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Abstract 

The use of imaging has usually be an essential aspect of scientific investigations and 

medical diagnoses. In the applications of imaging for the above stated investigations 

and diagnoses, achieving optimal resolution of the reconstructed images is of prime 

importance. In this study, the magnetic inverse problem was solved via Fourier 

transforms to reconstruct two-dimensional current mappings. The dimensions of the 

conducting sheet, upon which the current density is to be reconstructed, as well as 

the distance of the magnetic source to the conducting sheet were varied, and the 

corresponding images of the current density were reconstructed. The thickness of a 

conducting sheet determines the spatial current density distributions and image 

resolutions. The spatial resolutions of the reconstructed current density images were 

higher at nanometer and micrometer scale magnetic source distance to the 

conducting sheet, and blurred at a millimeter scale distance. 

 
1.0 Introduction 

Imaging is an essential aspect of scientific and medical investigations/diagnoses [1, 2]. Many applications of imaging 

techniques abounds, some of which are; optical microscopy, x-rays, ultrasound, magnetic resonance, among others. For 

instance, at micro and nano scales, Xing et al. [3] used scanning Hall probes to reconstruct current density mapping. 

Johansen et al. [4] adopted magnetoresistance probes technique for current density mapping reconstruction. Whereas, 

authors, such as, Schrag and Xiao [5] used magneto-optical methods for current density mapping. Baudenbacher et al. [2] 

and Holzer et al. [6] reconstructed high resolution images of currents in human cardiac tissue from biomgnetic fields. On 

the other hand, some authors have reconstructed good resolution images by a combined method of magnetoresistance and 

spin filters [7, 8, 9].  
 

Another prominent imaging technique that has found wide range applications in many areas of human endeavour is the 

Superconducting Quantum Interference Devices (SQUIDs) [1, 10]. For two-dimensional analyses, the formulation of the 

above named techniques is usually based on the fact that a current density map can be reconstructed from a single 

component of the magnetic field that is recorded in a plane at a fixed distance over the current sheet [11]. This process is 

known as the magnetic inversion technique. Lately, magnetic inversion technique is gaining widespread applications in 

nanotechnology [12, 13, 14]. 
 

In this study, the magnetic inverse problem was solved for two-dimensional current mappings by using Fourier transforms, 

with a view to determining the relationships between the distance where a magnetic field is measured and the impressed 

current density on a conducting plane, the size of the magnetometer pickup coil, and the spatial resolution of the images of 

the current density. Future capability of varying the above parameters for optimum image resolutions in magnetic inversion 

technique is principal for future breakthroughs in scientific and medical investigations. More so, with the emerging 

applications of magnetic inversion technique in virtually every sphere of human endeavours, ranging from, human brain 

and heart diagnostics, semiconductor physics and nanotechnology, airplane and nuclear plant testing, oil and natural 

minerals prospecting, and unraveling buried ordnances, among others, advances in imaging techniques will translate to a 

better-life for humanity.  
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2.0 Formulation of the Problem 

Figure 1 shows the formulation of the problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram of the point of observation of current density J(r) spatially distributed within a thin sheet, B of 

thickness d in the x-y plane. Magnetic field, B(r) is measured by a magnetometer over an x-y plane at a height z0 above the 

plane of observation A.  

 

The current density is assumed to be quasistatic; hence, its divergence vanishes. 

0 J       (1) 

In electrodynamics, current density and magnetic field are related by the Biot-Savart law, eq. (2); 
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where µ0 is the permeability of free space, 4π x 10-7 T.m/A.  

 

Since the axis of observation is z direction, the current density can be represented in two dimensions as J(x,y). According to 

Yuan [15], the z component of the magnetic field can be expressed as; 
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Convolution theorem for current density in two dimensions with Green’s function in ),( yx and  yx , domains can allow 

us to express eqs. (1) and (3) as;   
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where kx and ky are components of wave vector and jx, jy, and bz are the Fourier transform of Jx, Jy, and Bz.  

 

3.0 Numerical and Simulation Scheme 

The dimension of the current sheet in Figure 1 is assumed to be L x L (16 µm x 16 µm). The current sheet was partitioned 

into N (128) equal squares in both x and y directions, such that we have 128 x 128 elemental squares in total. For simplicity, 

N is chosen to be an even number. The area of each elemental square in real space can be written as; yx  , such that; 

Nyx 16 . In k-space, the dimension can be written as;  xNkk yx  2 . Following the method 

proposed by Roth et al. [11], and modified by Yuan [15], the one dimensional discrete form of the Fast Fourier 

Transformation (FFT) and inverse FFT (iFFT) are given by: 
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Defining,  

  xNnxn  21       (8) 

  kNmkm  21 .      (9) 

Summation sign can be used as an approximation of the integral of a Fourier transform; 
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Substituting eqs. (8) and (9) into eq. (10), we have;  
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where 2Nmm  . Following similar procedure, 
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Eqs. (11) and (12) and their corresponding counterparts in y-direction are then resolved numerically to determine the two-

dimensional current density from the associated magnetic field by using MATLAB programming. Jx(x,y) and Jy(x,y) are 

resolved to reconstruct the current density image J(x,y). 
 

4.0 Results and Discussion 

Figure 2 shows the original current density distributions on a square current sheet of area16 µm x 16 µm, at varying 

thickness; d =  0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 µm. In Figure 2a, the current sheet density was too low 0.5 µm, hence, there 

were basically no well-formed current density map. Figure 2b shows significantly enhanced amplitudes of current density, 

but blurred images. Whereas, in Figure 2(c & d), the amplitudes of current density were reasonably significant, and the 

images were most distinct, implying the best resolution of the images among all the panels of Figure 2. On the other hand, 

Figure (e & f), shows low amplitudes of current density, but sharp images. From Figure 2, it is clear that the thickness of a 

conducting plane is a major factor that determines its current density distribution and image resolution. 
 

Figure 3 shows the mapping of the magnetic field on a conducting plane of area16 µm x 16 µm, with the magnetic source at 

varying distances z0 from conducting plane;  z0=  100 nm, 100 µm, 100 mm. The results shows good resolution at 

micrometer and nanometer scales, while the images were blurred for the magnetic field at millimeter scale. Figure 4 is the 

current identity images reconstructed from the influence of magnetic fields located at varying distances z0 from conducting 

plane;  z0=  100 nm, 100 µm, 100 mm. It was observed, that the spatial resolutions of the reconstructed current density 

images were high, while the 100 mm magnetic source distance z0 from conducting plane yielded blurred images, and these 

images got blurrier and blurrier for z0 > 100 mm. Clearer images from any imaging technique imply reliable scientific 

interpretations of investigations and diagnoses, invariably proffering solutions to human problems [16, 17]. 
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Figure 2: Original current density distributions on a square current sheet of area16 µm x 16 µm, at varying thickness; d =  

0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 µm. 

 

  
 

 
Figure 3 shows the mapping of the magnetic field on a conducting plane of area16 µm x 16 µm, with the magnetic source at 

varying distances z0 from conducting plane;  z0=  100 nm, 100 µm, 100 mm. 

 \ 
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Figure 4: Spatial resolutions of reconstructed current identity images from magnetic fields located at varying distances z0 

from conducting plane;  z0=  100 nm, 100 µm, 100 mm. 

 

5.0 Conclusion 

This study solved the magnetic inverse problem via Fourier transforms, and reconstructed a two-dimensional current 

mapping. The thickness of a conducting sheet determines spatial current density distributions and image resolutions. The 

spatial resolutions of the reconstructed current density images were higher at nanometer and micrometer scale magnetic 

source distance to the conducting sheet, and blurred at a millimeter scale distance. Future capabilities that could easily vary 

the dimensions of a conducting sheet and the distance of the magnetic source plane to the conducting sheet are essential for 

optimum two dimensional current density image resolutions. This finding is expected to provide support for the 

improvement of the applications of imaging techniques in scientific investigations and medical diagnoses.  
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