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1. Introduction 
Semi-circle fuzzy regression analysis is an aspect of the convectional fuzzy regression originally developed 

by Tanaka, which can be used to model a relationship between the dependent and independent variable in a 

fuzzy environment. 

Fuzzy regression was first proposed by Tanaka, Uejima and Asai [14]. The concept of fuzzy regression has 

been applied to various aspect of science and engineering such as in [8] and [9] which deals with a multi-

objective and bridge regression approaches respectively. Regression analysis is a tool that evaluates the 

function relationship between the dependent and independent variable. 

Fuzzy regression analysis is an extension of the classical regression when the following condition(s) holds 

(the data set is small, there is difficulties verifying distribution assumption, vagueness in relationship between 

input and output variable, ambiguity and distortion introduced by linearization [5, 13] 

The three important types of fuzzy regression are the triangular, trapezoid and the semi-circle fuzzy 

regression. So many people have worked on different types of fuzzy regression such as fuzzy goal 

programming [3,15]. The conventional fuzzy regression is as defined in [11] below. 
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In this paper, we presented a structural, informative and theoretical 

computation of Area of the Semi-circle fuzzy regression via the triangular 

fuzzy regression method. The length and the midpoint of the inner 

triangular and outer triangular fuzzy regression were the required tool 

applied on the semi-circle fuzzy regression. The resultant regression for the 

area of semi-circle were obtained for two instances. 
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The aspect of the trapezoidal fuzzy regression, the distance of intuitionistic trapezoidal fuzzy 

number has been studied [2, 6, 7, 12, 16, 17]. 

On the part of the semi-circle fuzzy regression, the application of Half-circle fuzzy numbers and 

development under the influence of triangular fuzzy number has been proposed in [11]. A 

necessary shortcoming was ascertained in using triangular fuzzy regression to address the area of 

Semi-circle fuzzy regression. The above triangular fuzzy regression literature only addresses the 

issues of triangular fuzzy regression. Hence, this paper proposed the use of inner and outer 

triangular fuzzy regression in solving the problem of a Semi-circle fuzzy regression problem; 

using the area of the Semi-circle as an instant. 

The remaining content of this paper are summarized as follows: Section two discusses the 

formulation and methodology of the standard semi-circle fuzzy regression via the triangular 

fuzzy regression. Section three discusses the operation and mechanism of the proposed analytical 

approaches, which attempt to overcome the limitation above. 

2. The standard fuzzy regression model  

The model is define as: 

 �̃� =  �̃�0 + �̃�𝑥1 + ⋯ +  �̃�𝑛𝑥𝑛       (1) 

Or �̃� =  �̃�𝑥1 ⊕ … ⨁  �̃�𝑛𝑥𝑛 

where  �̃� is the fuzzy output, �̃�𝑗 = 1, 2, …, n is a fuzzy coefficient, x = (x1, …, xn) is an n-

dimensional non – fuzzy input vector. The fuzzy component can assume triangular, trapezoidal, 

semi-circle etc. However, we are interested in the semi-circle fuzzy numbers. 

The model equation have the parameter �̃�1 with membership function as shown below  

 𝜇𝐴(𝑥) =  {√1 − (𝑥 − ℎ)2,   ℎ − 1 ≤ 𝑥 ≤ ℎ + 1

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 [11]    (2) 

The membership function of the semi-circle fuzzy as represented below in Figure 1 

 

 

 

 

 

 

 

 

 

Figure 1: Polar representation of membership function of semi-circle fuzzy number. 
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Given Semi-circle parameter �̃�𝑗 with membership as in (1). Let it the semi-circle linear function   

 �̃� =  �̃�𝑥1 ⊕ +�̃�2𝑥2 ⊕ … ⨁  … ⊕ �̃�𝑛𝑥𝑛  

be obtained as follows:    

 ℎ =  ∑ ℎ𝑗𝑥𝑗
𝑛
𝑚𝑜𝑑𝑒 ,   ℎ − 1 =  ∑ 𝑎𝑗𝑥𝑗

𝑛
𝑗=1 ,   ℎ + 1 =  ∑ 𝑏𝑗𝑥𝑗

𝑛
𝑗=1 .  

It can be deduced from [1] that: 

Example (1): 

If a semi-circle fuzzy number �̃� = (ℎ − 1, ℎ, ℎ + 1), then  

 𝐴′ ⊗ 𝑥 = [(ℎ − 1)𝑥, ℎ𝑥, (ℎ + 1)𝑥] = (ℎ𝑥 − 𝑥, ℎ𝑥, ℎ𝑥 + 𝑥)    (4) 

Example (2): 

If  

 �̃� = (ℎ − 1, ℎ, ℎ + 1) and �̃� = (𝑔 − 1, 𝑔, 𝑔 + 1) then 

�̃� =  �̃�⨁�̃� = (ℎ + 𝑔 − 2,     ℎ + 𝑔, ℎ + 𝑔 + 2). 

The two examples above show that the membership function for a semi-circle fuzzy linear 

function exists. However, from (3) we can deduce the membership function of the semi-circle 

fuzzy linear regression 𝑌∗ =  𝛽1
∗𝑥1  ⊕  𝛽1

∗𝑥2 ⊕ … ⊕  𝛽𝑛
∗𝑥𝑛 given as: 

 𝜇𝑦∗(𝑦) =  {
1 ± √1 − (𝑦 − ∑ 𝛼𝑗𝑥𝑖),   𝑐1 ≤ 𝑦 ≤ 𝑐3,  𝑐3 ≤ 𝑦 ≤ 𝑐2

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
   (6) 

where  

𝑏𝑗 =  𝑑𝑗 , 𝑎𝑗 =  𝑏𝑗 − 𝑙𝑗 , 𝑐𝑗 =  𝑏𝑗 +  𝑙𝑗 

𝑐1 =  ∑(𝛼𝑗 − 𝑙𝑗),

𝑛

𝑗=1

𝑐2 =  ∑(𝛼𝑗 + 𝑙𝑗)𝑥𝑗 ,

𝑛

𝑗=1

𝑐3 =  ∑ 𝛼𝑗𝑥𝑗

𝑛

𝑗=1

 

The output y membership function can be written as: 

𝜇𝑦∗(𝑦) =  {1 ± √1 − (𝑦 − 𝑑),   𝑚 − 𝑑 ≤ 𝑦 ≤ 𝑚

0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

where m = center(mode) and d= spread. 

On the other hand, the polar coordinate used to develop the circle function is semi-circle fuzzy 

number given as: 

𝑓(𝑟, 𝜃): 𝑟2 +  𝑟0
2 − 2𝑟0𝑟𝑐𝑜𝑠(𝜃 − 𝜃0) =  𝑎2, 𝑎𝜖ℛ      (8) 

where: 

(𝑟𝜃0, 𝜃𝜃0)  
is the center of the circle such that its membership function is given as: 
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𝜇(𝑟, 𝜃) =  {
𝑟2 +  𝑟0

2 − 2𝑟0𝑟𝑐𝑜𝑠(𝜃 − 𝜃0) − 1 ,    𝑟0 − 1 ≤ 𝑟0  ≤  𝑟0 + 1
  0,                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  (9) 

The degree of fitness for given data set Y = (m) is defined in ℎ̃ and vagueness in  

𝑉 =  ∑ (𝑚 − 𝑑)𝑖 =  ∑ 𝑙𝑗
𝑛
𝑗−1

𝑛
𝑗=1 . 

To obtain Semi-circle parameter 𝐴∗ which minimizes V subject to ℎ̃ > 𝐻 ⋁ 𝑑𝑎𝑡𝑎 in  

y = (m, d) 

where H = degree of the Semi-circle linear model by decision maker. 

Thus,  

𝑀𝑖𝑛 𝑉 =  𝑙1 + 𝑙2 + ⋯ +  𝑙𝑛 
Subject to 

∑ 𝛼𝑗𝑥 + (1 − 𝐻) ∑ 𝑙𝑗𝑥 ≥ 𝑚 + (1 − 𝐻)𝑑,   𝑚 ≤ 𝑐 + 1 

− ∑ 𝛼𝑗𝑥𝑗 + (1 − 𝐻) ∑ 𝑙𝑗𝑥𝑗  ≥ −𝑚 + (1 − 𝐻)𝑑,   𝑚 ≥ 𝑐 + 1 

𝑙𝑗 ≥ 0 𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝑛 

𝑑 ≥ 0. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Degree of fitting y* to s given semi-circle fuzzy data y. 
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Figure 3: Membership function of a half-circle fuzzy number 

 

 

 

 

 

 

 

 

 

Figure 4: Membership function of inner triangular fuzzy number 

 

 

 

 

 

 

 

 

Figure 5: Membership function of outer triangular fuzzy number 
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Figure 6: Fuzzy representation for triangular and Semi-circle number 

Key: 

= Semi- circle 

= = Inner triangle  

__ = Outer triangle 

µA(x)  = Membership function 

3. The concept of Semi-circle fuzzy number 

The square of membership function of the half circle number is defined in terms of Pythagorean 

identity as: 

1 =  𝜇𝐴
2(𝑥) + (𝑥 − 𝑠)2       (11) 

where: 

𝜇𝐴
2 = (0, 1) and 𝑥𝜖(𝑠1 − 1, 𝑠1 + 1)  

Thus, we can always find two natural numbers such that the gcd[(𝑥 − 𝑠)1, (𝑥 − 𝑠)2] = 1  

where:  

𝑐 =  (𝑥 − 𝑠)2
2 − (𝑥 − 𝑠)1

2, 𝑆 = 2(𝑥 − 𝑠)1(𝑥 − 𝑠)2  and  

𝑎 =  (𝑥 − 𝑠)2
2 + (𝑥 − 𝑠)1

2  such that (𝑥 − 𝑠)2 > (𝑥 − 𝑠)1 > 0 

In term of polar coordinates, we have: 

𝑓(𝑟, 𝜃): (𝑥 − 𝑠)1
2 + (𝑥 − 𝑠)2

2 −  2(𝑥 − 𝑠)1(𝑥 − 𝑠)2 𝑐𝑜𝑠(𝜃2 − 𝜃1) = 𝑎 (12) 

which clearly follows the term in [1] 
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The properties of the Semi-circle fuzzy number is exactly the same as that of the properties of 

triangular fuzzy number, Hence, 

(𝑐, 𝑠, 𝑎) ≢ [ 𝜇𝐴(𝑥)𝑐, 𝜇𝐴(𝑥)𝑗, 𝜇𝐴(𝑥)𝑎]   

are both Pythagorean fuzzy number. 

The issue of a common divisor can be shown. Hence, we have it that all Pythagorean Semi-circle 

fuzzy number are multiple of other cases. 

To determine the area of Semi-circle fuzzy regression using at least two triangular fuzzy 

regressions. We use Figures 3, 4 and 5. 

Figure 6 is obtained by merging Figures 3 -5 together. 

To obtain the area of the semi-circle in Figure 3, we impose, figure 3, figure 4 and figure 5 to 

obtain figure 6. 

Note that the area of ΔABC =  ΔBCF, since we are working on symmetric triangle and symmetric 

semi-circle fuzzy regression. 

Therefore, using the basic ideas of [4, 11], we have 

ΔABC = ½ the area of the semi-circle 

 

Area of   = ½ the area of  

 

 

Hence, the area of Figure (3) logically can be define as area of the non-symmetric triangular 

fuzzy regression ΔABF =  ΔADB since they are equal. 

The area of Figure (3) can also be defined with respect to symmetric triangular fuzzy regression 

with the following steps: 

i. Calculate the area of ΔABD 

ii. Calculate the area of ΔABC 

iii. Compute the area of Figure (3) = ΔABD +  ΔABC 

Next, having obtained the area of the half circle i.e. Area of figure, every other analysis such as 

fuzzy least square, sum of squares and the distance still follows the conventional method [4,13] 

4. Conclusion 

Triangular fuzzy regression are often used by researchers because, the calculations are simple 

and easy. Hence, in this study, we obtained a standard method of calculating the area of Semi-

circle fuzzy regression using the idea of the conventional triangular fuzzy regression method. In 

addition, the other statistical component such as sum of squares, fuzzy least squares and distance 

measure also follow. Finally, we were able to get more information about the Semi-circle fuzzy 

regression. 
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