
135 
 

Journal of the Nigerian Association of Mathematical Physics 

Volume 63, (January – March, 2022 Issue), pp135 – 142 

© J. of NAMP 

SEIR MODEL WITH A VACCINATION PARAMETER USING COVID-19 AS A CASE 

STUDY 

 

Edet Uduak Anietie1 and Etukudo Ini-Obong2. 

 
1Department of Mathematics, University of Uyo, Uyo, Nigeria. 

2Department of Economics, University of Uyo, Nigeria. 

 
Abstract 

The SEIR mathematical model with a vaccination parameter is formulated to study 

the spread of COVID-19. The equilibrium points of the system of differential 

equations are obtained. The local and global stabilities of the disease-free and 

endemic equilibria are presented. The basic reproduction number of the model is 

obtained. The parameters used in the model are estimated. The system of differential 

equations representing the model is solved numerically using the scilab software 

application. The result of the simulation shows that in the long term, the presence of 

a vaccination parameter causes the disease to converge to the disease-free 

equilibrium for any value of the basic reproduction number. 
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1. Introduction 

A COVID-19 vaccine is a vaccine intended to provide acquired immunity against severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19).The COVID-19 vaccines are 

widely credited for their role in reducing the severity and death caused by COVID-19 [1]. Many countries have 

implemented phased distribution plans that prioritize those at highest risk of complications, such as the elderly, and those at 

high risk of exposure and transmission, such as healthcare workers [2].  

As of 1 February 2022, 10.1 billion doses of COVID-19 vaccines have been administered worldwide based on official 

reports from national public health agencies [3]. By December 2020, more than 10 billion vaccine doses had been 

preordered by countries, [4] with about half of the doses purchased by high income countries comprising 14% of the 

world's population [5]. 
 

There are several authors [6-11] who have recently developed mathematical models to study the effect of vaccination 

strategies in the control of the dynamics of COVID-19. In this article, we have formulated a simple mathematical model to 

study the effect of vaccination on the spread of COVID-19 in a population. We present results for the stability analysis of 

the steady states of the model and we carry out a numerical simulation on the model. 

         

2. Materials and Methods 

 SEIR Model Assumptions:  
1.  The population under consideration is divided into four disjoint classes which change with time (t). These classes 

are: The Susceptible class, denoted by (S), the Exposed class, denoted by (E), the Infective class, denoted by (I), 

and the Removed class (which comprises of individuals removed from the population by either death, recovery or 

vaccination), denoted by (R). 

2.  The population under consideration has a constant size P and is sufficiently large, so that the sizes of each class 

can be considered as continuous variables 

3.   The population is homogeneously mixing. Individuals make contact at random and do not mix mostly in a smaller 

subgroup. 

4. We assume that there is no immigration or emigration 
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5.    The model includes vital dynamics (births and deaths). We assume that the births and deaths occur at equal rates 

and all newborns are susceptible. 

6. Individuals are removed by death from each class at a rate proportional to the class size with proportionality 

constant 𝛾 (the birth or death rate). 

7. In the susceptible class 𝑆, a susceptible person becomes infected and moves into the Exposed class at a rate  

proportional to the product 𝑆𝐼 with proportionality constant 
𝜏

𝑃
. The contact rate 𝜏 (rate of infection) is the average 

number of adequate contacts per infective per unit time.  

8. From the exposed class (𝐸), an individual becomes infective and moves into the infective class at a rate 

proportional to the class size 𝐸 with proportionality constant 𝛿.  
9. Individuals recover and leave the infective class (𝐼) at rates proportional to the class size 𝐼, with proportionality 

constants 𝛼1 𝑎𝑛𝑑 𝛼2.  Individuals that don’t survive the disease die and leave the class (𝐼) with proportionality 

constant  𝜇.          

10.    Individuals from the susceptible class (S) who are vaccinated, move into the removed class (R) at a rate 

proportional to the class size S, with proportionality constant 𝜃. 
 

Parameters of the Model:  

1.  𝛾:  Natural mortality rate (Birth or Death rate). The time unit is set at day. The constant natural mortality rate is 

assumed to be inversely proportional to the global average life expectancy of birth. This is taken to be 

approximately 72 years [12]. 𝜇 =
1

26280
= 0.000038𝑑𝑎𝑦−1. 

2.    τ:  The rate of infection τ = (number of new cases over a time period)/ (total population at risk during the same 

time period).  
3.   𝛿: Transition rate from Exposed class to Infective class (We assume it is inversely proportional to the latent  

period of the disease). In [13], it is reported that the median time prior to symptom onset (latent                           

period), is 3 days. If we take the latent period to be 3 days, (range 1-24 days), we get; 𝛿 =
1

3
= 0.33𝑑𝑎𝑦−1. 

4.  𝛼1: Recovery rate for patients with mild symptoms. We assume it is inversely proportional to the average period of 

infectivity (the time between COVID-19 infection and recovery for people with mild symptoms). If we  take the 

average recovery time for people with mild symptoms to be 2 weeks [14], we get;  

𝛼1 =
1

14
= 0.07143𝑑𝑎𝑦−1   . 

5.   𝛼2: Recovery rate for patients with more severe symptoms. We assume it is inversely proportional to the average 

period of infectivity (the time between COVID-19 infection and recovery for people with severe symptoms). 

If we take the average recovery time for people with severe symptoms to be 4.5 weeks [14], we get: 

              𝛼2 =
1

31.5
= 0.031746 

6.     𝜇: Disease-related death rate 𝜇 = (number of deaths over a defined period of time) / (confirmed cases diagnosed 

within that time period). 

7.    𝜃: The rate at which individuals from the susceptible class are removed by vaccination. We assume that it is 

inversely proportional to the average duration of the immunity conferred by the COVID-19 vaccine. If we take the 

average duration of immunity to be six months [15], we get: 𝜃 =
1

180
≈ 0.0056𝑑𝑎𝑦−1     

The dynamics of the disease is represented by the following system of differential equations: 
𝑑𝑆

𝑑𝑡
= 𝛾𝑃 −

𝜏

𝑃
𝑆𝐼 − 𝛾𝑆 − 𝜃𝑆 

𝑑𝐸

𝑑𝑡
=

𝜏

𝑃
𝑆𝐼 − (𝛿 + 𝛾)𝐸     (1) 

𝑑𝐼

𝑑𝑡
= 𝛿𝐸 − (𝛼1 + 𝛼2 + 𝜇 + 𝛾)𝐼 

𝑑𝑅

𝑑𝑡
= (𝛼1 + 𝛼2 + 𝜇 + 𝛾)𝐼 + 𝜃𝑆 − 𝛾𝑅 

𝛾, 𝛿, 𝜏, 𝜇, 𝛼1, 𝛼2,𝜃 > 0                𝑆, 𝐸, 𝐼, 𝑅 > 0 

Equilibria of the Model:  From Eq. (1) we get the following; 

𝛾𝑃 −
𝜏

𝑃
𝑆̅𝐼 ̅ − (𝛾 + 𝜃)𝑆̅ = 0                                                                                         (2) 

𝜏

𝑃
𝑆̅𝐼 ̅ − (𝛿 + 𝛾)𝐸̅ = 0                                                                                                 (3) 
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𝛿𝐸̅ − (𝛼1 + 𝛼2 + 𝜇 + 𝛾)𝐼 ̅                                                                                       (4)  

(𝛼1 + 𝛼2 + 𝜇 + 𝛾)𝐼 ̅ + 𝜃𝑆̅ − 𝛾𝑅̅ = 0                                                                        (5)     

           

From Eq. (3), we get; 

 𝐸̅ =
(𝛼1+𝛼2+𝜇+𝛾)

𝛿
𝐼 ̅                                                                                                 (6)    

Putting Eq. (6) into Eq. (3), we get; 

[
𝜏

𝑃
𝑆̅ −

(𝛿+𝛾)(𝛼1+𝛼2+𝜇+𝛾)

𝛿
] 𝐼 ̅ = 0                                                                             (7) 

𝐼 ̅ = 0  gives;   𝑆̅ =
𝛾𝑃

𝛾+𝜃
 ,  𝐸̅ = 0 ,  and 𝑅̅ =

𝜃𝑃

𝛾+𝜃
 

One steady state is: 

[𝑆1, 0, 0, 𝑅1] = [
𝛾𝑃

𝛾+𝜃
, 0, 0,

𝜃𝑃

𝛾+𝜃
]  

From Eq. (7), we get:  𝑆̅ =
𝑃(𝛿+𝛾)(𝛼1+𝛼2+𝜇+𝛾)

𝜏𝛿
                                                      (8) 

Putting Eq. (8) into Eq. (2), we get 𝐼 ̅ =
𝛿𝛾𝑃

(𝛿+𝛾)(𝛼1+𝛼2+𝜇+𝛾)
−

𝑃(𝛾+𝜃)

𝜏
 

From Eq. (4),  𝐸 =
𝛾𝑃

𝛿+𝛾
−

𝑃(𝛾+𝜃)(𝛼1+𝛼2+𝜇+𝛾)

𝜏𝛿
           

From Eq. (5), we get 𝑅̅ =
𝛿𝑃

𝛿+𝛾
−

𝑃(𝛾+𝜃)(𝛼1+𝛼2+𝜇+𝛾)

𝛾𝜏
+

𝜃𝑃(𝛿+𝛾)(𝛼1+𝛼2+𝜇+𝛾)

𝜏𝛿𝛾
 

This gives us another steady state: [𝑆2, 𝐸2, 𝐼2, 𝑅2] = [
𝑃(𝛿+𝛾)(𝛼1+𝛼2+𝜇+𝛾)

𝜏𝛿
 ,

𝛾𝑃

𝛿+𝛾
−         

𝑃(𝛾+𝜃)(𝛼1+𝛼2+𝜇+𝛾)

𝜏𝛿
 ,

𝛿𝛾𝑃

(𝛿+𝛾)(𝛼1+𝛼2+𝜇+𝛾)
−

𝑃(𝛾+𝜃)

𝜏
 ,   

𝛿𝑃

𝛿+𝛾
−

𝑃(𝛾+𝜃)(𝛼1+𝛼2+𝜇+𝛾)

𝛾𝜏
+          

𝜃𝑃(𝛿+𝛾)(𝛼1+𝛼2+𝜇+𝛾)

𝜏𝛿𝛾
] 

         

Basic Reproduction Number 

Lemma 2.1 The basic reproduction number for the model Eq. (1) is: 

𝑅0 = √
𝜏𝛿

(𝛿 + 𝛾)(𝛼1 + 𝛼2 + 𝜇 + 𝛾)
 

Proof From the linearized infection subsystem of Eq. (1), we get; 
dE

dt
= τI − (δ + γ)E          

dI

dt
= 𝛿𝐸 − (𝛼1 + 𝛼2 + 𝜇 + 𝛾) 

This gives rise to the transmission matrix;  

𝑄 = [
0 𝜏
𝛿 0

]  and the transmission matrix:  𝑇 = [
−(𝛿 + 𝛾) 0

0 −(𝛼1 + 𝛼2 + 𝜇 + 𝛾)
] 

The next generation matrix is given by: 

𝑋 = −𝑄𝑇−1 = [
0 𝜏
𝛿 0

] [

1

𝛿+𝛾
0

0
1

𝛼1+𝛼2+𝜇+𝛾

], from which we compute 𝑅0: 

𝑅0 = 𝜌(𝑋) =
1

2
(𝑡𝑟𝑎𝑐𝑒 𝑋 + √(𝑡𝑟𝑎𝑐𝑒 𝑋)2 − 4det(𝑋) = √

𝜏𝛿

(𝛿+𝛾)(𝛼1+𝛼2+𝜇+𝛾)
  , where 𝜌 is  

the spectral radius. 

 

3. Results and Discussion 

Local Stability Analysis. Theorem 2.2 The disease-free equilibrium of the SEIR model is locally asymptotically stable 

when 𝑅0 < 1  

              

Proof   From the system in Eq. (1), we get the Jacobian matrix: 

𝐽 =

[
 
 
 
 −(𝛾 +

𝜏𝐼̅

𝑃
) 0

−𝜏𝑆̅

𝑃
0

𝜏𝐼̅

𝑃
−(𝛿 + 𝛾)

𝜏𝑆̅

𝑃
0

0 𝛿 −(𝛼1 + 𝛼2 + 𝜇 + 𝛾) 0
𝜃 0 𝛼1 + 𝛼2 + 𝜇 + 𝛾 −𝛾]
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At the steady state: [𝑆1, 0, 0, 𝑅1]:  

𝐽 =

[
 
 
 
 −𝑢 0 −

𝜏𝛾

𝑢
0

0 −𝑤
𝜏𝛾

𝑢
0

0 𝛿 −𝑣 0
𝜃 0 𝑣 −𝛾]

 
 
 
 

    

Where, 𝑢 = 𝛾 + 𝜃,   𝑣 = 𝛼1 + 𝛼2 + 𝜇 + 𝛾   and   𝑤 = 𝛿 + 𝛾 

 𝐽 − 𝜆𝐼 =

[
 
 
 
 −𝑢 − 𝜆 0 −

𝜏𝛾

𝑢
0

0 −𝑤
𝜏𝛾

𝑢
0

0 𝛿 −𝑣 0
𝜃 0 𝑣 −𝛾]

 
 
 
 

 

|𝐽 − 𝜆𝐼| = 0  ⇒    |
|

−𝑢 − 𝜆 0 −
𝜏𝛾

𝑢
0

0 −𝑤 − 𝜆
𝜏𝛾

𝑢
0

0 𝛿 −𝑣 − 𝜆 0
𝜃 0 𝑣 −𝛾 − 𝜆

|
| = 0  

 (−𝑢 − 𝜆) |

−𝑤 − 𝜆
𝜏𝛾

𝑢
0

𝛿 −𝑣 − 𝜆 0
0 𝑣 −𝛾 − 𝜆

| −
𝜏𝛾

𝑢
|
0 −𝑤 − 𝜆 0
0 𝛿 0
𝜃 0 −𝛾 − 𝜆

| = 0 

This gives us: (−𝑢 − 𝜆)(−𝛾 − 𝜆) [(−𝑤 − 𝜆)(−𝑣 − 𝜆) −
𝛿𝜏𝛾

𝑢
] = 0  

(−𝑢 − 𝜆)(−𝛾 − 𝜆) = 0  ⇒   𝜆1 = −𝑢,   𝜆2 = −𝛾 

(−𝑤 − 𝜆)(−𝑣 − 𝜆) −
𝛿𝜏𝛾

𝑢
= 0  ⇒  𝜆2 + 𝜆(𝑣 + 𝑤) + 𝑣𝑤 −

𝛿𝜏𝛾

𝑢
= 0 

Let 𝑓(𝜆) = 𝜆2 + 𝜆(𝑣 + 𝑤) + 𝑣𝑤 −
𝛿𝜏𝛾

𝑢
  and  

𝑓(−𝜆) = 𝜆2 − 𝜆(𝑣 + 𝑤) + 𝑣𝑤 −
𝛿𝜏𝛾

𝑢
,          

Since 𝜆 > 0, then by Descartes’ rule [16], there are two negative real  

eigenvalues if  𝑣𝑤 −
𝛿𝜏𝛾

𝑢
> 0 

𝑣𝑤 −
𝛿𝜏𝛾

𝑢
> 0 ⇒

𝛿𝜏𝛾

(𝛾 + 𝜃)(𝛿 + 𝛾)(𝛼1 + 𝛼2 + 𝜇 + 𝛾)
< 1 

𝛿𝜏𝛾

(𝛾 + 𝜃)(𝛿 + 𝛾)(𝛼1 + 𝛼2 + 𝜇 + 𝛾)
<

𝛿𝜏

(𝛿 + 𝛾)(𝛼1 + 𝛼2 + 𝜇 + 𝛾)
< 1 ⇒ 𝑅0 < 1 

Theorem 2.3   The endemic equilibrium of the SEIR model is locally asymptotically stable if 𝑅0 > 1   

Proof   At the equilibrium point [𝑆2 , 𝐸2, 𝐼2, 𝑅2], the Jacobian matrix is given by: 

𝐽 =

[
 
 
 
 −

𝜏𝛿𝛾

𝑣𝑤 
0 −

𝑣𝑤

𝛿
0

𝜏𝛿𝛾

𝑣𝑤
− 𝑢 −𝑤

𝑣𝑤

𝛿
0

0 𝛿 −𝑣 0
𝜃 0 𝑣 −𝛾]

 
 
 
 

                  

𝐽 − 𝜆𝐼 =

[
 
 
 
 
 −

𝜏𝛿𝛾

𝑣𝑤
− 𝜆 0 −

𝑣𝑤

𝛿
0

𝜏𝛿𝛾

𝑣𝑤
− 𝑢 −𝑤 − 𝜆

𝑣𝑤

𝛿
0

0 𝛿 −𝑣 − 𝜆 0
𝜃 0 𝑣 −𝛾 − 𝜆]

 
 
 
 
 

 

  From  |𝐽 − 𝜆𝐼| =
|
|

−
𝜏𝛿𝛾

𝑣𝑤
− 𝜆 0 −

𝑣𝑤

𝛿
0

𝜏𝛿𝛾

𝑣𝑤
− 𝑢 −𝑤 − 𝜆

𝑣𝑤

𝛿
0

0 𝛿 −𝑣 − 𝜆 0
𝜃 0 𝑣 −𝛾 − 𝜆

|
|
= 0,  we get: 

(−𝛾 − 𝜆) {(−𝑤 − 𝜆)(−𝑣 − 𝜆) (−
𝜏𝛿𝛾

𝑣𝑤
− 𝜆) + 𝑣𝑤(𝜆 + 𝑢)} = 0    

We have:  (−𝛾 − 𝜆) = 0    ⇒ 𝛾 = −𝜆  
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(−𝑤 − 𝜆)(−𝑣 − 𝜆) (−
𝜏𝛿𝛾

𝑣𝑤
− 𝜆) + 𝑣𝑤(𝜆 + 𝑢) = 0  ⇒ −𝜆3 − 𝜆2 (𝑣 + 𝑤 +

𝜏𝛿𝛾

𝑣𝑤
) − 𝜆 (𝑣𝑤 +

𝜏𝛿𝛾

𝑤
+

𝜏𝛿𝛾

𝑣
) +  𝑣𝑤(𝜆 + 𝑢) −

𝜏𝛿𝛾 = 0                    

Let 𝑓(𝜆) = −𝜆3 − 𝜆2 (𝑣 + 𝑤 +
𝜏𝛿𝛾

𝑣𝑤
) − 𝜆 (𝑣𝑤 +

𝜏𝛿𝛾

𝑤
+

𝜏𝛿𝛾

𝑣
) +  𝑣𝑤(𝜆 + 𝑢) − 𝜏𝛿𝛾 = 0, also, let 

𝑓(−𝜆) = 𝜆3 − 𝜆2 (𝑣 + 𝑤 +
𝜏𝛿𝛾

𝑣𝑤
) + 𝜆 (𝑣𝑤 +

𝜏𝛿𝛾

𝑤
+

𝜏𝛿𝛾

𝑣
) + 𝑣𝑤(𝜆 + 𝑢) − 𝜏𝛿𝛾 = 0, 

By Descartes’ rule, the eigenvalues will be negative if  𝑣𝑤(𝜆 + 𝑢) − 𝜏𝛿𝛾 < 0 

𝑣𝑤(𝜆 + 𝑢) − 𝜏𝛿𝛾 < 0   ⇒ 𝑣𝑤(𝜆 + 𝑢) < 𝜏𝛿𝛾 ⇒ 1 <
𝜏𝛿𝛾

𝑣𝑤(𝜆 + 𝑢)
 

1 <
𝜏𝛿𝛾

(𝛿 + 𝛾)(𝜆 + 𝛾 + 𝜃)(𝛼1 + 𝛼2 + 𝜇 + 𝛾)
<

𝜏𝛿

(𝛿 + 𝛾)(𝛼1 + 𝛼2 + 𝜇 + 𝛾)
  ⇒ 1 <

𝜏𝛿

(𝛿 + 𝛾)(𝛼1 + 𝛼2 + 𝜇 + 𝛾)
 

⇒
𝜏𝛿

(𝛿 + 𝛾)(𝛼1 + 𝛼2 + 𝜇 + 𝛾)
> 1  𝑜𝑟  𝑅0 > 1 

 

Global Stability Analysis  

Theorem 2.5   If 𝑅0 > 1 and 𝜏 < (𝛾 + 𝛿), then the disease-free equilibrium point is  

globally asymptotically stable in the domain:  

℧0 = {(𝑆, 𝐸, 𝐼, 𝑅) ∈ ℝ+
4 ∶ 𝑆 <

𝑃

𝜏
(𝛾 + 𝛿)}     

Proof   Define a Lyapunov function 𝑊 = 𝐸.  We have that: 
𝑑𝑊

𝑑𝑡
= [

𝜏

𝑃
𝑆 − (𝛿 + 𝛾)] 𝐸 ≤ 0  if  𝑆 <

𝑃

𝜏
(𝛿 + 𝛾),  that is, 

𝑑𝐿

𝑑𝑡
≤ 0 in the domain ℧0.  

For the positive definite function W, the derivative 
𝑑𝑊

𝑑𝑡
 is negative semi-definite in 

℧0. Now we consider the set where 
𝑑𝑊

𝑑𝑡
= 0.   

Let  Ψ = {(𝑆, 𝐸, 𝐼, 𝑅) 𝜖 ℧0 : 
𝑑𝑊

𝑑𝑡
= 0} = {(𝑆, 𝐸, 𝐼, 𝑅) ∈ ℧0 ∶ 𝐸 = 0}   

Let M be the largest invariant set in ℧0. Then in ℧0 , we have: 
𝑑𝑆

𝑑𝑡
= 𝛾(𝑃 − 𝑆) − 𝜃𝑆                                                                                     (9) 

𝑑𝐼

𝑑𝑡
= 𝛿𝐼 − 𝑣𝐼                                                                                                   (10) 

𝑑𝑅

𝑑𝑡
= 𝑣𝐼 + 𝜃𝑆 − 𝛾𝑅                                                                                       (11)  

From Eq. (1), we have 𝑅 ⟶
𝜃𝑃

𝛾+𝜃
  as 𝑡 ⟶ ∞. From Eq. (10),  

if 𝛿 < 𝑣, we have 𝐼 ⟶ 0 as 𝑡 ⟶ ∞. From Eq. (9), we have 𝑆 ⟶
𝛾𝑃

𝛾+𝜃
  as 

 𝑡 ⟶ ∞. The steady state is globally asymptotically stable if  

𝛿 < 𝑣 ⟺ 
𝛿

𝛼1+𝛼2+𝜇+𝛾
< 1 ⟹

𝜏𝛿

(𝛾+𝛿)(𝛼1+𝛼2+𝜇+𝛾)
<

𝛿

𝛼1+𝛼2+𝜇+𝛾
< 1 if 𝜏 < 𝛾 + 𝛿.                                                

Theorem 2.6    The endemic steady state is globally asymptotically stable in the 

domain:  ℧1 = {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅) ∈ ℝ+
4 ∶ 1 <

𝐸2

𝐸
<

𝐼2

𝐼
<

𝑅2

𝑅
<

𝑆2

𝑆
}   

Proof   Consider a Lyapunov function M defined as follows: 

𝑀 = ∫
𝑆 − 𝑆2

𝑆

𝑆

𝑆2

𝑑𝑆 + ∫
𝐸 − 𝐸2

𝐸
𝑑𝐸

𝐸

𝐸2

+ ∫
𝐼 − 𝐼2

𝐼

𝐼

𝐼2

𝑑𝐼 + ∫
𝑅 − 𝑅2

𝑅

𝑅

𝑅2

𝑑𝑅 

We have; 

 

      
𝑑𝑀

𝑑𝑡
= (

𝑆−𝑆2

𝑆
)

𝑑𝑆

𝑑𝑡
+ (

𝐸−𝐸2

𝐸
)

𝑑𝐸

𝑑𝑡
+ (

𝐼−𝐼2

𝐼
)

𝑑𝐼

𝑑𝑡
+ (

𝑅−𝑅2

𝑅
)

𝑑𝑅

𝑑𝑡
= (𝑆 − 𝑆2) (

𝛾𝑃

𝑆
−

𝛾𝑃

𝑆2
+

𝜏𝐼2

𝑃
−

𝜏𝐼

𝑃
) + (𝐸 − 𝐸2) (

𝜏

𝑃

𝑆𝐼

𝐸
−

𝜏

𝑃

𝑆2𝐼2

𝐸2
) +

(𝐼 − 𝐼2) (
𝛿𝐸

𝐼
−

𝛿𝐸2

𝐼2
) + (𝑅 − 𝑅2) (

𝑤𝐼

𝑅
−

𝑤𝐼2

𝑅2
+

𝜃𝑆

𝑅
−

𝜃𝑆2

𝑅2
) = (𝑆 − 𝑆2) (

𝛾𝑃(𝑆2−𝑆)

𝑆𝑆2
+

𝜏(𝐼2−𝐼)

𝑃
) + (𝐸 − 𝐸2) (

𝜏

𝑃

(𝐸2𝑆𝐼−𝑆2𝐼2𝐸)

𝐸𝐸2
) +

(𝐼 − 𝐼2) (
𝛿(𝐼2𝐸−𝐼𝐸2)

𝐼𝐼2
) + (𝑅 − 𝑅2) (

𝑤(𝐼𝑅2−𝐼2𝑅)

𝑅𝑅2
+

𝜃(𝑆𝑅2−𝑆2𝑅)

𝑅𝑅2
) = −

𝛾𝑃(𝑆2−𝑆)2

𝑆𝑆2
−

𝜏(𝑆2−𝑆)(𝐼2−𝐼)

𝑃
−

𝜏

𝑃

(𝐸2−𝐸)(𝑆𝐼𝐸2−𝑆2𝐼2𝐸)

𝐸𝐸2
−

𝛿(𝐼2−𝐼)(𝐼2𝐸−𝐼𝐸2)

𝐼𝐼2
−

𝑤(𝑅2−𝑅)(𝐼𝑅2−𝐼2𝑅)

𝑅𝑅2
−

𝜃(𝑅2−𝑅)(𝑆𝑅2−𝑆2𝑅)

𝑅𝑅2
 

      From the region: 1 <
𝐸2

𝐸
<

𝐼2

𝐼
<

𝑅2

𝑅
<

𝑆2

𝑆
,  we have; 𝐼𝑆2 − 𝑆𝐼2 < 𝐼(𝑆2 − 𝑆) , 𝐸𝑆2 − 𝑆𝐸2 < 𝐸(𝑆2 − 𝑆) , 𝐸𝐼2 − 𝐼𝐸2 <

𝐸(𝐼2 − 𝐼) , 𝐼𝑅2 − 𝑅𝐼2 < 𝐼(𝑅2 − 𝑅) , 𝑆𝑅2 − 𝑅𝑆2 < 𝑆(𝑅2 − 𝑅) ,    and  𝑆𝐼 < 𝑆2𝐼2.  
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  Hence, we get; 

      
𝑑𝑀

𝑑𝑡
<

𝛾𝑃(𝑆2−𝑆)2

𝑆𝑆2
−

𝜏(𝑆2−𝑆)(𝐼2−𝐼)

𝑃
−

𝜏

𝑃

𝑆2𝐼2(𝐸2−𝐸)2

𝐸𝐸2
−

𝛿𝐸(𝐼2−𝐼)2

𝐼𝐼2
−

𝑤𝐼(𝑅2−𝑅)2

𝑅𝑅2
−

𝜃𝑆(𝑅2−𝑅)2

𝑅𝑅2
< 0 

 

      Numerical Simulation.  

Scilab plot of the SEIR model for 𝑹𝟎 < 𝟏 [Fig. 1] Define a solution to the system in Eq. (1) for the parameter values; 

        𝛾 = 0.000038,     𝜏 = 0.2,   𝛿 = 0.33,   𝛼1 = 0.07143, 𝛼2 = 0.03175, 𝛿 = 2.08, 𝜃 = 0.00556 subject to the  

       initial conditions: 𝑠(0) = 0.7, 𝑒(0) = 0.15, 𝑖(0) = 0.1, 𝑟(0) = 0.05,   

       where  𝑠 =
𝑆

𝑁
,    𝑒 =  

𝐸

𝑁
 ,    𝑖 =

𝐼

𝑁
 , 𝑞 =

𝑄

𝑁
,   𝑟 =

𝑅

𝑁
 . The population N is taken to be 1000. 

        Scilab Code:   function ydot=SEIRdmodel(t, y) 
         ydot=[p-t*y(1)*y(3)-p*y(1)-s*y(1);t*y(1)*y(3)-(d+p)*y(2);d*y(2)-  

         (a1+a2+u+p)*y(3);(a1+a2+u+p)*y(3)+s*y(1)-   

         p*y(4)] 

         endfunction 

         p=0.000038; 

         t=0.3; 

         d=0.33; 

         a1=0.07143; 

        a2=0.03175; 

        u=2.08; 

        s=0.0056; 

        y0=[0.7;0.15;0.1;0.05]'; 

        t0=0; 

        t=0:7:365; 

        sol=ode([0.7;0.15;0.1;0.05],t0,t,SEIRdmodel); 

        plot(t,sol(1,:),'k-o-',t,sol(2,:),'k-+-',t,sol(3,:),'k-.',t,sol(4,:),'k-x-') 

        title("2D Plot of SEIR model of COVID-19 with rate of infection =0.3", "fontsize",3) 

        hl=legend(['s';'e';'i';'r']); 

                                                   

                       
Fig 1. Scilab plot of the SEIR Model for 𝑅0 < 1  Fig 2. Scilab plot of the SEIR Model for 𝑅0 > 1 
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       Scilab plot of the SEIR model for 𝑹𝟎 > 𝟏. [Fig. 2] Define a solution to the system in Eq. (1) for the parameter values; 

      𝛾 =  0.000038,    𝜏 = 12  𝛿 = 0.33,   𝛼1 = 0.07143, 𝛼2 = 0.03175, 𝛿 = 2.08, 𝜃 = 0.00556 subject to the  

       initial conditions: 𝑠(0) = 0.7, 𝑒(0) = 0.15, 𝑖(0) = 0.1, 𝑟(0) = 0.05,   

       where  𝑠 =
𝑆

𝑁
,    𝑒 =  

𝐸

𝑁
 ,    𝑖 =

𝐼

𝑁
 , 𝑞 =

𝑄

𝑁
,   𝑟 =

𝑅

𝑁
 . The population N is taken to be 1000. 

 

      Scilab Code:  function ydot=SEIRdmodel(t, y) 

      ydot=[p-t*y(1)*y(3)-p*y(1)-s*y(1);t*y(1)*y(3)-(d+p)*y(2);d*y(2)-   

      (a1+a2+u+p)*y(3);(a1+a2+u+p)*y(3)+s*y(1)-p*y(4)] 

      endfunction 

      p=0.000038; 

      t=12; 

      d=0.33; 

      a1=0.07143; 

      a2=0.03175; 

      u=2.08; 

      s=0.0056; 

      y0=[0.7;0.15;0.1;0.05]'; 

      t0=0; 

      t=0:7:365; 

      sol=ode([0.7;0.15;0.1;0.05],t0,t,SEIRdmodel); 

      plot(t,sol(1,:),'k-o-',t,sol(2,:),'k-+-',t,sol(3,:),'k-.',t,sol(4,:),'k-x-') 

      title("2D Plot of SEIR model of COVID-19 with rate of infection =12", "fontsize",3) 

      hl=legend(['s';'e';'i';'r']); 

 

Discussion of Results 

We have formulated an SEIR model with a vaccination parameter for the transmission dynamics of COVID-19. We studied 

the stability of the equilibrium points of the system in Eq. (1). The local stability of the disease-free equilibrium implies that 

if a small number of infected individuals are introduced into the population, after a short time the system will converge to 

the disease-free equilibrium point (that is, the disease will die out of the population). For the endemic equilibrium, the local 

stability implies that if a small number of infected individuals are introduced into the population, then after a short time, the 

system will converge back to the endemic equilibrium point (that is, the disease will die out). The global stability of the 

disease-free equilibrium point implies that whatever the number of the infected individuals introduced into the population, 

in the long run, the disease will eventually die out of the population. On the other hand, the global stability of the endemic 

equilibrium implies that in the long run, the disease will become endemic or will continue to prevail in the population, 

irrespective of the number of infected individuals introduced into the population. 

The parameters of the model were estimated and the model was solved numerically using the scilab software. The result of 

the simulation shows that, if the basic reproduction number is less than one, in a very short time individuals in the 

population are removed by death, recovery or vaccination and the disease eventually dies out of the population. The same 

trend is observed when the basic reproduction number is greater than one. This happens because of the vaccination 

parameter 𝜃.  

 

4.  Conclusion 

Based on the results of the study, it was concluded that the SEIR model with a vaccination parameter could be used as a 

reference model for the spread of COVID-19 in a population. Analyses of the model provides an overview of global and 

local stability in the spread of COVID-19 depending upon the value of the basic reproduction number. 

The simulation results provide a predictive picture of the short-term and long-term behavior of 

the disease outbreak, and also shows that the presence of the vaccination parameter causes the disease to die out of the 

population regardless of the value of the basic reproduction number.  
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