1 — un) + r_<un+1 —Up, Uy — yn) = 0. (35)
n

and

1
F(un+1' un) + (p(un) - ¢(un+1) + (d}yn+1'un - un+1) + 7 (un — Upt+1 Uny1 — yn+1> = 0. (3-6)
n+1

Adding inequalities (3.5) and (3.6) and using (A2), we have

Up = Yn  Unt+1 — Yn+1
<¢yn+1 - lzbyn' Up — un+1> + (un+1 — Uy, -
. Tn+1

n
and hence, 0< (un - un+lvrn(1/)yn+1 - lpyn) + ﬁ(un+1 - yn+1) - (un - yn))

)=0

Th

= (un+1 —Up,Up — Uptr T (1 - r 1) (un+1 - yn+1) + (:Vn+1 - rn¢3’n+1) - (yn - rnlpyn))
n+
It then follows, using the nonexpansiveness of (I — r,y) that

ltner = Yo |+ Ynas = 32 1}

Tn

l ey — i I2<1 sy — I {|1 -
Th+1
and so we have,

T
ks =t 1= |1 = 22 Wty = g | Y = 3

and using condition (ii) of Theorem (3.1), we get

I Upt1 — Up = T |Tn+1 - Tnl I Un+1 — Vn+1 I+ Yn+1 — In Il
n+1

=< Mlc_llrn+1 - Tn|+” Yn+1 — Yn I (37)
where My = supps1 | Uy, — y, |l

Form > 1, set z, :== T™p,,n = 1. Then using boundedness of {z,,} and inequalities (3.2) and (3.7), we get:
I Zpyr — 2y 1= Tmpn+1 - Tmpn Il

=< km I Upt1 — Up Il

= km I Yn+1 — Yn I +klic_1|rn+1 - rnl

= km I (1 - an+1)xn+1 - (1 - an)xn I +klic_1|rn+1 - rnl

=< km I Xn+1 — Xn Il +kman+1 I Xn+1 I +kman I Xn I +kmM1C_1|Tn+1 - Tnl (38)
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So,

Il sy — zp NI km [ | +kman+1 Il X1 I +kman Il 2, |l +klic_1|Tn+1 - rnl-

Hence, 7111_1)210 sup (Il zpeq — Zn | =l X451 — x5, II) < 0. Using this and Lemma (2.1), we getrlli_r)lgo Il z, —x, Il = 0.
Thus, 7111_1)130 I Xpy1 —xp Il = rlll_)rglo Bnllxy, —2z, I =0.

Using (3.8), we have that Il y,.1 — v ISI (1 — @y 1) X1 — (1 — ap)x, I= 0 @asn — oo, and

rlll_{lgo I Uy —un I = 0. (3.9)

Using (3.9) and the definition of p,,, we obtain that

lm Il ppyy —pn I=0 (3.10)

Let {Trn}jf:1 be a sequence of mappings defined as in Lemma (2.7). Then we have x* = Py (x* — s,Ax™) =
TT(nF“”) (x* —rx*) vV x* € F. For each n = 1, using the fact that 1y and A are inverse strongly monotone, we obtain
Wt = x* 121 T G = rthyn) = T ® (" = mpc) 112

<y — %" 2= 15,Qa — 1) I Yy, —Px™ 112,

and Il o — x* 1121 (I — 5, )uy, — (I — s,A)x™ |12

=0l u, — x* II>°= 2s,,{u, — x*, Au,, — Ax*) + 5,2 | Au,, — Ax* |I?

<l y,, — x* I?=s,(2u — s,) Il Au,, — Ax* |I2.

Furthermore, using the convexity of |l. |2,

we obtain || x4, — x* 12=l (1 = B) (xn — x*) + Bu(T™pp — x*) 112

< (@ =Ba) 2 = x" 1P+ Buky” Il p = " I,

= (1 - ﬁn) 2, — x* ”2+ ﬁnkn2 2y, = X% — apxy "2+ ﬁnknzsn((sn - 2.“) Il Auy, — Ax” "2)

<SH x — %7 124 By (e = 1) 1 X = X7 124 2000 Bnkn” 1 2 = X7 U 2 1| 40 ® Bk 1l 2 17— Brken®sn (208 —

s,) Il Au,, — Ax* |2

This implies Bnkn’s, 2u — s,) | Auy — Ax* 121 2 — Xy | My + (kp® — )M + M,

Where M, = sup,{ll x, — x* | +1l X1 — x* 1}, M5 == sup,{ll x, — x* 12} and M, = sup,{2B,kn” Il x, — x* Il %, |l
+atn? Bk I 17}

Using condition (iii), we have

Brna((2p — b) Il Auy, — Ax™ 112) Il %y — Xpiq | My + (ky* — 1)My + apM,. (3.11)

Taking limsup as n — oo in (3.11) and using the fact that a,, = 0,as n = o, || X471 — %, = 0asn - o, k,> —1 -
0 as n — oo and condition (iv), we get || Au,, — Ax*[|l- 0,asn — oo.

* * 2 *
Moreover, Il x,,1 —x* 1?°< (1 = Bp) | xp — x* 1124+ Bpkn” | p — x* 112

< (1= Bo) Iy — x7 124 Bk (I Yo — X 12— 15,2 — 1) 1 Yy, — ™ 112)
< (1 =B I xy = x* 124 Bk 2l X, — x* 124 2 || x,, — x* Il X
I +a,? | %, 12— Bukn?r,(2u — 1) | Yy, — ™ 112)

< [1 + .Bn(knz - 1)] Il x, — x" ”2+ anM, — (Za - Tn)ﬁnknzrn I Yy, — l/)x* "2
Hence, Bk, 1 (2a — 1) | Yy, — px* 12<I xpyq — 2 | My + (ky* — 1) M5 + @My,
This implies, using condition (ii) that

Bnca —d) Il Yy, — Px* 1PN Xppq — 25 | My + (ky* — 1)M3 + ap M, (3.12)
Taking limsup as n — o in (3.12) and using the fact that a,, = 0,as n = oo, || X441 — X, = 0asn — o, k,* —1 -
0 as n — oo and condition (iv), we get || lim [l ¥y, — ¥x* llll= 0. Furthermore, using Lemma (2.7)(3) and the

n—oo

nonexpansiveness of (I — r,y), we have: <|| Tr(nF"”) Oy — Yy, — Tr(:"”) (x* = 1 x™) 12< ((y,, — T Yy,) —
(& = rpx"), un = x°)

=50 O = Tyn) = (" = 5px) 1) Hll e = x" 12= (Ul G = Tthy) = (6" = Tppx") —wp = x" 12 <
Sy =% 1)l = x" 12— (U O = Tthy) = (6" = Tdpx™) = (up = x°) 1)
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1 1
= E(”” Yn — x* ”2+” Up — x* ”2) - E(" (yn - un) - rn(lrbyn - 1/)x*)) ”2)
= S My =2 1P+t = X" 12) = Gty = Yo WP+ 1Y = U Yy = ) = 577 | 9 = ™ 117) and hence,
Iy = x* 1PNy = x* 1P =1 Uy = Y 124 205, 1 v — up 1121 Py, — x|l (3.13)
By convexity of |I. 1% and using inequality (3.13), we have

I X — %" 12 (1 = Bo) I % — X" 124 Bk ® Il uy — x™ 112
< (1 - ﬁn) ” Xn — x ”2+ ﬁnknz(” Yn — x ”2) _" Uy —Vn ”2+ ZTn ” Yn —Up ”" lnbyn - 1PX* ”
<l 2y — %" 124 (k® = 1)M3 + @nMy — Brky® Ity — Y 124 27 11y — uy I Py, — ox” |l
Consequently,
Brkm® Ity — v 1< 25 — X" 12 =1l Xy — x* 124 (kp® = 1)M3 + @My + 2d 1| Y — Il hy, — hx°
I (3.14)
Taking limsup as n — oo in (3.14), we have lim|u,, — y}| = 0, completing step 2.
n—oo
Step 3. We show that lim|u,, — p,, || = 0, using the nonexpansiveness of (I — s,A) and inequality (3.14), we have
n—o0o

" Pn — x* ”2 =” PK(un - SnAun) - PK(X* - SnAX*)llz
< ((un - SnAun) —(x" = SnAx*)' PK(un - SnAun) - PK(un - SnAun) —-x"),

1
= E (” U, — SnAun - (X* - SnAx*) ” z + ” PK(un - SnAun) - X*HZ

1 _” (un - SnAun) - (X* - SnAX*) - PK(un - SnAun) - X*HZ)
< E(” Up — x" ”2+” PK(un - SnAun) - X*HZ _” (un - PK(un - SnAun)) —Sn (Aun - AX*)HZ

1
= E(” Up — X° ”2+” Py (up, — spAuy) — X*HZ
- ” (un - PK(un - SnAun)) + 25n<un - PK(un - SnAun):Aun - AX*>”2)

Therefore,
I Pn— x* ”2S Il Up — x* ”2_” Up — Pn "2+ 25n< (un - PK(un - SnAun)) —Sp (Aun - AX*>
— 5,2 || A, — Ax*|| 2 (3.15)

Hence, we have using inequality (3.15) and the fact that
I wy — x* 12l vy — X7 112=1 X, — x* — @y X, 1% that
I X1 — X" 112 (1= Bo) I 2y — X7 124 Buky® Il pr — x 12

<(1- ﬂn) I, — x7 12+ ﬂnknz[” Uy — X 1=l Un = Pn 12+ an(un — P AUy — Ax™) — Sn2 Il Au, — Ax” "2]
Ity = %" 124 Bu(kn® = 1) I 2 = %" 174 200 Bkl %n = %7 [lIXll + @n?Bukn® I Xy 12— Bk |ty — py 17+
zsnﬁnknz(un — pn AU, — AX7) — ,Bnknzsn2 I Auy, — Ax™ |I?
<l x, —x 12+ ﬂn(knz - 1)M3 + ankn2M4 - ﬁnkn2 Il — pn 1+ an:gnknzll Xn = x| || Auy — Ax7.
Since lim || X471 — %, || = 0, lim (k,,> — 1) = 0, lim || Au,, — Ax*|| = 0

n—oo n—-oo n—-oo
and condition (iv), we obtain lim || w,, — p, | = 0, completing step 3.

n—-oo
Step 4. We show that lim || x,, — T"x, Il = 0.
n—oo

o, — T I<I 2y — g I+ X0 — T |l
SN xy = Xpgg 1@ =B N xy =T 1| 4B | Ty, — T"xy |l
< Xn — Xn+1 I +(1 - ﬁn) Il Xn — Tnxn Il +Bnkn I Pn — Vn I +Bnkn I Yn — Xn Il

| Xn — Xn+1 I +(1 - .Bn) I Xn — Tnxn Il +,Bnkn I Pn—Yn I +,Bnankn I Xn Il,
So that

1
I Xn — Tnxn < ,8_{” Xn — Xn+1 I +.Bnkn Il Pn—Yn Il +,Bnankn I Xn ”}
n

Since from step 2 and step 3, lim || p, —u, I =0, lim || u, —y, Il = 0, we have that lim || p, — y, Il = 0. Thus,
n-—-oo n—-oo n—-oo
lim || x,, — T™x, Il = 0 completing step 4.

n—-oo
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Step 5. We prove that lim || x, — T"x, Il = 0.
n—-oo

I xper =T IS Xy — X | +ll X, — T™x, |l 0,1 > o0,
I xpeq1 = Ty WS X0 — T I+l T"x, — Ty |l
S Xpgq = T I+ T 2, — x|l
S Xpgr = T I+ T Yo, = T oy 4 T oy — 2 |+ g — x5 1]
SN xpyr = T 4k — 12y — Xpg 0T g 41 x—g — X Il
Thus, lim |l x,.; —Tx, Il = 0.

n—oo
Hence, Il x, — Tx, 1SN %41 — x5 | +ll X1 — Tx, 1= 0, as n — oo, completing step 5.
As {x,},~ isbounded, there exists a subsequence {xn,-} ].°=°1 of {x,},, suchthat {xn,-} jfl converges weakly to some
u €K.

1,

Step 6. We show that u €T
(i)  We first show that u € GMEP.

Since u,, = Tr(np"”) Vn — m¥yn),n = 1, Applying lemma 2.7 (3), we have for any y € K that F(u,,y) + ¢(y) —
(p(un) + (1/)}’11'3’ - un) + i(}’ —Up,Up — yn) = 0.
Furthermore, replacing n by n; in the inequality and using (A2), we obtain:

1

() - (un,) HWYnp Y~ Und Y U Uny — V) 2 F (y. un,-) (3.16)
J

Letz, ==ty + (1 —t)uforall t € (0,1] and y € K. This implies that z, € K.

Then, by inequality (3.16), we have

(Ze = Uy ze) 2 @ () = @(20) + (2 — tn ) $20) — (2 — ), YY)

Unj—yn;

—(z; — Uy,

j ) +F(Zt'unj)

nj

= ¢ (un;) = @2e) + (20 =t W2 — Yt)) + {2 — Uy, Pty — YY)

Un:—yn.
—(z - un,.,;TM + F (20 un)).
Since || Ynj — Un; I-= 0,j — oo by step 2, we obtain || z,byn]. - 1/)un]. l= 0,j = oo.
Furthermore, by the monotonicity of v, we obtain (z, — Un» Yz, — l,bunj) > 0. Also,
oy —up ISl Uy =y Il +ll Y — x5 1= 0
Implies that {unj} jfL converges weakly to u. Then, by (A4) we obtain as j - oo,

(ze —u,Pz) = () — p(2) + F(z,,0) (3.17)
Using (Al), (A4) and inequality (3.17) we also obtain

0="F(z,2) +¢(z) —p(z) StF(z,y) + 1 = OF (z,u) + to(y) + (1 — Do) — @(z,) + tez, — toz, <
tlF(ze,y) + 9(y) — (2] + (1 — )z, —u,Pz)=t[F (2., y) + ¢(¥) — @ (z)] + (1 — O)(y — w, Pz,)
and hence F(z.,y) + o(y) — @(z,) + (1 — t)(z; — u, Pz,). (3.18)
Letting t — 0, we obtain, foreach y € K,0 < F(w,y) + ¢ (y) — o(W)(y — u, Yu).
This implies that u € GMEP.
(i)  Next, we show u € VI(K, A). Put
Mw = Aw + Nyw, w € K,
v “{ o, ifw ¢K.
Since A is u —inverse strongly monotone, it is monotone. Thus, M is maximal monotone [7].
Let (wy,w,) € G(M). Since w, — Aw, € N,w, and p,, € K, we have
(W — pp,w, — Awy) = 0. (3.19)

On the other hand, from p,, = Py (I — s,A)u,, and inequality (3.19), we have (w; — p,, pp, — (I —s,A)u,,) = 0 and

hence (w, — pn,pns_—u” + Au,) > 0. It follows from inequality (3.19) with n replaced with n; and the monotonicity of A
that
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Pn;—Un;
(wy — pnj'WZ) > (wy _Pnj'AW1> > (wy — Pnj'AW1) —{(wy = Pnj — +Aunj>
nj
Pn; — Un;
= (Wi = pny AWy = Apn,) + (W1 = Py Apr, — Atty)) = (wy = ), ——)
nj
pnj _unj
2 (Wl - an'Apn] - Aun1> - (Wl - pn]'—)

nj
Which implies by step 3 and unl_u(j — oo) that {(w; —u, w,) = 0. So, we have u € M~10 and hence u € VI(K, A).
(iii) We now show that u € F(T). Using Lemma (2.4), the fact that T is asymptotically nonexpansive, Xn;
converges weakly to u and || Xp; = Txy; 1= 0asn — oo we obtain that u € F(T).

(iv) Now we prove that lim (—u,x, —u) < 0.

n—-oo
Defineamap: H > R by ¢p(x) = p, l x, —x 1> Vx € H.
Then, ¢(x) = o as|| x || = oo, ¢ is continuous and convex, so there exists y* € H such that ¢(y*) = meiE(P(W)
w

Hence, the set K* := {x EH:¢pkx) = mei{}‘i’(w)} * Q.
w
We shall make use of Lemma (2.4). if x € K*and y* := w — T™x, for some m;,j — oo, then using the weak lower
semi-continuity of ¢ and lim || x,, — Tx, I = 0, we have (since lim || x,, — Tx, || = 0,implies that lim |l x, —
n-oo n—-o m-o
T™x, I = 0, m= 1 (by induction)):
¢(y*) < lim infp(T™x) < lim sup p(T™x) = lim sup(u Il x, — T™x 1)
j—oo m—oo m-—oo
= limsup(u Il x,, — T™x, + T™x, — T™x |1?)
m—oo
< lim sup(u | T™x, — T™x 12) < lim sup(uk,,* 1| X, — x 11?)
m—oo n—oo
< limsup(u Il x — x %)= ¢(x) = min p(w).
n—-co
By Lemma (2.7), K* N F(T) # @. Assume that y* = u € K* n F(T). Let t € (0,1). Then, it follows that ¢(u) <
¢ (u — tu) and using Lemma (2.5), we obtain that
Il x, —u+tul?<Il x, — u 1>+ 2t{u, x,, — u + tu) which implies that
Un{—u,x, —u+tu) <0.
Furthermore, we obtain, as t - oo, {(—u, x, — u) — {(—u,x, — u + tu) - 0.
Hence, for € > 0, there exists § > 0 such that v ¢t € (0,6) and foralln > 1,
(—u,x, —u) <{—u,x, —u+tu)+e<e
Consequently, p,{(—u, x, — u) < p{—u,x, —u+tu) + e <e.
Since € is arbitrary, we have p,{(—u, x,, — u + tu) < 0.
Furthermore, since lim |l x,4; — x, || = 0, we also have:
n—-oo

lim sup({—u, x, — u) < (—u, x,41 —u + u)) < 0. And so we obtain by Lemma (2.6) that
n—oo

lijglosup(—u, X, —u) < 0.

Erom the recursion formula (1.5), we have:

I tnsr = u P (1= B 12t = w 124 Boky® < (1= B) I X = w 1P Bk ll y — I
< (1 - ﬂn) I Xp —U ”2+ ﬂnknz[(l - an) I Xp —U ”2+ 2“n<u:u - xn) + anz I Xn ”2]

< (1= anBukn?) I Xy — w 1P+ anfnkn’[2¢—w, x, — W] + [a,? + (k> — 1)]M,

Where M = suppsi{kn® Il xp 12+ B Il x,, — u 112}

Using Lemma (2.1), we get that {x,,} converges strongly tou € I.

This completes the proof.

3.2 Corollary: Let K be a closed convex subset of a real Hilbert space H. Let F be a bifunction from Kx K into R
satisfying the following: (A1)-(A4), let ¢: K > R U {4+o} be a proper lower semicontinuous and convex function
with assumptions (B1) or (B2), let A be a p-inverse strongly monotone mapping of K into H and i be an a-inverse,
strongly monotone mapping of K into H. Let T be a nonexpansive mapping of K into itself such that T" := F(T ) NV I(A,
K) n GMEP = @. Let {x,.} n:1, {n} o, and {u,,} .=, be generated by x; € K,
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Yn = PK[(1 - a)xn]
Uy = TP (= 1thyn) (3.20)

Xn+1 = (1 - ﬂn)xn + ﬂnTPK(un - SnAun)
foralln > 1, where {a,,} ~, and {8,} =, aresequences in [0,1], {s,} = , {r} =, < (0,00) satisfying:

(M) lim a, = 0,7 a, = o,
n—oo
(i) 0<c<nrn<d<2alim|r,—1rn|=0
n—oo
(iii) 0<a<s,<b<2y
(iv) 0 < lim inf B, < lim supf, < 1.
n—oo n—oo
Then {x,,} =, converges strongly to u € T.
4. APPLICATION
We now study the following optimization problem:
mellr{l o), (4.1)
u

Where K is a nonempty closed convex subset of a real Hilbert space H and ¢: K > R U {+c0} be a proper lower
semicontinuous and convex function. We denote the set of solutions of problem (4.1) by F. Let F(x,y) =0,V x,y €
K, T =1 and ¥ = 0 in Theorem (3.1). Then,GMEP = F. It also follows from Theorem (3.1) that the iterative sequence

{x,} generated by

( Yn = Pg[(1 — a)x,]
{ Uup = arg min[e(u) +% Il u— yp 1] (4.2)

kxn+1 = (1 - ﬁn)xn + ﬁnPK(un - SnAun)
foralln > 1, where {a,,} ~. and {8,} ~ aresequencesin[0,1], {s,} = ,{m} = < (0,0o) satisfying:
M lima, =0,Ym 1, =,

n—-oo
(ii) 0<c<nr<d<2alim|r,—1rn|=0
n—-oo
(iii) O0<a<s,<b<2y
(iv) 0 < lim inf B, < lim supf, <1;
n—-oo

n—-oo

converges strongly to an element of VI(K,A) N F.

Furthermore, let F(x,y) =0,V x,y € K,T =1and ¥ = 0 in Theorem (3.1).

Then, GMEP = F. It also follows from Theorem (3.1) that the iterative sequence {x,} generated by
Yn = Pe[(1 — a)x,]

1
— : . _ 2
up = arg minfp(u) + o u =yl ] (4.3)

n
Xn+1 = 1- ﬂn)xn + Brun

[ee]

foralln > 1, where {a,,} ~, and {8,} =, are sequences in [0,1], {s,} =, , {r} =, < (0, o) satisfying:

(i) 7111—{210 ap =0,25- ap =,
(i) 0<c<r <d<2aqlim|r,, —7]|=0;
n—-oo

(iii) 0 < lim inf B, < lim supf, < 1;
n—-oo n—-oo
converges strongly to an element of VI(K,A) N F.
Remark: Let A be a 4 —Lipschitzian and relaxed (4, y) —cocoercive map with 1 < %

Then A is a-inverse, strongly monotone with g = (% — A). In this case, the assumption that A is a-inverse,

strongly monotone is weaker than the assumptions that A be a u —Lipschitzian and relaxed (4, y) —cocoercive
imposed in [23]. Consequently, our result is a significant improvement on [23] and host of other important
results in this direction of research.
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Prototypes: The prototypes of our iteration parameters are:

1 1, n dy
=S L b= 3 () n 2 b=
b, u a
and sy, :=m,n2 1,a=Z,b=u,c=Z,d=a

5. CONCLUSION

In this research paper, we studied convergence analysis for fixed point theorem of an asymptotically nonexpansive
mapping, variational inequality and equilibrium problems. We constructed a new iterative algorithm that is devoid of the
inherent problem in CQ and Krasnosel’skii mann type iterations methods. Our algorithm approximates the common
element of the set of solution of the above three aforementioned problems. The strong convergence result of our result
has been established under a suitable set of control conditions. Moreover, the applicability of the result is also shown in
the paper.

Acknowledgements: The author acknowledge with thanks the Editors, Reviewers and anonymous scholars for their
useful comments that help in improving the quality of this work.
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