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and the function values are at most j. Its application is seen in graph
theory. The method used in this investigation was the subordination

Keywords: principle that involved the sigmoid function which is equipped with some

Univalent distinct properties such as it outputs the set of real number between 0 and
function,(J, K) — Symm 1, this is just one of its interesting features. The study produced new

etric function, Starlike coefficient estimates and its connection with Fekete-Szego inequalities
function, Sigmoid

function, Subordintion. were found.

1. Introduction
Let the class of analytic and univalent function A be of the form
f@=z+ X a, 2", ()
The function in (1) is analytic in the open unit disk E = {z € C: |z|I<|} which consist of functions which
are normalized in Eand the subclass of A is usually represented by S.
The subordination concept take the form that, there are two functions say f and g which are analytic in E,
then f is subordinate to g in E, provided there is an analytic function ® in E such that| w(z)l<1 and
f(z) =g(w (z)) holds. This subordinate is represented by f<g . Also if g is univalent in E, the
subordination is then equivalent to f (0) = g(0) and f(E) c g (E). For further details see [1].
In [1], the Hadamand product is a familiar idea in geometric function theory that involves f, g € A . Here
f take the form givenin (1) and g(z) =z+ X5, b, z" then we can have

(f=g N2)=z+ Ly a,b, z".
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Definition 1.1 [1]: Let k be a positive integer. A domain D is said to be k — fold symmetric if a
rotation of D about the origin through an angle % carries D onto itself. A function f is said to be

k — fold symmetric in E if for every z in E
200 2Ai

fize ¥ )=e & f(2). (1.2)
The collection of all k — fold symmetric functions is represented by S* and for k=2 we get class
of the odd univalent functions. The notion of(j, K — )symmentical functions (k=2,3,...;j=
0,1,2, ..., k—1)is a generalization of the notion of even, odd, k-symmetrical functions and also
generalizes the well-known result that each function defined on a symmetrical subset can be
uniquely expressed as the sum of an even function and an odd function. For further information
see [1,2].

201

Definition 1.2[1]: Letu=(e * ) andj=0,1,2,... ,k—1 where k>2 is a natural number. A
function f; E — C is called (j, k) — symmetrical if

f(ez) =e’f(2),z€E. (1.3)

We note that the collection of all (j, k) — symmetric functions is represented by SU* . Also,
§(02).§(1.2). and §UX  are called even, odd and k — symmetric functions respectively.

The following decomposition proposition below establish the mapping of & — symmetric domain
onto the complex plane comes handy in studying of the collection of the sequence of
k — symmetrical functions f;; .

Proposition 1.3 [2]: for every mapping £ D— C,and D isa k- fold symmetric set, there exists

exactly the sequence of (j, k) — symmetrical functions f;
k=1

f@)=Xf jx (2.

j=0

Where f;; (z) = ;{—Z’v‘;(l) e™ f(e'z), (1.4)
(feA, k=12,...;j=0,1,2, ... ,k—=1)

From (1.4) we have

k-1 k-1 00
1 . 1 .
fu@=zEe M fle')=7Ee ™ (La ,(e")",
v=0 v=0 n=1
then
. _ 0 n _ _ l k-1 (}’l—j )V _ l,n:lk+j:
fj,k(Z)—anl O ay 2 ’al_l’(pn_ k2v=08 _{O,n¢lk+j (15)

Definition 1.4[1]:Let ¢(z) =1+ B ;z+ B ,z*> + --- be univalent starlike with respect to on 1
which maps the unit disk E onto a region in the right half-plane which is symmetric with respect
to the real axis. Let 0<f<a <1 and B; >0. Then the function f(z) €A is in the class
St (@) if

7' (2)

@ S P(2) (1.6)

Remark: The suitable choices, j, k, a, 8, ¢ Fuad, AL-Sarari and Latha invetigated the following

subclasses:
(1) S (p) =5 ,%(¢) the class introduce by Al-Shagsi and Darus in [3]
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(i) SU-0) (%) =S *[A, B] the class introduce by Al-Shagsi and Darus in [3]
(iii) SU2) () =8 ,"(¢) the class introduce by Shanmugam et al, in [4]
(iv) §1:2) (%) =S ." the famous Sakaguchi class [5]

(V) SD(p) =S *(¢) the class introduce by Ma and Minda [6]
Sigmoid function is a unique special function that has the form

t(z) = I_Z,ZZO. (1.7)

1+e
The following properties are peculiar with sigmoid functions and they are:

(i) Itis simply differentiable.

(ii) It outputs are real numbers that are between 0 and 1

(iii) It maps a very large input domain to a small range of output.

(iv) It ne’er losses information because its is one-to-one function.

(v) It step-ups monotonically.

The sigmoid function is the most popular activation function in the hardware implementation of
Artificial Neutral Network (ANN) for more information see [7,8,9,10 ].

Motivation: The study in [1] as well as in [9] provided huge influence in this present work.

In this present study, the power series development for the collection of the sequence of
(J, k) — symmetrical functions f;, is of the form:

Lo+ 2= B ap+((B-Bay- 2- D LRad)z2+
Q7+ Yoo @panz P @1 ¢1” @1
2
P4 20,03 @3 @2 Q2. Q3
(4= ) as+(—5=-2—-3 D ajza3+ (2- —) —5a3) 2> +
@1 2 @1 @1 »1 @1

20194 204 4o 303 4pags P393, 2 @3\ 93 2
5_ ¥s A +( /—— - ——- = ag-as + _+__3 asa- — 3_ =) —=g% —
(( ¢1) 3 ( ¢2 ?1 ¢1) 254 ( ¢% ¢% ¢? ) 23 ( ¢1)¢1 3

3
Q- z—f)z—%ag)zh... (1.8)

The concept of bi-linear fractional transform has been widely used by so many researchers among
them are Fuads, AL-Sarari and Latha [1], Ma and Minda [6], Oladipo [8], just to mention but

few. On this we basis, we carry out our study on the interplay that exist between the bi-linear
function and the familiar Charathedeory function and this is shown given below:

1+ u(z)
p(z)=———=1+p z2+prz" +
1 —u(z)
p(z)-1

Notice v(z) = and by simple computation we have:

p(z)-1
2 2 2 2
u(e) = = (G- + (G (G- - B+ (5 T - D+ T pipr-p2) -

2 2 4 4 2 4 4
v g4 1.9
The sigmoid function has its power series development in the form:
() =1-20+5z 2= =3+ =g (1.10)
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The power series development of the composition function involvingf(z) and u(z) gives the
form:

7 29 7
Cu@) =1=p = (pa=3pD) 27 =@ 3= (Tpi =Tp2)) 2" = (P4 =3p1p3— (P35 +

49 217

—papi = P 2t (1.11)

Definition 1.5: Let £(z) =1-2z+5z 2 - %f + ?_;Z4 ... where £ €A is a logictic sigmoid
activation function and ¢ (0) > 0. It is univalent and starlike with respect to which maps the unit

disk e onto a region in the light half-plane which is symmetric with respect to the real axis. The
function f(z) € A isin the subclass $/* (¢) if

p1p (Z) <€(¢) (112)

@1zt Zn_Z Pnant
The following LLemmas were employed to establish our results

Lemma 1.6 [ 1]: If a function pe P is given by p(z) =1+p (2+p,22+p32° + -+ is
considered as analytic function with positive real part inZ, then lc, — nc 21 <2 max {1,12n -
1}, the result is sharp for the functions given by

p(2) = 5, pl2) = == (1.13)
Lemma 1 7 [ 112]: (Miller and Moeanu (2000)Jf a functionp € P is given byp(z) =1+
P12+ P22 +p32°+ - (z€E) then Ipl <2, ke N where P is the family of all functions
analytic in v for which
p(0) =1 and Re (p(z)) >0, (z€E). (1.14)
Lemma 1.8 [1,3,11]: If p(z) =1+ c 2+ c,z% + --- is analytic function with positive real point
in E, then

—4v+2,ifv<0,
le, —ve 21 < 2sz<v<1 (1.15)
4v-2,ifv=21
2. MAIN RESULT
2.1 Coefficient Bounds for the class $/* (L (u(z))
Theorem 2.1: Let £(z) =1-2z+5z7 2 - —2z3 + 2 z4 +--- where £ € A, a logistic sigmoid
activation function is and f (0) >0. If (z) given by (1) belongs to the class $* (£(u (z)) where
_Ivk-1 ctnjm _ =lk+j:
= Lo 0 = {0n¢1k+ > then
2
|a2| < m,
4
<
lasl < 23, RN,
2
2,53 9 4

2
2 @2
| 2882 28 _372)) 4 122 ) .
3= 342 ﬂ|2)( (P% @1 @1 ) ( 12— —Z?) @1 )

la,l < —+ +
ST %( 3 (|3— 23— 22
¢ v1 @ o1

42



Fagbemiro O., Hamzat J.O, Raji M.T. - Journal of NAMP 66 (2024) 39 - 46

1 1687 424 Y491 @4 92 ®3 9392
< _ B _ a2 g2 -
las| < 15— %( s TGy %) (K T 2 <p1)|) +2 3(/)% 4 o1
g03(p2 8 49 28 4 93
3 ))( ‘”3”2 o * 13- L~ 02, 4 13- ‘”l T ‘“nz ‘”2| T D (f‘—zl) lr;ml -
vl o1 ?1 - @1
16 @3 @3
| =l + | ==l 2.1
(1B (1) 2.1)
?1
Where ¢, is defined by (1.5).
Proof:
Assuming Theorem 2.1 holds, then the following equalities hold:
wpf (2)
1 = £(u(2)).

P12+ L2y @ua
Note that if p(z) is analytic with positive real in E and p(0) =1 and applying the LHS of eqn
(1.8) and LHS of eqn (1.11) we have:

1+ (2—¢—2)a2z+( (3—¢—3)a3—(2—(p—2)¢—2“%)22+
@1 @1 ?1” @1

2 2
(4= Dya e (22 0B 370 pve- B8 54
3
@1 §01 @1 @1 ?1 @
201904 204 4oy 393 | 49293 @303 ®3 2
5= L) g5+ (L 2 02 g g (L 2R3 ~(3- -
(( s (fﬂ% @1 ¢I)a2a4 ((P% v} v} T aza; = ( ¢1)¢1a3

3 7 29
(2-2 _1 ¢%a§)z4+...=1—p1— (p2= 7P 22 =0 3= 5(TpT =)z = (p4=3p1ps -

217

2 4y 4
ZPz + ;sz aivre JORAE (2..2)
Further simplification gives:
P
a = 72
(Z—E)
Qn = _(P2_4p1) + p12
PToeD T -Dyo-n
?1
~(p3-EH L) o)) 7
a, = 1 (2(/72(/73 Z(pi 3@#)( PI(PZ—ZPIZ) Plz
4 = - 2 - - .27
(4—%) (4—%) ?1 P1 ®1 (3—%)(2—%) (3_$—3)( 2-22)
(8
—Eh2-12)7 ¢t
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217 ?193 P4
45 = 52 z?)(( Ps = PlP3“P2+—pzpl_a 1)_(2_2_2;_

2 2
P %_7 7
490_2)( P1P3+2( 2 p2) ) (3@2_'_4 (,03@2 3(/)2§03)( pzp%_Zp% _
g17 " (5-ThH(4-Th(2- T o1 o1 5-59)(3-£3(2-22)
2
p? (pZ_ZTP%) ) p%(PZ_%p%) pi" ®3
5 ?3 2 2) + ((5_ﬁ)(3_ﬂ) B (5-L3)( 3-£3y( 2 £2 + ?5 ?3 o5 2) —+
(5__)( 3__)( 2_(;7_) @1 @1 ®1 @1 @1 (5__)( 3_é)( S_go_) ?1
(o n
(5-53
?1

Applying Lemma (1.7) and modulus principle desired the result follows and this complete the
proof.

2.2. Fekete-Szego Inequality for the class §* (U (u(z))

954

Theorem 2.2: Let£(z) =1-2z+5z7 2 - —z + +--- where £ € A is a logistic sigmoid

activation function and ¢'(0) >0. If fiz) given by (1) belongs to the classS™* (£(u (z)) and

_ Iykel c(njoom _ =lk+J:
‘Pn—kzm=o‘5 - {0n¢1k+ ,then
| 5 | (3 (/J3 <k
(3—%)[ +(2—ﬂ)_ﬂ( fm) Iifu b
lay —ua 3 < (3 rm) Sk Sk o
1 (5 1 (3- (m) | ifuk
+ - — ifu 2
{ G -2 " (- ﬂz)
Where
ko= 0212 2y
= (3- (M) 2 @1
and
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22y

_ w3 _ P2
k, = Y [2((2 (pl))+1 ]

Proof: Applying Theorem 2.1 and Lemma 1.8 will achieve the desired result.
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