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Abstract 
 

This study presents the three-dimensional (3-D) stability analysis of a uniaxially 

compressed thick rectangular isotropic plate that is clamped in one edge and the 

other three edges simply supported (CSSS). The energy method was applied in the 

coupling the three dimensional kinematics and constitutive relations to formulate the 

total potential energy equation. The formulated the total potential energy for the plate 

was transformed into equilibrium equation and used to obtain the shape function of 

the plate. The shape function derived was analysed through variational principle to 

get an exact polynomial displacement function which is a product of the coefficient 

of deflection and shape function of the plate. The expression for the critical buckling 

load and other formulae was obtained by the direct variation of the total potential 

energy equation to produce a reliable solution for stability analysis of any type of 

plate rectangular plate. The span to thickness ratio and aspect ratios were varied to 

ascertain the buckling behavior of different type of plate under uniformly distributed 

load. The outcome of the numerical analysis revealed that increase in the span- 

thickness ratio led to the increased value of the critical buckling load which implies 

that the plate structure is safe when the plate thickness is increased. The result 

showed that the critical buckling loads from the present study using the established 3-

D model for both functions is satisfactory and were found to follow an identical 

pattern, but quite distinct in validation which shows the credibility of the derived 

relationships. The overall average percentage differences between the two functions 

recorded are 2.06%. This shows that at about 98% both approaches are the same and 

can be applied with confidence in the stability analysis of any type of plate with such 

boundary condition. 
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1. Introduction 

Plates which are basically three-dimensional structural elements whose straight and plane surfaces are geometrically large 

compared to its thickness [1, 2, 3]; have attracted much research interest among scholars due to its extensive applications in 

mechanical, aerospace, aeronautics and structural engineering [4, 5]. Plate materials are often used in structural engineering 

as ship hull and spacecraft, bridge deck, building slabs, and retaining wall for water retaining structures [6, 7].  

Plates can be homogeneous, laminated, or functionally graded with different sizes, thicknesses and shapes depending on 

their applications as it varies. Plates can be clamped, simply supported or have free boundary conditions. With respect to 

shapes, plates can be skewed, elliptical, triangular, square, circular, or rectangular, also they can be anisotropic and 

isotropic plates, based on material composition. Based on depth, plates can be thin, thick or moderately thick [8]. 

Rectangular plates with 50 ≤ a/t ≤ 100 were considered as thin plate, 20 ≤ a/t ≤ 50 as moderately thick and a/t ≤ 20 as thick 

plate where a/t is the span-to-depth ratio [9]. 

The relevance of thick plates in the construction industry has greatly increased and has drawn the attention of researchers 

for more investigation, because of their advantages such as its load resistance ability, light weight and high strength [10].  
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These investigations consist of vibration, bending and buckling [11, 12]. Instability is commonly seen through buckling and 

plate buckles or becomes unstable due to in-plane loading [13]. The extent to which plates experience instability because of 

in-plane compressive forces is called the critical buckling load [14]. When the in-plane loading exceeds the critical value, 

plate’s encounters large deformations and total failure may occur. The essence of buckling analysis is to determine the 

critical buckling load of the plate. More and accurate method of analysis is needed in order to overcome plate failure.  

To solve the problem of instability due to buckling, several theories such as the classical plate theory (CPT) [15], and the 

refined plate theories (RPT) have been developed by different scholars. CPT is usually used in the thin plate analysis as it is 

based on the assumptions of Kirchhoff [16]. Unlike CPT, in RPT the shear deformation effect is considered. These refined 

plate theories include; the first order shear deformation theory (FSDT) [17] and the higher-order shear deformation plate 

theory (HSDT) [18].  In contrast to FSDT, HSDT does not require a correction factor to produce satisfactory results. 

However, these HSDTs cannot yield accurate solutions for a typical 3-D plate. The 3-D plate theory is required in order to 

obtain an exact solution for a three-dimensional plate during stability analysis. And this validates the significance of this 

study.  

The stability study can be carried out using either equilibrium, numerical, energy methods or a combination of any [19]. 

Numerical methods such as finite difference methods, boundary element methods, and truncated double Fourier series, 

often yields approximate solutions of the plate problem. To obtain exact solution it requires so much time and lots of work. 

Energy method differs from numerical and the equilibrium method in that it adds all the strain energy and potential energy 

or external work on the continuum to be equal to the total potential energy [20, 21]. This work is based on energy method.  

Using the virtual work principle based on polynomial shape function, the author in [22] developed a model to obtain the 

buckling coefficients for stiffened rectangular plates. Thick plate was not part of their consideration as their assumption was 

limited to the CPT. But, the author in [12] employed 2-D theory with an energy method to analyze the buckling behavior of 

thick plates. To obtain the total potential energy which was reduced to the governing equation, the authors combined the 

strain energy and external work. The authors neglected all the stress and strain along the thickness direction of the plate and 

failed to address CSSS plates in their analysis.  

Authors in [23] and [24] studied thick plates subjected to biaxial and uniaxial in-plane forces, using RPT to obtain the 

buckling solution. The authors in [24] used the virtual work principle and applied a 2-D plate theory to investigate the 

buckling of simply supported isotropic rectangular plate. A typical 3-D thick plate with CSSS boundary conditions were not 

considered by both authors and polynomial displacement functions were not taken into account.  

In [25], the authors applied 2-D theories to investigate the stability of elastic thick plates. Their study did not consider the 

stresses in the direction of thickness axis. The outcome of their analysis was not a close-form solution as the shape function 

used were assumed. The authors failed to cover plates with CSSS boundary conditions.  

The authors in [26] employed displacement potential function method and used an assumed shape function to obtain the 

solution of buckling of thick plates that are simply supported. The authors applied method of variable separation and 

satisfied the support conditions of the plate in order to establish the governing differential equations. The authors did not 

use displacement function that stems from the compatibility equation, and their study did not cover CSSS plates.  

In [27], the authors employed direct variational calculus to analyze the stability of clamped at the three edge and the other 

remaining edge simply supported (CCCS) rectangular plates, considering polynomial displacement functions they establish 

a new model for analyzing the buckling of thick plates. From 3-D constitutive relations, the authors formulated the 
governing equation of the plate which when solved give equation for the analysis. Their analysis failed to cover CSSS plate. The authors 

in [28] covered CSSS boundary conditions in their thick plates buckling analysis and the outcome of their study was satisfactory as 

their result were closer to exact solution compared to 2-D theories. But they failed to apply polynomial shape functions 

which is easier to apply especially for a complicated boundary condition like 3-D CSSS support.  

From previous studies, it can be observed that many researchers have applied CPT and several 2-D theories while very few 

scholars have considered the 3-D plate theory for buckling analysis of plates. The distinctiveness of this present study over 

the previous works lies in the displacement function used, the plate boundary condition, the plate theory and the method of 

analysis.  In this study, the variational energy method is applied to formulate and derive a three-dimensional plate theory (3-

D) for stability analysis of thick isotropic plates elastically restrained along one edge and other three edges simply 

supported (CSSS) under uniaxial compressive load, using polynomial shape functions. The shape function was derived 

from equilibrium equation after the energy equation transforming through variational principle to get an exact polynomial 

displacement function which produce a reliable solution for stability analysis of any type of plate rectangular plate. 
 

2. Theoretical Analysis 

A three dimensional kinematics and constitutive relations was used to obtain the equation of total energy functional based 

on the static elastic theory of plate. The stress-strain relationship for an isotropic material under elastic condition as 

described using generalized Hooke’s law is given as: 
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εx

εy

εz
γxz

γyz

γxy]
 
 
 
 
 

=
1

E

[
 
 
 
 
 

1 −μ −μ 0 0 0
−μ 1 −μ 0 0 0
−μ −μ 1 0 0 0

0 0 0 2(1 + μ) 0 0

0 0 0 0 2(1 + μ) 0

0 0 0 0 0 2(1 + μ)]
 
 
 
 
 

[
 
 
 
 
 
σx

σy

σz
τxz

τyz

τxy]
 
 
 
 
 

                                       (1) 

Where: 

Modulus of elasticity and Poisson’s ratios are denoted with E and µ respectively, the symbol 𝜀𝑥 denotes normal strain along 

x axis, the symbol 𝜀𝑦 denotes normal strain along y axis, the symbol 𝜀𝑧 denotes normal strain along z axis, the symbol 𝛾𝑥𝑦 

denotes shear strain in the plane parallel to the x-y plane, the symbol 𝛾𝑥𝑧 denotes shear strain in the plane parallel to the x-z 

plane, the symbol 𝛾𝑦𝑧 denotes shear strain in the plane parallel to the y-z plane. 

 
Figure 1: CSSS rectangular plate subjected to a uniaxial compressive load 

From the Figure 1, the non-dimensional form of coordinates is given as:  R = x/a, Q = y/b and S = z/t corresponding to x, y 

and z-axes respectively. The spatial dimensions of the plate along x, y and z-axes are a, b and t respectively, as the t is the 

thickness of the plate, thus the six strain components is obtained using the established Hooke’s law as: 

𝑥 =
𝑆𝑡

𝑎

𝑑θx

𝑑𝑅
                                                                                                                                             (2) 

𝑦 =
𝑆𝑡

𝑎𝛽

𝑑θy

𝑑𝑄
                                                                                                                                            (3) 

𝑧 =
1

𝑡

𝑑𝑤

𝑑𝑆
                                                                                                                                                (4) 


𝑥𝑦

=
𝑆𝑡

𝑎𝛽

𝑑θx

𝑑𝑄
+

𝑆𝑡

𝑎

𝑑θy

𝑑𝑅
                                                                                                                        (5) 


𝑥𝑧

= θx +
1

𝑎

𝑑𝑤

𝑑𝑅
                                                                                                                                    (6) 


𝑦𝑧

= θy +
1

𝑎𝛽

𝑑𝑤

𝑑𝑄
                                                                                                                                 (7) 

Similarly the six stress components gives: 

x =
Ets

(1 + μ)(1 − 2μ)a
[(1 − μ) .

𝜕𝑥

𝜕𝑅
+


β
.
𝜕𝑦

𝜕𝑄
+
a

𝑠t2
.
∂w

∂S
]                                                     (8) 

y =
Ets

(1 + μ)(1 − 2μ)a
[ .

𝜕𝑥

𝜕𝑅
+

(1 − μ)

β
.
𝜕𝑦

𝜕𝑄
+
a

𝑠t2
.
∂w

∂S
]                                                     (9) 

z =
Ets

(1 + μ)(1 − 2μ)a
[ .

𝜕𝑥

𝜕𝑅
+


β
.
𝜕𝑦

𝜕𝑄
+

(1 − μ)a

𝑠t2
.
∂w

∂S
]                                                    (10) 

xy =
E(1 − 2)𝑡𝑠

2(1 + μ)(1 − 2μ)a
. [

1

β

𝜕𝑥

𝜕𝑄
+

𝜕𝑦

𝜕𝑅
]                                                                                    (11) 

xz =
E(1 − 2)𝑡𝑠

2(1 + μ)(1 − 2μ)a
. [

a

ts
𝑥 +

1

ts

∂w

∂R
]                                                                                   (12) 

yz =
E(1 − 2)𝑡𝑠

2(1 + μ)(1 − 2μ)a
. [

a

ts
𝑦 +

1

βts

∂w

∂Q
]                                                                                (13) 
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2.1. Energy Equation 

          Total potential energy functional is the algebraic summation of strain energy and external work. This mathematically 

expressed as: 

 = U − V                                                                                                                                            (14)  

Given that the strain energy is; 

U =
abt

2
∫∫ ∫ (xx + yy + zz + τxyxy

+ τxzxz
+ τyzyz

)

0.5

−0.5

1

0

1

0

dR dQ dS                  (15) 

And the external work for buckling load is given as: 

V =
abNx

2a2
∫ ∫(

𝜕w

𝜕𝑅
)

2
𝑏

0

𝑎

0

dR dQ                                                                                                                (16) 

Putting Equations (2) to (13) into (15) and substituting (15) and (16) into (14) gives: 

 = D∗
(1 − μ)𝑎𝑏

2a2(1 − 2μ)
∫∫[(1 − μ) (

𝜕𝑠𝑥

𝜕𝑅
)

2

 +
1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.
𝜕𝑠𝑦

𝜕𝑄
+

(1 − μ)

𝛽2
(
𝜕𝑠𝑦

𝜕𝑄
)

2

+
(1 − 2)

2β2
(
𝜕𝑠𝑥

𝜕𝑄
)

2

+
(1 − 2)

2
(
𝜕𝑠𝑦

𝜕𝑅
)

21

0

1

0

+
6(1 − 2)

t2
(a2𝑠𝑥

2 + a2𝑠𝑦
2 + (

𝜕w

𝜕𝑅
)

2

+
1

β2
(
𝜕w

𝜕𝑄
)

2

+ 2a. 𝑠𝑥

𝜕w

𝜕𝑅
+

2a. 𝑠𝑦

𝛽

𝜕w

𝜕𝑄
) +

(1 − μ)a2

𝑡4
(
𝜕w

𝜕𝑆
)

2

−
Nx

D∗
. (

𝜕w

𝜕𝑅
)

2

] 𝜕𝑅𝜕𝑄                                                       (17) 

where 𝐷 is the Rigidity of the CPT or incomplete 3-D thick plate, let 

 𝑁𝑥 ,, 𝑤, 𝜃𝑆𝑥, and 𝜃𝑆𝑦  are the uniform applied uniaxial compression load of the plate, the poison ratio, deflection , shear 

deformation rotation along x axis and shear deformation rotation along y axis respectively. 

 

2.2. Equilibrium and Governing Equation 

Minimizing the energy equation in (17) with respect to rotation in x-z plane and rotation in y-z plane (𝜃𝑆𝑥, and 𝜃𝑆𝑦) and 

simplifying the outcome using the law of addition gives the two equations of equilibrium Equations (18) and (19) in x-z 

plane and y-z plane respectively: 

𝜕𝑤

𝜕𝑅
[(1 − μ)

𝜕2

𝜕𝑅2
 +

1

𝛽2
.

𝜕2

𝜕𝑄2
(1 − ) +

6(1 − 2)a2

t2
. (1 +

1

𝑐
)] = 0                                   (18) 

1

𝛽
.
𝜕w

𝜕𝑄
[

𝜕2

𝜕𝑅2
(1 − μ) +

(1 − μ)

𝛽2

𝜕2

𝜕𝑄2
+

6(1 − 2)a2

t2
. (1 +

1

𝑐
)] = 0                                        (19) 

One of the possibilities of Equation (18) to be true is for the terms in the bracket to sum to zero. Adding terms in the 

brackets of Equation (18) and (19) gives: 

6(1 − 2)(1 + 𝑐)

t2
= −

c(1 − μ)

a2
(

𝜕2

𝜕𝑅2
+

1

𝛽2

𝜕2

𝜕𝑄2
)                                                                   (20) 

Similarly, the general governing equation is obtained by differentiating the Energy equation with respect to deflection and 

simplifying the outcome by substituting Equation (20) into it to get: 

D∗

2a2
∫∫[

6(1 − 2)(1 + c)

t2
(
𝜕2w

𝜕𝑅2
+

1

β2
.
𝜕2w

𝜕𝑄2
) +

(1 − μ)a2

𝑡4

𝜕2w

𝜕𝑆2
−

Nx

D∗
.
𝜕2w

𝜕𝑅2
]

1

0

1

0

dR dQ = 0 (21) 

That is: 

D∗

2a4
∫∫[(

𝜕4w1

𝜕𝑅4
+

2

β2
.

𝜕4w1

𝜕𝑅2𝜕𝑄2
+

1

β4
.
𝜕4w1

𝜕𝑄4
−

Nx1a
4

gD∗
.
𝜕2w1

𝜕𝑅2
)w𝑆 +

w1

g
(
(1 − μ)a4

𝑡4
.
𝜕2w𝑆

𝜕𝑆2
−

Nxsa
4

D∗
.
𝜕2w𝑆

𝜕𝑅2
)]

1

0

1

0

dR dQ

= 0                                                                                                                     (22) 

Where: 

𝑤 = w𝑅 . w𝑄 . w𝑆                                                                                                                                (23) 

w1 = w𝑅 . w𝑄                                                                                                                                       (24) 

N𝑥 = N𝑥1 + N𝑥𝑠                                                                                                                                  (25) 
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For Equation (22) to be true, its integrand must be zero. That is: 

(
𝜕4w1

𝜕𝑅4
+

2

β2
.

𝜕4w1

𝜕𝑅2𝜕𝑄2
+

1

β4
.
𝜕4w1

𝜕𝑄4
−

Nx1a
4

gD∗
.
𝜕2w1

𝜕𝑅2
)w𝑆

+
w1

g
(
(1 − μ)a4

𝑡4
.
𝜕2w𝑆

𝜕𝑆2
−

Nxsa
4

D∗
.
𝜕2w𝑆

𝜕𝑅2
)                                                  (26) 

One of the possibilities of Equation (26) to be true is for the terms in each of the two brackets sum to zero. That is: 

𝜕4w1

𝜕𝑅4
+

2

β2
.

𝜕4w1

𝜕𝑅2𝜕𝑄2
+

1

β4
.
𝜕4w1

𝜕𝑄4
−

Nx1a
4

gD∗
.
𝜕2w1

𝜕𝑅2
= 0                                                           (27) 

(1 − μ)a4

𝑡4
.
𝜕2w𝑆

𝜕𝑆2
−

Nxsa
4

D∗
.
𝜕2w𝑆

𝜕𝑅2
= 0                                                                                           (28) 

Given that; 

𝑤 = w1. w𝑆                                                                                                                                          (29) 

Putting the Equation (29) into (27) and solve to get the exact deflection function in polynomial as: 

w = ∆0 (𝑎0 +  𝑎1𝑅 + 𝑎2𝑅
2 + 𝑎3𝑅

3 + 𝑎4𝑅
4). (𝑏0 +  𝑏1𝑄 + 𝑏2𝑄

2 + 𝑏3𝑄
3 + 𝑏4𝑄

4)    (30) 
Where:  

w = 𝐴1. ℎ                                                                                                                                            (31) 

w𝑆 = ∆0 + ∆1S                                                                                                                                  (32) 
And, 

w𝑆 = ∆0                                                                                                                                              (33) 

Substituting Equation (30) into the re-arranged Equation (6) and simplifying the outcome gives: 

𝑠𝑥 =
𝑐

𝑎
. ∆0. (1  2𝑅  3𝑅2  4𝑅3) [

𝑎1

𝑎2
𝑎3

𝑎4

] . (1  𝑄  𝑄2  𝑄3  𝑄4) 

[
 
 
 
 
𝑏0

𝑏1

𝑏2

𝑏3

𝑏4]
 
 
 
 

                                               (34) 

Similarly; 

𝑠𝑦 =
𝑐

𝑎β
. ∆0. (1  𝑅  𝑅2  𝑅3  𝑅4)

[
 
 
 
 
𝑎0

𝑎1
𝑎2

𝑎3

𝑎4]
 
 
 
 

. (1  2𝑄  3𝑄2  4𝑄3) [

𝑏1

𝑏2

𝑏3

𝑏4

]                                             (35) 

In symbolic forms, Equations (34) and (35) are: 

𝑠𝑥 =
𝐴2𝑅

𝑎
.
𝜕ℎ

𝜕𝑅
                                                                                                                                  (36) 

𝑠𝑦 =
𝐴2𝑄

𝑎β
.
𝜕ℎ

𝜕𝑄
                                                                                                                                 (37) 

Given that: ℎ is the shape function of the plate, 𝐴1 is the coefficient of deflection  𝐴2 and 𝐴3 are the coefficients of shear 

deformation in x axis and y axis respectively. 

Where: 

The coefficient of deflection of the plate is given as; 

𝐴1 = ∆0

[
 
 
 
 
𝑎0

𝑎1
𝑎2

𝑎3

𝑎4]
 
 
 
 

.

[
 
 
 
 
𝑏0

𝑏1

𝑏2

𝑏3

𝑏4]
 
 
 
 

                                                                                                                            (38) 

        The plates shape function becomes;  

   ℎ = [1  𝑅 𝑅2 𝑅3  𝑅4]. [1  𝑄 𝑄2 𝑄3 𝑄4]                                                                                        (39) 
 

2.3. Direct Governing Equation 
By substituting Equations (31), (36) and (37) into the Energy equation obtained in Equation (17) and differentiating with 

respect to deflection coefficient (A1), the direct governing equation of the plate is given as: 

𝜕Π

𝜕𝐴1

= 6(1 − 2) (
a

𝑡
)

2

([𝐴1 + 𝑀2𝐴1]. 𝑘𝑅 +
1

β2
. [𝐴1 + 𝑀3𝐴1]. 𝑘𝑄) −

Nxa
2𝐴1

D∗
. 𝑘𝑅 = 0 (40) 
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This gives: 

a2Nx

𝐸𝑡3
=

(1 + μ)

2
(
a

𝑡
)

2

([1 + 𝑀2] +
1

β2
. [1 + 𝑀3].

𝑘𝑄

𝑘𝑅

)                                                            (41) 

            Given that 𝐷∗ is the Rigidity for 3-D thick plate, let 

𝐷∗ = 𝐷 
(1 − 𝜇)

(1 − 2𝜇)
 

Where: 

𝑘𝑅𝑅 = ∫∫(
𝜕2ℎ

𝜕𝑅2
)

21

0

1

0

𝑑𝑅𝑑𝑄:  𝑘𝑅𝑄 = ∫∫(
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

21

0

1

0

𝑑𝑅𝑑𝑄; 𝑘𝑄𝑄 = ∫∫(
𝜕2ℎ

𝜕𝑄2
)

21

0

1

0

𝑑𝑅𝑑𝑄(42)  

𝑘𝑅 = ∫∫(
𝜕ℎ

𝜕𝑅
)

2
1

0

1

0

𝑑𝑅𝑑𝑄; 𝑘𝑄 = ∫∫(
𝜕ℎ

𝜕𝑄
)

2
1

0

1

0

𝑑𝑅𝑑𝑄                                                                  (43)  

Minimizing Equation (17) with respect to A2R and A2Q after substituting Equations (31), (36) and (37) into it gives: 

𝐴2𝑅 = 𝑀2𝐴1                                                                                                                                      (44) 

𝐴2𝑄 = 𝑀3𝐴1                                                                                                                                      (45) 

Equations 44 and 45 is solved simultaneously to get: 

𝑀2 =
(𝑚12𝑚23 − 𝑚13𝑚22)

(𝑚12𝑚12 − 𝑚11𝑐22)
 ;  𝑀3 =

(𝑚12𝑚13 − 𝑚11𝑚23)

(𝑚12𝑚12 − 𝑚11𝑚22)
                                                (46)  

𝑚11 = (1 − μ)𝑘𝑅𝑅 +
1

2𝛽2
(1 − 2)𝑘𝑅𝑄 + 6(1 − 2) (

a

𝑡
)

2

𝑘𝑅                                             (47)    

𝑚22 =
(1 − μ)

𝛽4
𝑘𝑄𝑄 +

1

2β2
(1 − 2)𝑘𝑅𝑄 +

6

β2
(1 − 2) (

a

𝑡
)

2

𝑘𝑄                                        (48) 

𝑚12 = 𝑚21 =
1

2𝛽2
𝑘𝑅𝑄;  𝑚13 = −6(1 − 2) (

a

𝑡
)

2

𝑘𝑅;  𝑚23 = 𝑚32 = −
6

β2
(1 − 2) (

a

𝑡
)

2

𝑘𝑄  (49) 

2.4. Numerical Analysis 

A problem of a rectangular thick plate that is clamped at one edge and the other three edges simply supported (CSSS) under 

uniaxial compressive load is presented. The displacement function as presented in the Equation (30), (34) and (30) was 

applied through variation to obtain the solution of the critical buckling load in the plate by subjecting it to CSSS boundary 

condition. 

The boundary conditions of the CSSS rectangular plate presented in the Figure 1 are as follows: 

At  𝑅 =  𝑄 =  0; deflection (𝑤)  = 0                                                                                      (50)         

At  𝑅 = 0, bending moment (
𝑑2𝑤

𝑑𝑅2) = 0;  𝑄 =  0, slope (
𝑑𝑤

𝑑𝑄
) = 0                                 (51)    

At  𝑅 = 𝑄 =  1, deflection (𝑤) = 0;                                                                                        (52) 

At  𝑅 = 𝑄 = 1, bending moment ( 
𝑑2𝑤

𝑑𝑅2  𝑎𝑛𝑑 
𝑑2𝑤

𝑑𝑅2)  =  0                                                      (53) 

Substituting Equation (50) to (53) into the derivatives of w and solving gave the characteristic equation gives the following 

constants: 

𝑎0 = 0; 𝑎1 = 𝑎4;  𝑎2 = 0; 𝑎3 = −2𝑎4 𝑎𝑛𝑑                                                                             (54) 

𝑏0 = 0; 𝑏1 = 0; 𝑏2 = 1.5𝑏4;  𝑏3 =  −2.5𝑏4                                                                          (55) 

Substituting the constants of Equation (54) and (55) into Equation (30) gives; 

𝑤 = (𝑎4𝑅 − 2𝑎4𝑅
3 + 𝑎4𝑅

4) × (1.5𝑏4𝑄
2 − 2.5𝑏4𝑄

3 + 𝑏4𝑄
4)                                          (56) 

Simplifying Equation (56) which satisfying the boundary conditions of Equation (50) to (53) gives: 

𝑤 = 𝑎4 × 𝑏4(𝑅 − 2𝑅3 + 𝑅4) × (1.5𝑄2 − 2.5𝑄3 + 𝑄4)                                                       (57) 
Let the amplitude,   

𝐴1 = 𝑎4 × 𝑏4                                                                                                                                      (61) 

And;  

ℎ = (𝑅 − 2𝑅3 + 𝑅4) × (1.5𝑄2 − 2.5𝑄3 + 𝑄4)                                                                      (62) 
Thus, the polynomial deflection functions after satisfying the boundary conditions is:  

𝑤 = (𝑅 − 2𝑅3 + 𝑅4) × (1.5𝑄2 − 2.5𝑄3 + 𝑄4). 𝐴1                                                              (63) 
Using Equation (42) and (43) after putting Equation (62) into it, a numerical values of the stiffness CSSS rectangular plate 

were obtained as presented in Table 1. 
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Table 1: The polynomial and trigonometric stiffness coefficients of deflection function of the CSFS plate  

Displacement Shape Function 𝒌𝑹𝑹 𝒌𝑹𝑸 𝒌𝑸𝑸 𝒌𝑹 𝒌𝑸 

Present Study 0.03619 0.04163 0.08857 0.00366 0.00422 

Onyeka et al. [28] 928.2428 1,015.280 2,057.980 94.05066 102.8692 
 

3. RESULTS AND DISCUSSIONS 

In this section, Equation 30 showed the expression of deflection function which was derived to get the formulae for 

predicting the buckling load of the plate. The graphical re-presentation of the result of the critical buckling load of a 

rectangular plate that is clamped and simply supported at the other three edges (CSSS), as calculated is shown in the 

Figures 2 to 10. This result also showed the comparative stability analysis between the present work and the work of 

Onyeka et al. [28] for CSSS plate subjected to uniaxial compressive load at varying aspect ratio.  

The values obtained in Figure 2 to 10, shows that as the values of critical buckling load increase, the span- thickness ratio 

increases. This reveals that as the in-plane load on the plate increase and approaches the critical buckling, the failure in a 

plate structure is a bound to occur; this means that a decrease in the thickness of the plate, increases the chance of failure in 

a plate structure. Hence, failure tendency in the plate structure can be mitigated by increasing its thickness. It is also 

observed in the figures that as the length to breadth ratio (aspect ratio) of the plate increases, the value of critical buckling 

load decreases while as critical buckling load increases as the length to breadth ratio increases. This implies that an increase 

in plate width increases the chance of failure in a plate structure. It can be deduced that as the in-plane load which will 

cause the plate to fail by compression increases from zero to critical buckling load, the buckling of the plate exceeds 

specified elastic limit thereby causing failure in the plate structure. This meant that, the load that causes the plate to deform 

also causes the plate material to buckle simultaneously. 

Looking closely at the result of buckling load for the present study at the span to thickness ratio of 20 and beyond, it is seen 

that the value of critical buckling load of the plate maintained a constant value of 5.62 for square plate, 2.47 for aspect ratio 

of 1.5, 1.70 for aspect ratio of 2.0, 1.40 for aspect ratio of 2.5, 1.27 for aspect ratio of 3.0, 1.19 for aspect ratio of 3.5, 1.14 

for aspect ratio of 4.0, 1.11 for aspect ratio of 4.5, 1.08 for aspect ratio of 5.0. This proof that the value of critical load for 

thin plate and thick plate (see [8]) which described the thin and moderately thick plate as the one whose span to thickness 

ratio is equal or less than 30.  

A numerical and graphical comparison was made to show the disparities between the present study and the literature under 

review to show the effect of aspect ratio on the buckling load in a 3-D stability analysis of rectangular plate at varying 

thickness. The span to thickness ratio considered is ranged between 4 through 1500, which is obviously seen to span from 

the thick plate, moderately thick plate and thin plate (see [28]). The present work obtained non-dimensional result of 

buckling load of the plate by expressing the displacement shape function of the plate in the form of polynomial to analyze 

the effect of aspect ratio on the critical buckling load of the plate while the work of Onyeka et al. [28] was obtained by 

expressing the displacement shape function of the plate in the form of trigonometry to analyze the effect of aspect ratio on 

the critical buckling load of the plate.  The aspect ratio of the plate into consideration includes; 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 

4.5 and 5.0. The comparison shows that the present theory using polynomial functions predicts a slightly lower value of the 

critical buckling load than the previous study (Onyeka et al. [28]) when the plate is thicker and higher value as the plate is 

thinner. This is quite expected because the trigonometric function gives higher value of the stiffness coefficient than 

polynomial, and thus safe to use in the thick plate analysis as the variation produce an upper bound solution which will not 

put the structure in danger.  

The percentage difference of critical buckling load between the present study and the previous study [28] for an isotropic 

CSSS rectangular plate at a variable aspect ratio is presented in Table 2. The highest average percentage difference is 6.098 

which occurs in the square plate at span to thickness ratio of 100 to 1500, while the lowest average percentage difference is 

0.526 which occur in an aspect ratio of  five (5) at span to thickness ratio of 4. The average percentage difference between 

the two studies at aspect ratio of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 is 5.95, 3.88, 2.56, 1.78, 1.01, 0.81, 0.67 and 

0.57. It is shown in the table that the degree of the percentage difference between the two studies decreases as the aspect 

ratio of the plate decreases. This implies that as the length of the plate widens, the credibility of the studies becoming 

almost the same. Furthermore, it was discovered that the values of the percentage difference between the two studies 

decrease as the span to thickness ratio of the plate decreases. This implies that as the plate gets thinner, the studies differs 

more and becomes almost the same for thick plates. This could mean that the theories used by the present and previous 

studies are suitable for thick plate analysis. This, however, shows the high level of convergence between the theories and 

approaches. It also implies a high level of accuracy of the derived relationships and thus proof reliability of the process in 

the stability analysis of rectangular plate of any category (thin, moderately thick and thick plate). Finally, the overall  
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average percentage differences between the two studies using different functions recorded are 2.06%. These differences 

being less than 5% are quite acceptable in statistical analysis, as it will not put the structure into danger. This shows that at 

about 98% both approaches are the same under the same boundary condition and can be applied with confidence in the 

stability analysis of any type of rectangular plate. 

 
Figure 2: Graph of Critical buckling load (Nx) versus span to  Figure 3: Graph of Critical buckling load (Nx) versus span to 
thickness ratio of a rectangular plate at aspect ratio of 1.0 thickness ratio of a rectangular plate at aspect ratio of 1.5 

 

  
Figure 4: Graph of Critical buckling load (Nx) versus span to thickness  Figure 5: Graph of Critical buckling load (Nx) versus span to thickness 

                 ratio of a rectangular plate at aspect ratio of 2.0                   ratio of a rectangular plate at aspect ratio of 2.5 

  
Figure 6: Graph of Critical buckling load (Nx) versus span to thickness  Figure 7: Graph of Critical buckling load (Nx) versus span to thickness 

ratio of a rectangular plate at aspect ratio of 3.0   ratio of a rectangular plate at aspect ratio of 3.5 
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Figure 8: Graph of Critical buckling load (Nx) versus span to thickness  Figure 9: Graph of Critical buckling load (Nx) versus span to thickness 

ratio of a rectangular plate at aspect ratio of 4.0   ratio of a rectangular plate at aspect ratio of 4.5 

 
Figure 10: Graph of Critical buckling load (Nx) versus span to thickness ratio of a rectangular plate at aspect ratio of 5.0 

Table 2: Percentage difference of buckling load on the CSSS rectangular plate between Present work and Onyeka et al. [28] 

Average Percentage Difference % 

∝=
𝑎

𝑡
 

𝛽
=  1.0 

𝛽
=  1.5 

𝛽
=  2.0 

𝛽
= 2.5 

𝛽
= 3.0 

𝛽
=  3.5 

𝛽
=  4.0 

𝛽
= 4.5 

𝛽
= 5.0 

4 5.1014 3.48 2.3397 1.6429 1.2133 0.9371 0.7511 0.6207 0.5261 

5 5.3839 3.6242 2.4213 1.6950 1.2501 0.9649 0.7734 0.6394 0.5422 

10 5.8853 3.8569 2.5486 1.7752 1.3062 1.0073 0.8072 0.6675 0.5664 

15 5.9998 3.9063 2.5749 1.7916 1.3176 1.0158 0.8141 0.6732 0.5713 

20 6.0419 3.9241 2.5843 1.7974 1.3216 1.0189 0.8165 0.6752 0.5730 

30 6.0726 3.9370 2.5912 1.8017 1.3246 1.0211 0.8183 0.6767 0.5743 

40 6.0835 3.9416 2.5936 1.8031 1.3256 1.0219 0.8189 0.6772 0.5747 

50 6.0885 3.9437 2.5947 1.8038 1.3261 1.0223 0.8192 0.6774 0.5749 

60 6.0913 3.9448 2.5953 1.8042 1.3264 1.0225 0.8193 0.6776 0.5750 

70 6.0929 3.9455 2.5956 1.8044 1.3265 1.0226 0.8194 0.6777 0.5751 

80 6.0940 3.946 2.5959 1.8046 1.3266 1.0227 0.8195 0.6777 0.5752 

90 6.0948 3.9463 2.5960 1.8047 1.3267 1.0227 0.8195 0.6777 0.5752 

100 6.0953 3.9465 2.5962 1.8048 1.3267 1.0227 0.8195 0.6778 0.5752 

1000 6.0975 3.9474 2.5967 1.8051 1.3269 1.0229 0.8197 0.6779 0.5753 

1500 6.0975 3.9474 2.5967 1.8051 1.3269 1.0229 0.8197 0.6779 0.5753 
Average % 

difference 5.9547 3.8825 2.5614 1.7829 1.3115 1.0112 0.8103 0.6701 0.5686 
Total 

Average % 

difference 

 

2.06 

 

4. CONCLUSION 

The result of this study as recorded in the percentage difference analysis showed that the 2-D refined plate theory (RPT) is only an 

approximate relation for buckling analysis of thick plate and when applied to the thick plate will under-predicts buckling loads as they  
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neglect the transverse normal stresses along the thickness axis of the plate. Thus, the polynomial and trigonometric displacement function 

developed in this study produces an exact solution as they emanated from a complete three-dimensional theory which is more reliable solution in 

the stability analysis of plates and, can be recommended for analysis of any type of rectangular plate subjected to such loading and boundary 

condition. 
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