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1.1 Introduction 

Every day, malaria is becoming an alarming issue as it poses a very serious public health challenge. Malaria is 

a disease caused by the protozoan parasite of the genus Plasmodium. Pregnant mothers, infants and immune-

compromised individuals are at high risk to the disease. The causative species are Plasmodium falciparum, P. 

Vivax, P. Ovale, P. Malariae and P. Knowlesi. 

Malaria contributes significantly to maternal and fetal morbidity and mortality in affected areas especially, in the 

tropics and subtropics. Areas of high transmission are in developing countries with lots of stagnant water, which 

form a breeding site for the disease vector such as the anopheles mosquito. Malaria burden has been quite alarming 

as reported in [1], and there was an estimated 241million cases and 627000 death in 2020 [2]. Plasmodium 

falciparum is pre-dominant among other species and it is the most serious and difficult form of the disease and can 

be very fetal in the absence of recognition and medication. Plasmodium falciparum is the most common cause of 

infection in Africa and southeast Asia, and it is responsible for 80% of all malaria cases and 90% of death caused  
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Here we model the transmission dynamics of malaria in the presence of mosquito 

trap. The model based on some relevant assumptions, is a simple system of five 

ordinary differential equations, devoid of the exposed classes of both human and 

mosquito populations and including a compartment of trapped mosquitoes. We 

analyze the system considering its mathematical and biological relevance by 

considering its positivity, existence and uniqueness conditions. The basic 

reproduction, 𝑅0, was derived and a simple sensitivity analysis was carried out to 

determine the most sensitive parameter. The results reveal the ‘Trap effectiveness’ 

as the most important parameter. We carried out numerical simulations using 

MATLAB ode45 Routine Solver and both analytical and numerical results affirm 

the local and global stability of the disease free equilibrium point based on the 

threshold parameter, 𝑅0, showing stability for 𝑅0 < 1  and instability for 𝑅0 > 1.  
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[3]. The pattern of infection may change due to climatic factors which may cause a drift from lower latitude to 

regions where population have not developed immunity to the disease. 
Malaria has huge financial effect on the global economy as can be found in an estimate accounting both for 

government and out of pocket spending – amounting to $4.3 billion (95% of UI 4.1-4.4) in 2016, representing 8.6% 

(95% UI 8.1-8.9) yearly increase over malaria spending in 2000 [4].  

Poor people mostly suffer from the disease due to financial instability, which deprives them from gaining access to 

medical care or preventive measures for combating the disease. This results in more malaria deaths being prevalent 

at home. 

Asymptomatic malaria poses a lot of dangers to malaria transmission. Resistance of parasite to anti-malaria agent 

continue to be a threat to controlling and elimination efforts globally [5]. The anopheles is the most wide spread in 

Africa and the most difficult to control [6]. Malaria is very endemic in Nigeria with a very high population at risk 

with estimated 68 million cases and 194,000 deaths due the disease in 2021 and accounts for about 27% of the word 

malaria burden [7].  Nigeria suffers the world's greatest malaria burden, with approximately 51 million cases and 

207,000 death reported annually, being approximately 30% of the total malaria burden in Africa [8]. According to 

the federal ministry of health (2012), the financial loss due to malaria annually is estimated as 132 billion naira in 

form of treatment cost, prevention, etc. In recent decades, both governmental and non-governmental organizations 

have been established to wage the fight against malaria in Africa and beyond. This has led to the improvement in 

methods used to monitor, control, prevent, evaluate and even manage malaria in endemic areas. These are focused 

on research and information, education and communication [9]. 

There is high level of mosquito abundance especially in the tropical regions of the world. Areas with stagnant water 

are breeding sites for mosquitos. Mosquitoes prefer to stay indoors at night where the temperature is warm to feed 

on human hosts. The inherent high growth rate of the population of mosquitoes has serious implication in malaria 

transmission. Most times malaria cases are resistant to some chemotherapeutic drugs which constitute threat to life 

and loss of scarce resources that could be put into alternative use. Since Ronald Rose’s idea of reducing the 

population of mosquitoes below a threshold value emerged, a lot of efforts and strategies have been employed at 

various times to reduce the population of mosquitoes and also to reduce the contact between mosquitoes and 

humans. 

Here we propose a simple deterministic model represented by a system of differential equations that describes the 

transmission dynamics of malaria in humans and vector (mosquito) populations incorporating a trapping system of 

mosquitoes with the intent of reducing the infection rate of humans and mosquitoes. Section 1 entails a brief 

introduction, whereas the formulation of the model is given in section 2. The model analysis is presented in section 

3, followed by the numerical simulation in section 4. The paper was rounded up in section 5 with a brief discussion 

and conclusion.  

 

2.1. The Formulation of the Model 

We divide the human population into compartments of susceptible and infectious humans. Whereas the mosquito 

population is divided into the susceptible, infectious and trapped mosquitoes. State variables in the model are given 

in Table 1 and the movement between compartments is summarized in figure 1, the individual pathways to be 

discussed below. 
 

Table 1: The state variables in the model 

              State variables                              Description 

                      𝑆ℎ                                                        Susceptible humans 

                      𝑆𝑚                                    Susceptible mosquitoes 

                      𝐼ℎ                                      Infectious humans 

                      𝐼𝑚                                     Infectious mosquitoes 

                      𝑇𝑚                                    Trapped mosquitoes 

                      𝑁ℎ                                    Total humans 

                      𝑁𝑚                                   Total mosquitoes 
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The entire human population is described by the equation defined as 

 𝑁ℎ = 𝑆ℎ + 𝐼ℎ   
While the mosquito population is describe by 

𝑁𝑚 = 𝑆𝑚 + 𝐼𝑚 + 𝑇𝑚  

Susceptible humans get infected at a rate βℎ𝑆ℎ
𝐼𝑚

𝑁𝑚
 , where βh is the probability that susceptible humans get 

infected after being bitten by an infectious mosquito. Susceptible humans die naturally at a rate μℎ𝑆ℎ. 

Infected humans die naturally at a rate αℎ𝐼ℎ and naturally at a rate μℎ𝐼ℎ. 

Susceptible mosquitoes get infection after blood meal from infectious humans at a rate β𝑚𝑆𝑚
𝐼ℎ

𝑁ℎ
  where 

β𝑚 is the probability that a susceptible mosquito gets infected after biting an infectious human. 

Susceptible mosquitoes are caught in the trap at a rate η𝑆𝑚 and die naturally at a rate  μ𝑚𝑆𝑚.  
Infectious mosquitoes are caught in the trap at a rate, η𝐼𝑚, while some die due to the disease at a rate α𝑚 

and naturally, at a rate  μ𝑚𝐼𝑚. Here, we have assumed the same trap attraction rate constant, η, for both 

susceptible and infectious mosquitoes, which appears to be quite reasonable since we are not considering 

transmission probability but the ability of the trap to attract mosquitoes due to its biochemical 

components. All trapped mosquitoes from both susceptible and infectious mosquito compartments are 
recruited into the trap compartment, where, every trapped mosquito is expected to be removed or die 
naturally at a rate μ𝑚𝑇𝑚  
From fig 1 and with the above assumptions lead to the following system of equations. 
𝑑𝑆ℎ

𝑑𝑡
= λℎ𝑁ℎ − βℎ𝑆ℎ

𝐼𝑚

𝑁𝑚
− μℎ𝑆ℎ                           (1)                            

𝑑𝐼ℎ

𝑑𝑡
= βℎ𝑆ℎ

𝐼𝑚

𝑁𝑚
− αℎ𝐼ℎ − μℎ𝐼ℎ                 (2) 

𝑑𝑆𝑚

𝑑𝑡
= λ𝑚𝑁𝑚 − β𝑚𝑆𝑚

𝐼ℎ

𝑁ℎ
− η1𝑆𝑚 − μ𝑚𝑆𝑚                                                             (3) 
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𝑑𝐼𝑚

𝑑𝑡
= β𝑚𝑆𝑚

𝐼ℎ

𝑁ℎ
− η1𝐼𝑚 − α𝑚𝐼𝑚 − μ𝑚𝐼𝑚                           (4) 

𝑑𝑇𝑚

𝑑𝑡
= η1(𝑆𝑚 + 𝐼𝑚) − μ𝑚𝑇𝑚                                             (5) 

𝑑𝑁ℎ

𝑑𝑡
= λℎ𝑁ℎ − αℎ𝐼ℎ − μℎ𝑁ℎ                                          (6) 

𝑑𝑁𝑚

𝑑𝑡
= λ𝑚𝑁𝑚 − α𝑚𝐼𝑚 − μ𝑚𝑁𝑚                                                      (7) 

Where     𝑁ℎ = 𝑆ℎ + 𝐼ℎ  ;    𝑁ℎ = 𝑆ℎ + 𝐼ℎ + 𝑇𝑚  

and (6) is derived from adding (1), (2) and (3) while (7) is derived from adding (3) – (4). The system is to 

be solved subject to the following initial conditions:  

  𝑁ℎ(0) =  𝑁ℎ0
,  𝑁𝑚(0) = 𝑁𝑚0

,  𝑆ℎ(0) =  𝑆ℎ0
,  𝐼ℎ(0) =  0,  𝑆𝑚(0) =  𝑆𝑚0

,  𝐼𝑚(0) 

 = 𝑁𝑚0
− 𝑆𝑚0

,  𝑇𝑚(0) =  0 

2.2. Parameter values 

All parameters for the construction of the model are listed in table 3.1 together with values taken from 

various sources. However assumptions are made on some other parameters that do not seem to have well 

defined values.  
 

Table 2: Model parameters and their dimensions. Values marked with (*) are      assumed values and the rest are 

obtained from data 

 

2.3 Nondimensionalisation 

Is will be convenient to re-express the compartments values as a population fractions since the total 

population is the sum of the relevant compartments for both populations. 

Using the population fraction 
𝑆ℎ

𝑁ℎ
= �̂�ℎ     ⇒    𝑆ℎ = �̂�ℎ𝑁ℎ ,         

𝐼ℎ

𝑁ℎ
= 𝐼ℎ  ⇒    𝐼ℎ = 𝐼ℎ𝑁ℎ                  

𝑆𝑚

𝑁𝑚
= �̂�𝑚  ⇒ 𝑆𝑚 = �̂�𝑚𝑁𝑚 ,

𝐼𝑚

𝑁𝑚
= 𝐼𝑚  ⇒  𝐼𝑚 = 𝐼𝑚𝑁𝑚 ,

𝑇𝑚

𝑁𝑚
= �̂�𝑚 ⇒   𝑇𝑚 = �̂�𝑚𝑁𝑚        

𝑡

𝑡𝑜
= �̂�                 ⇒          𝑡 = 𝑡𝑜 �̂�      

So that  

 �̂�ℎ + 𝐼ℎ = 1   and   �̂�𝑚 + 𝐼𝑚 + �̂�𝑚 = 1 

The effectiveness of the trap is targeted at controlling the population of mosquitoes, therefore we scale 

time with the mosquito birth parameter   λ𝑚 , and write 

𝑡 =
�̂�

λ𝑚
 

Parameters              Description                                          Values               Units                   Source 

 μℎ          Natural death rate of humans                                       0.0000548           Day-1                    [8] 

    λℎ         Birth rate of humans                                                0.000104               Day-1                     [9] 

   λ𝑚        Birth rate of mosquitoes                                              0.4216*                Day-1                  varied 

   αℎ          Disease related death rate of humans                           0.01244*                Day-1                varied 

   α𝑚        Disease related death rate of mosquitoes                            0.0279*             Day-1                varied 

 βℎ,   The probability that a bite by an infectious mosquito-  

          infects a susceptible human                                                        0.086                     Day-1
                       [9] 

 μ𝑚        Natural death rate of mosquitoes                                          0.125            Day-1                   [9] 

  η1          Trap rate of mosquitoes                                               0.8276*                Day-1                varied 

  β𝑚    The probability that a bite by an infectious mosquito- 

                   infects a susceptible human                                  0.320              Day-1                [10] 
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Assuming that 𝑁ℎ,𝑜 and 𝑁𝑚,𝑜 are the initial population of humans and mosquitoes, we write  

   𝑁ℎ = �̂�ℎ𝑁ℎ0
 and  𝑁𝑚 = �̂�𝑚𝑁𝑚0

 

By defining the following non-dimensional parameters:  

      𝑎 =
λℎ

λ𝑚
, 𝑐 =

μℎ

λ𝑚
 , 𝑔 =

μ𝑚

λ𝑚
 , 𝑏 =

βℎ

λ𝑚
 , 𝑓 =

β𝑚

λ𝑚
 , 𝑞 =

αℎ

λ𝑚
, ℎ =

α𝑚

λ𝑚
 , η =

η1

λ𝑚
 

And by substituting these new parameters into (2.1) - (2.7) and dropping the hats for clarification we get  
𝑑𝑆ℎ

𝑑𝑡
= 𝑎(1 − 𝑆ℎ) − 𝑏𝑆ℎ𝐼𝑚 + 𝑞𝑆ℎ𝐼ℎ                                   (8) 

𝑑𝐼ℎ

𝑑𝑡
= 𝑏𝑆ℎ𝐼𝑚 − (𝑞 + 𝑎)𝐼ℎ + 𝑞𝐼ℎ

2                   (9) 
𝑑𝑆𝑚

𝑑�̂�
= 1 − (1 + η)𝑆𝑚 − 𝑓𝑆𝑚𝐼ℎ + ℎ𝑆𝑚𝐼𝑚                 (10) 

𝑑𝐼𝑚

𝑑�̂�
= 𝑓𝑆𝑚𝐼ℎ − (1 + η + ℎ)𝐼𝑚 + ℎ𝐼𝑚 2                            (11) 

𝑑𝑇𝑚

𝑑𝑡
= η(𝑆𝑚 + 𝐼𝑚) − 𝑇𝑚 + ℎ𝐼𝑚𝑇𝑚                   (12) 

𝑑𝑁ℎ

𝑑𝑡
= [𝑎 − 𝑞𝐼ℎ − 𝑐]𝑁ℎ                                                  (13)                      

𝑑𝑁𝑚

𝑑𝑡
= [1 − ℎ𝐼𝑚 − 𝑔]𝑁𝑚                    (14) 

Subject to the initial conditions 

 𝑁ℎ(0) =  𝑁𝑚(0) =   𝑆ℎ(0) =  1,  𝐼ℎ(0) =  𝑇𝑚(0) =   0,  𝑆𝑚(0) =  1,  𝐼𝑚(0) = 1 −  𝑆𝑚(0). 
  

3. Model Analysis 

3.1. Establishing the disease free equilibrium point  

We look at the disease free equilibrium of the model. The infection becomes stable at the space of point 

given as 

𝐸0 = {(𝑆ℎ
∗ , 𝐼ℎ

∗ , 𝑆𝑚
∗ , 𝐼𝑚

∗ , 𝑇𝑚
∗ )ε ℝ5: 𝑆ℎ

∗ , 𝐼ℎ
∗ , 𝑆𝑚

∗ , 𝐼𝑚
∗ , 𝑇𝑚

∗  ε ℝ1 𝑎𝑛𝑑 0 ≤ 𝑆ℎ
∗ ≤ 1, 0 ≤ 𝐼ℎ

∗ ≤ 1,0 ≤ 𝑆𝑚
∗ ≤ 1,0 ≤ 𝐼𝑚

∗

≤ 1,0 ≤ 𝑇𝑚
∗ ≤ 1} 

And 𝑆ℎ
∗ , 𝐼ℎ

∗ , 𝑆𝑚
∗ , 𝐼𝑚

∗ , 𝑇𝑚
∗   are obtained when in the model    

 
𝑑𝑆ℎ

𝑑𝑡
=

𝑑𝐼ℎ
𝑑𝑡

=
𝑑𝑆𝑚

𝑑𝑡
=

𝑑𝐼𝑚
𝑑𝑡

=
𝑑𝑇𝑚

𝑑𝑡
=

𝑑𝑁ℎ

𝑑𝑡
= 𝐼ℎ = 𝐼𝑚 = 0 

Substituting the above conditions into (8) - (14) and solving we obtain the disease free equilibrium point; 

𝐸0 = {(1, 0,
1

(1+η)
, 0,

η

(1+η)
) ε ℝ5: 𝑆ℎ

∗ , 𝐼ℎ
∗, 𝑆𝑚

∗ , 𝐼𝑚
∗ , 𝑇𝑚

∗  ε ℝ1 𝑎𝑛𝑑 0 ≤ 𝑆ℎ
∗ ≤ 1, 0 ≤ 𝐼ℎ

∗ ≤ 1,0 ≤ 𝑆𝑚
∗ ≤ 1,0 ≤

𝐼𝑚
∗ ≤ 1,0 ≤ 𝑇𝑚

∗ ≤ 1}  

3.2. Basic Reproduction Number R0 

The basic reproduction number, denoted by R0 is the number of secondary infectious cases that would 

arise from the introduction of a single primary case into a fully susceptible human population [9]. The 

method of the next generation matrix in [9] in determining the basic reproduction is used to find R0. The 

linearized system is investigated and expressed in the form. 

                𝑋′ = 𝐹𝑋 − 𝑉𝑋,                           (15) 

Where  

𝑋′ =
𝑑𝑋

𝑑𝑡
,   𝑋 =  [

𝐼ℎ
𝐼𝑚

],  𝐹 = [
0 𝑏
𝑓

1+η
0] , 𝑉 = [

(𝑞 + 𝑎) 0

0 (1 + η + ℎ)
]                                     (16) 

 

Here, F represents the immergence of new infection, V is the transition of infection between 

compartments and X is the reservoir of infection. This method assumes a non-negative matrix 𝐺 = 𝐹𝑉−1 

that guarantees a unique, positive real Eigen-value strictly greater than all others. Further expansion leads 

to  
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𝐺 =
1

(𝑞+𝑎)(1+η+ℎ)
[

0 𝑏(𝑞 + 𝑎)
𝑓(1+η+ℎ)

1+η
0

]                       (18) 

Hence the characteristic equation of (18) in terms of the largest eigenvalue λ is given as  
𝑏𝑓

(1+η)(𝑞+𝑎)(1+η+ℎ)
 

.  

Thus the basic reproduction number is expressed as  

                      𝑅0 =
𝑏𝑓

(1+η)(𝑞+𝑎)(1+η+ℎ)
                                                                                    (19)    

 

3.3. Positivity, Existence and Uniqueness of Solution 

We consider the situation in which the solution is positive, exists and unique i.e., test for positivity, 

existence and uniqueness for the solution to the model.  

The model is described in the domain  

Ф =  {(𝑆ℎ, 𝐼ℎ, 𝑆𝑚, 𝐼𝑚, 𝑇𝑚, 𝑁ℎ, 𝑁𝑚) ε ℝ7: 𝑆ℎ, 𝐼ℎ, 𝑆𝑚, 𝐼𝑚, 𝑇𝑚  ≥ 0  𝑎𝑛𝑑 𝑁ℎ, 𝑁𝑚 > 0, 𝑆ℎ + 𝐼ℎ = 1,
𝑆𝑚 + 𝐼𝑚 + 𝑇𝑚 = 1  }   
Suppose that at point t = 0 all variables become non-negative, then 𝑆ℎ(0) + 𝐼ℎ(0) = 1 and   𝑆𝑚(0) +

𝐼𝑚(0) + 𝑇𝑚(0) = 1. If   𝑆ℎ = 0, all other variables are in   Ф, then 
𝑑𝑆ℎ

𝑑𝑡
 ≥ 0. This remains the case for 

every other variable in (9)- (12). Note that from (9) and (12), 𝐼ℎ = 𝐼𝑚 = 0 implies that 
𝑑𝐼ℎ

𝑑𝑡
=

𝑑𝐼𝑚

𝑑𝑡
= 0  

meaning,  𝐼ℎ = 𝐼𝑚 = 0 at all times and there will be no disease transmission in the absence of the disease. 

If   𝑁ℎ = 0 =  𝑁𝑚, then  
𝑑𝑁ℎ

𝑑𝑡
= 0 =

𝑑𝑁𝑚

𝑑𝑡
 . But if 𝑁ℎ, 𝑁𝑚 > 0 and assuming a > c and g < 1, then with 

appropriate initial conditions, 
𝑑𝐼ℎ

𝑑𝑡
,
𝑑𝐼𝑚

𝑑𝑡
> 0 for all values of t > 0. Noting that the right-hand side of (8) - 

(14) is continuous with continuous partial derivatives, so solutions exist and are unique. The model is 

therefore mathematically and biologically well posed with solutions in Ф for all   t ε [0,∞). 

3.4. Stability Analysis 

Here, we investigate the local stability of the disease free equilibrium state [10]. It has been shown in the 

model that the disease free equilibrium point is 𝐸0 = (𝑆ℎ, 𝐼ℎ, 𝑆𝑚, 𝐼𝑚, 𝑇𝑚) = (1, 0,
1

1+η
, 0,

η

1+η
). The 

Jacobian matrix is obtained by linearizing the system (8)- (14) about the disease free equilibrium point.  

𝐽(𝐸0) =

[
 
 
 
 
 
 
−𝑎           𝑞                   0                −𝑏             0
0         −(𝑞 + 𝑎)          0                   𝑏               0

0           
−𝑓

1+η
      −(1 + η)           

ℎ

1+η
              0

0             
𝑓

1+η
             0          −(1 + η + h) 0

0                 0           η         (η +
hη

1+η
)     −1 ]

 
 
 
 
 
 

                       (20) 

 

Lemma 3.1 The disease free equilibrium is locally asymptotically stable if 𝑅0 < 1 and unstable if  𝑅0 > 1. 

Proof:  

The characteristic polynomial of (20) with eigenvalue (κ) is 
(κ + 𝑎)(κ + 1 + η)(κ + 1)[κ2 + 𝐵1κ + 𝐵2] = 0                                               (21) 

Where 𝐵1 = 1 + η + h + 𝑞 + 𝑎  and   𝐵2 = (𝑞 + 𝑎)(1 + η + h)(1 − 𝑅0) 

We observe that the linear factorization in (21) yields negative real eigenvalue but no such deduction can 

immediately be made from the quadratic equation. It follows from the Routh-Hurwitz criterion [12] that  

𝐵1, 𝐵2  is a necessary and sufficient condition that all the eigenvalues of the characteristic equation have negative 

real parts. This proves part of Lemma 3.1, which says that the disease free equilibrium is locally 

asymptomatically stable if R0 < 1. But if  𝑅0 > 1, then the quadratic equation in (21) will have atleast one 
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sign change, in which case the disease free equilibrium is will be locally unstable. We note that the point 

R0 = 1 is a bifurcation point in the parameter space. 

Lemma 3.2 

The disease-free equilibrium point of the model equations is globally asymptotically stable if  𝑅0 <1 and 

in addition, if 𝐻1and 𝐻2 holds. 

Proof  

We show that: 

(𝐻1) For 
𝑑𝐴

𝑑𝑡
= 𝐹(𝐴, 0) and 

(𝐻2)  �̂�(𝐴, 𝐵) = 𝑄𝐵 − 𝐺(𝐴, 𝐵) ≥ 0∀(𝐴, 𝐵) ∈ 𝐸0  holds as used in [12, 13, 14 ] 

The model equations can be expressed as follows:  

𝑑𝐴

𝑑𝑡
= 𝐹(𝐴, 𝐵) = [

𝜆(1 − 𝑈) − 𝛽𝐷𝑈𝑋 + 𝛼𝑈𝑉

𝑎(1 − 𝑊) − 𝑉𝑊 + 𝐵𝑊𝑋

𝜃VW − aY + 𝑏𝑋𝑌

] 

𝑑𝐵

𝑑𝑡
= 𝐺(𝐴, 𝐵) = [

𝛽𝑈𝑋 − (𝛼 + 𝜆)𝑉 + 𝛼𝑉2

(1 − 𝜃)𝑉 − (𝑎 + 𝑏)𝑋 + 𝑏𝑋2] 

Where 𝐴 = (𝑈,𝑊, 𝑌) and  𝐵 = (𝑉, 𝑋),with the components of 𝐴 ∈ 𝑅3 which represent the non-infectious 

class, and the components of 𝐵 ∈ 𝑅2, which represent the infectious class. 

Now, the equilibrium point of the model (𝑈,𝑊, 𝑋, 𝑌, 𝑉) = (1,1,0,0,0). 

𝐹(𝐴, 0) = [
𝜆(1 − 𝑈)

𝑎(1 − 𝑊)
0

]                 (22) 

From (1);  
𝑑𝑈

𝑑𝑡
=  𝜆(1 − 𝑈) 

𝑑𝑈

𝑑𝑡
+ 𝜆𝑈 =  𝜆                       (23) 

Solving (23) using the principle of integrating factor, we have; 

𝑈(𝑡) = 1 + 𝑐𝑒−𝜆𝑡 

As 𝑡 → ∞,   𝑈(𝑡) = 1   

Similarly, 𝑊(𝑡) = 1, 𝑎𝑠 𝑡 → ∞. 

Hence, 𝐻1 holds.  
𝑑𝐵

𝑑𝑡
= 𝐺(𝐴, 𝐵) = [

𝛽𝑈𝑋 − (𝛼 + 𝜆)𝑉 + 𝛼𝑉2

(1 − 𝜃)𝑉𝑊 − (𝑎 + 𝑏)𝑋 + 𝑏𝑋2] 

𝑄 = [
−(𝛼 + 𝜆) 𝛽𝑈
(1 − 𝜃)𝑊 −(𝑎 + 𝑏)

] 

𝑄𝐵 = [
−(𝛼 + 𝜆) 𝛽𝑈
(1 − 𝜃)𝑊 −(𝑎 + 𝑏)

] [
𝑉
𝑋
] 

= [
𝛽𝑈𝑋 − (𝛼 + 𝜆)𝑉

(1 − 𝜃)𝑉𝑊 − (𝑎 + 𝑏)𝑋
] 

�̂�(𝑋, 𝑌) = 𝑄𝐵 − 𝐺(𝐴, 𝐵) 

= [
𝛽𝑈𝑋 − (𝛼 + 𝜆)𝑉

(1 − 𝜃)𝑉𝑊 − (𝑎 + 𝑏)𝑋
]-[

𝛽𝑈𝑋 − (𝛼 + 𝜆)𝑉 + 𝛼𝑉2

(1 − 𝜃)𝑉𝑊 − (𝑎 + 𝑏)𝑋 + 𝑏𝑋2] 

∴ �̂�(𝑋, 𝑌) = [−𝛼𝑉2

−𝑏𝑋2] 

→ �̂�(𝐴, 𝐵) ≥ 0 ∀(𝐴, 𝐵) ∈ 𝐸0 𝑖𝑓𝑓 𝛼 = 𝑏 = 0 

Thus, 𝐻2  holds. 
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Hence, the equilibrium point is globally asymptotically stable. 

 

3.5 Sensitivity Analysis 

It is important to know the different parameters (factors) in the basic reproduction number that are 

responsible for the transmission of the disease, that is, we want to know the effect of the parameters on the 

dependent variable. Here we calculate the sensitivity index of each of the parameters in the model. The 

sensitivity index shows how effective each parameter is to disease transmission. According to Shah et. al 

[15], the normalized forward sensitivity index of a variable, u, which depends continuously on a 

parameter, p, is defined as 

𝛾𝑝
𝑢 =

𝜕𝑢

𝜕𝑝
.
𝑝

𝑢
 

In our work, u is represented by the threshold parameter, 𝑅0 and each of the parameters determining 𝑅0, 

plays the role of p. Table 3 below gives the sensitivity index of the parameters responsible for the 

transmission of the disease. The plus sign indicates a direct relationship between the parameter and R0 

whereas the reverse is the case for the negative sign.  
 Table 3: Sensitivity indices of R0 to the parameters for the malaria model 

 

 

 

 

 

 

 

 

 

The results in the table suggest that the most sensitive parameter to the basic reproduction number,   R0, is 

the trap effectiveness. 
 

4. Numerical Simulations  

The numerical simulations were done using Matlab ODE 45 Routine solver. The parameters used for the 

simulations as defined in section 2 are a = 0.0201, b = 16.5895, q =83.295, f = 61.7284, h = 5.6611, c = 

0.0106, g = 24.1127 and η = 8.12886. We used the following initial conditions for the state variable  𝐼ℎ =
0, 𝑆𝑚 = 0.7, 𝐼𝑚 = 0.3, 𝑇𝑚 = 0, 𝑁ℎ = 1, 𝑁𝑚 = 1. 

 
Figure 2. Results showing the effect of the disease on the human compartments. The initial conditions used are 

 𝑆ℎ = 1, 𝐼ℎ = 0, 𝑆𝑚 = 0.9, 𝐼𝑚 = 0.1, 𝑇𝑚 = 0, 𝑁ℎ = 1,𝑁𝑚 = 1 and the parameter values are 
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𝑎 = 3.0201, 𝑏 = 1.5895, 𝑐 = 2.0106,    𝑓 = 6.7284, 𝑔 = 0.9997 , h =  5.6611, 𝑞 = 0.0295,   
η = 1.9662886. 

Figures 2a and 2b show an entirely susceptible population in the beginning where there was no human 

malaria infection, but when infectious mosquitoes are introduced into the human population, the 

susceptible population starts dropping from 1 and then grows back to a steady state as infectious contact 

begins to reduce, which could be due to the killing of mosquitoes by the trap. In figure 2b, the number of 

infectious humans initially grows to a pick level and later drops to an infection-free steady state. The 

result shows that both susceptible and infectious populations have inverse growth relationship. 

 
Figure 3: Results showing the effect of the disease on the mosquito compartments. The initial conditions and 

parameter values are the same as those in Figure 2. 
Figures 3a and 3b are the susceptible and the infectious mosquito compartments. We use the same initial 

conditions as those in Figure 2 and as the disease establishes itself in Figure 3a due to introduction of 

some infectious mosquitoes, the number of susceptible mosquito population falls from the initial condition 

to a steady state as a result of the effectiveness of the trap. There is a corresponding effect on the number 

of infectious mosquitoes in Figure 3b as the trap acts as an attractor of all classes of mosquitoes. 

Consequently, the disease dies out as the number of infectious mosquitoes reduces to zero, culminating in 

a general reduction of the entire mosquito population as can be observed in Figure 4b. We note from 

Figure 3a and Figure 4a that at the disease free equilibrium point, the total dimensionless value of the 

number of susceptible mosquitoes, 𝑆𝑚 and the number of the trapped mosquitoes, 𝑇𝑚 is expressed as, 
1

1+η
+

η

1+η
= 1. From our assumption, the mosquitoes in the trap cannot escape from the trap. Thus their buid-up 

in the trap does not pose any threat to disease transmission. Thus this compartment only play the role of 

the recovered or removed in the original SIR model. Using the values of our model parameters, we obtain 

𝑆𝑚=0.33712 and 𝑇𝑚=0.66288. The disease free-state is a situation where the basic reproduction number is 

less than unity and in this case 𝑅0=0.39077, precisely. 
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Figure 4. Results showing the effect of the mosquito trap on the entire mosquito population. The initial 

conditions and parameter values are the same as those in Figure 3. 
 

In the case of the basic reproduction number being greater than unity, the trap effect, η < 0.84  and there 

is a fall in the population of susceptible humans as the disease continues to grow causing the infectious 

humans population to grow. Figure 4 describes the endemic state of the disease for both human and 

mosquito fractions, where 𝑅0 > 1. In Figure 5a,b, the number of susceptible humans declines as more 

humans get infected. While Figure 5c,d, describe that of the human population. Here, we have used η =

0.012886 with values of the other parameters to obtain 𝑅0 = 3.2088. 
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Figure 5: Results showing the endemic state in the human and mosquito compartments by reducing the trap 

effectiveness. The initial conditions used are  𝑆ℎ = 1, 𝐼ℎ = 0, 𝑆𝑚 = 0.999, 𝐼𝑚 = 0.001,𝑇𝑚 = 0, 𝑁ℎ = 1,𝑁𝑚 =
1 and the parameter values are the same as those in Figure 3 except that we have used  η = 0.012886. 
 

5. Discussion and Conclusion 

Over the years, methods and procedures have been formulated by varies mathematicians and scientists 

across the globe to tackle the problem of malaria transmission. Vector based control methods used so far, 

including the use of treated mosquito bed-nets are not effective enough to control mosquito population. 

Mosquitoes sometimes sneak into the net through tiny/small holes within the net and can still infect 

susceptible humans or be infected by infectious humans. A treated mosquito net can lose its concentration 

after a period of time. Therefore, mosquito nets are not 100% effective tackling the problem of malaria. 

Controlling mosquitoes with very toxic and concentrated chemicals (insecticides) either in liquid or 

gaseous form may be very harmful to humans and it is capable of causing health challenges like catarrh, 

sneezing, asthma and other complications. Therefore, chemicals are not medically advisable to be used. 

 Some inventors and scientists have gone ahead to create electrical devices that eventually become useless 

in the absence of electricity. 

Vaccines are not always made available for individuals that are not financially buoyant especially those in 

rural areas. Therefore the trapping system introduced in this work could be safe and reliable for the control 

and/or even elimination of malaria. 

In the model, the graphs of the susceptible humans and infectious humans are always inversely related. As 

the disease dies out, the number of susceptible humans grows to a limit even as the number of infectious 

humans reduces to zero. The trap is made to catch both susceptible and infectious mosquitoes. This keeps 

the susceptible mosquitoes to a particular level, given in the disease free equilibrium state as the number 

of infectious mosquitoes reduces to zero. In Figure 4a, the number of trapped mosquitoes grows to a 

steady state as given in the disease free equilibrium. The total mosquito population initially drops due to 

the immergence of the disease and grows to a steady state as the disease dies out. The initial decline in the 

total population of mosquitoes indicates a reduction in contact between mosquitoes and humans. 

It can be easily observed that mosquitoes sense the presence of the human host at night, and also in dark 

places in the day. We propose that the human body may be radiating some biochemical substances in the 

form of smell that make them very attractive to mosquitoes. We recommend that scientists and health 

organizations across the globe, take up the task of finding the chemical substance within the human body 
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responsible for giving away human identity to the mosquitoes. This will enable them to produce another 

substance of higher concentration that would be more attractive to mosquitoes than the one found in 

humans, so that an effective mosquito trap could be produced. The trap should be made in such a way that 

would attract mosquito preference for the trap instead of the human host. 
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