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1.0  Introduction 
One of the outstanding problems in solid state physics is a detailed understanding of electron correlations and tt requires 

going beyond the independent electron approximation. Certainly, a considerable progress has been made in the past towards 

this goal [1]. However, only in exceptional cases can one claim to understand quantitatively correlation effects. There are 

many examples of physical phenomena that originate from the correlated motion of electrons. The simplest example is of 

Van der Waals forces between neutral atoms. When two atoms are brought close together, the electronic charge cloud of 

one atom interacts with the charge cloud of the other so that the electrons avoid each other [2,3].  

Another outstanding example of correlation effect is the phenomenon of superconductivity where particularly long-range 

electron correlations lead to the Cooper-pair instability. The theory of superconductivity which is based on this pair 

correlation is able to make quantitative statements about a large number of measurable quantities in the superconducting 

state of the system without having to treat the remaining electron correlations [4,5].  
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In recent years, the Hubbard model has been subjected to a renewed attention because of its 

relevance for High-𝑇𝑐superconductivity, quantum antiferromagnetism, and ferromagnetism 

thus playing a central role in theoretical investigations of strongly correlated systems. In this 

paper, we present a numerical exact diagonalization NED of the Hubbard model and a 

theoretical exact simulation (TES)with the view to obtaining the groundstate-energy spectrum 

of two electron interaction on a finite six sites lattice system. The extended Hubbard model 

with nearest and next-nearest neighbour kinetic hopping terms was first applied on the 

eigenstates available to the two electrons six sites system. The application of the Hubbard 

model on the various electron eigenstates generated 3636  eigenvalue matrix which was 

solved by numerical exact diagonalization.  The results of the ground-state energies from the 

numerical exact diagonalization were compared with the results obtained from the theoretical 

exact simulation. The comparison of both methods showed that there is a good correlation 

between the two results. It is established here that there is a strong correlation between the two 

electrons at very low negative values of the Coulomb interaction strength 𝑈/4𝑡.Whereas high 

values of positive Coulomb interaction strength promotes high kinetic energy between two 

interacting electrons, since the electrons are now free to hop from one atomic site to another. 
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Despite remarkable efforts the understanding of the physics of correlated electron systems is still far from 

complete. Even in one spatial dimension where the Hubbard Hamiltonian provides the opportunity to 

study correlation effects in an integrable model [6,7], apparently simple quantities like the asymptotic of 

correlation functions have been calculated only in certain limits. A better description of the electronic 

properties of metals is given by the extended Hubbard model. Where the standard Hubbard model only 

takes nearest neighbour hopping 𝑡 and local interaction 𝑈 into account, the extended Hubbard model 

introduces the next-nearest neighbour hopping 𝑡′ and nearest neighbour interactions 𝑉 between electrons 

on two different sites [8,9].  

These are the so called non-local interactions. The non-local interaction strength between site 𝑖 and 𝑗 is 

denoted by 𝑉𝑖𝑗. These types of model were used to describe for example charge ordering, a special 

ordering of the electrons that arises from the interactions between lattice sites and that cannot be 

described by the usual single-band Hubbard model [10,11]. Plasmons are other phenomena that can only 

be described using non-local interactions. 

With the inclusion of long-range (non-local) part of the potential 𝑉 the off-site terms and additional 

kinetic hopping term 𝑡′ to the single-band Hubbard model, we obtain the extended Hubbard model. To 

what extent the inclusion of the off-site terms relevant to the description and understanding of strongly 

correlated systems is still a matter of current debate in the literature, and the general issue is a difficult 

one [12]. 

The Hubbard model has been very successful in describing a variety of effects. One of these effects is the 

metal-insulator phase transition. For high positive ratio of Coulomb interaction to the nearest neighbour 

hopping integral 𝑈/𝑡, some metal are insulators, whereas for very low negative 𝑈/𝑡 some of the metals 

can conduct electricity, the transition from one phase to the other occur at some critical ratio of  
𝑈

𝑡 
 [13]. 

We need numerical methods to address the following: to (i) validate predictions from a theory (ii) 

understand the physics when theory fails and to serve as a guide toward a new theory (iii) find new phases 

or study phases that are analytically intractable (iv) compare competing orders (v) make quantitative 

predictions for experiments. 

Exact diagonalization is usually a very simple method for solving finite-size matrix, it does not 

necessarily require any computer. But what happens when we now increase the number of lattice sites? 

The problem becomes complicated as the dimension of the Hilbert space, and consequently the size of the 

matrix, increase with the number of sites𝑁. In this case even for writing the matrix elements of a 𝑁2 ×
𝑁2 square matrix, the computational time and memory required is prohibitive [14]. Exact solutions are 

possible by direct diagonalization of the many-body problem on small systems, the so-called small cluster 

technique. This method suffers from uncontrolled finite-size effects and cannot be extrapolated to the 

thermodynamic limit in any obvious way [15,16].  

The preliminary purpose of this study is to present a theoretical exact simulation of a two electrons six-

site lattice system. This is a semi-quantitative method for solving electron correlation and the relationship 

with the groundstate energy as we move from finite-size lattice to a more complex higher lattice sites.  

This study will therefore provide a means of solving the groundstate energies with ease without first 

writing down the much complicated matrix. 

1.1. Research Methodology. We first applied the extended Hubbard model to act on the various electron 

states available to the two electrons six sites lattice. The application of the Hubbard model on the 

eigenstates of the two interacting electrons generated a 1616  eigen value matrix which was solved by 

numerical exact diagonalization. After this we developed the theoretical exact simulation approach which 

was patterned after the result of two electrons two-site system. 

This paper is outlined as follows. Section one gave a brief introduction of the work under study. The 

mathematical theory work is given in section two. The results emerging from this study is presented in 

section three. The outcome of the results is discussed in section four and the work is finally brought to an 

end by concluding remarks in section five and this is immediately followed by the list of references. 

2.0 Mathematical Theory 

The Hamiltonian corresponding to the extended Hubbard model is given by: 
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(2.1) 

where 𝑡 is the amplitude of a nearest- neighbour NN hopping energy term,𝑡′ is the amplitude of a next -

nearest- neighbour (NNN) hopping energy term while 𝑈 is the usual Hubbard on-site interaction. The 𝐶𝑖𝜎
+  

or 𝐶𝑗𝜎 is the creation or annihilation operator of electron with spin 𝜎 and the summation ji  runs over 

nearest-neighbour NN pairs and ji runs over next-nearest-neighbour NNN pairs. The  ij CCch .  

is the hermitian conjugate and the inclusion makes the dynamical quantities real, the term 𝑈 in the 

Hamiltonian accounts for the dominant part of the Coulomb repulsion, 
 ii

nn  is the on-site occupation 

number operator and ji nn  is the nearest neighbour occupation number operator, finally, jiV  is  nearest 

neighbour (NN) density-density interaction. 
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Let us also define the amount of particles on site 𝑖 as



iii nnn  and 
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We also know that 0
 jjjjiiii

nnnnnnnn  and since we cannot have two electrons 

with the same spin on one site, also the Hubbard model does not account for parallel spin of electrons. 
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(2.5) 

2.1. The Groundstate Energies of the two interacting Electrons by Numerical exact Diagonalization. 

Numerical exact diagonalization (NED) which yields exact solutions is the most powerful technique, 

since no approximations are made, but they rarely occur in thermodynamic limits. The most common 

problems that are exactly solvable are the finite-size one-dimensional or quasi-one-dimensional system 

 

Table 2.0.The Hilbert space derived from the geometry of the two electrons six sites system. 

Lattice separation  𝑙 
between the two electrons 

Pair wave 

function 

i  

Number of different 

electronic states at 

lattice separation 𝑙 

ii   

Representative pair 

electronic states 

 ii ,  and  ji ,  𝑖 Actual separation 

distance 

1 0 
0  6  1,1 ⋯  6,6  
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2 𝑎 
1  12  2,1 ⋯  1,6  

3 2𝑎 
2  12  3,1 ⋯  2,6  

4 3𝑎 
3  6 

 

 4,1 ⋯  6,3  

There are a total of 36 

electron eigenstates 

 

where  ii , represents the eigenstates of  the two electrons on the same site, while  ji ,

and  ji , are the eigenstates of  the two electrons when they are on different lattice sites. 

When the Hubbard model given by (2.1) is used to act on the various electron states provided in Table 

2.0, i.e., H  = 1, 2, 3, ⋯ , 36 we shall get an eigen value problem of the form: 0 XIQ


 , 

where Q is a 36 × 36 matrix, the eigenvalue or the energy is represented by  , the I is the identity 

matrix which must be of the same size as Q  and X


is the corresponding eigenvectors. For a non-trivial 

solution we know that 0 IA  since 0X


. Thus we get 

03636 
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Q          (2.6) 

The above equation holds provided: 









jiif

jiif
ji ji

0

1
 .                                               (2.7) 

Because of limited space we separated the 36 × 36 matrix into four parts 𝐴, 𝐵, 𝐶and𝐷.Each of the part 

matrix has the same dimension 18 × 18. The respective dimensional matrix is displayed below. 
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where tUu 4/ , tVv 4/ and tts 4/ .  For the purpose of clarity we need to define the terms:

tUu 4/  (Coulomb interaction strength), tVv 4/ (NN density- density interaction strength) and 

tts 4/  (NNN hopping interaction strength). In this study, we used several arbitrary values of u  to 

determine the total energy of the two interacting electrons with fixed attractive values of 1.0v  and 

01.0s .Although, the choice of these values is not unique but depends on the individual researcher. 

The numerical exact diagonalization of the above 36 × 36 matrix given by (2.6) will give the total 

energies and the corresponding eigenvectors for each arbitrary𝑢. 

 

2.2. The groundstate energies of the two interacting electrons by theoretical exact simulation. (TES) 

In this section, theoretically we shall derive analytic equations that would give the total energy of two 

interacting electrons in one dimensional four-site system without using or passing through the lengthy 

numerical approach as seen in the previous section. This theoretical simulation is based on the choice of 

arbitrary values that we subscribed for the relevant variables in this study.  

The theoretical exact simulation we have done in this study is actually derived from the known exact 

calculation of two electrons interaction on one dimensional two sites lattice system. We used 𝛼 to denote 

the complementary value of the total energies for some interval 𝛿 of positive values of 𝑢, while for the 

negative values of 𝑢, depending on the given interval𝛿 we used 𝛽 to complement the equation that would 

yield the total energies.  

The positive values of the Coulomb interaction strength 𝑈/4𝑡 ranges from: 0, 5, 10, 15, …, 45, 50, that is, 

the interval is 5. However, the negative values of the Coulomb interaction strength 𝑈/4𝑡 is made up of 

twoparts of interval. The first part ranges from: -0.05, -0.5, -0.15, …, -0.7, that is, the interval is -0.05. 

While the second part ranges from: -1, -1.5, -2, … , -4, that means, it has an interval of -0.5. Thus there 

are specific values that𝛼 and 𝛽 will take in each of these intervals. 

This iteration was done for several types of the extended Hubbard model: (i) −𝑡 − 𝑡′ + 𝑈 (where 𝑉 = 0), 

(ii)  −𝑡 + 𝑈 (where 𝑡′ = 𝑉 = 0), (iii) −𝑡 − 𝑡′ + 𝑈 + 𝑉 and (iv) −𝑡 + 𝑈 + 𝑉 (where 𝑡′ = 0). We should 

note that the values of 𝛼 and 𝛽 will also depend on the respective arbitrary values of the on-site Coulomb 
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interaction strength 𝑈/4𝑡, hext-nearest neighbour interaction strength 𝑡′/4𝑡 and the off-site nearest 

neighbour density-density interaction strength 𝑉/4𝑡. 

Exact diagonalization is usually a very simple method for solving finite-size matrix and the process yields 

the energy and the eigenvectors. The method of exact diagonalization does not necessarily require much 

of computational time and intensive memory for the exact solutions. However, what happens to the 

computational process when we now increase the number of lattice sites? The problem becomes 

complicated and prohibitive as the dimension of the Hilbert space describing the size of the matrix, 

increase with the number of sites𝑁. Exact solutions are possible by direct diagonalization of the many-

body problem on small finite-size systems. This method suffers from uncontrolled finite-size effects.  

Therefore the purpose of this study is to present a theoretical exact simulation of a two electrons 

interaction in 1D six sites lattice system. This is a semi-quantitative method for solving electron 

correlation and the relationship with the groundstate energy as we move from finite-size lattice to a more 

complex higher lattice sites.  This study will therefore provide a means of solving the groundstate 

energies of finite-size dimensional lattice with ease without writing down the much complicated matrix. 

However, in this study because of space we could not display the eigenvectors corresponding to the 

calculated eigen values. 

We need numerical methods to address the following: to (i) validate predictions from a theory (ii) to 

understand the physics when theory fails and to serve as a guide toward a new theory (iii) find new phases 

or study phases that are analytically intractableThe table below shows the theoretical exact simulation of 

two electrons on one dimensional 1D six sites system. 

 

Table 2.1: Theoretical exact simulation of the total energy 𝐸for two electrons on a six sites system. 

(model I: −𝑡 − 𝑡′ + 𝑈). 

Number of 

lattice site 

Interval 

𝛿 = 𝑈1 − 𝑈2 

Positive values of the Coulomb interaction strength 𝑈/4𝑡 

The extended Hubbard model: −𝑡 − 𝑡′ + 𝑈 
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6616.1  for interval of 5 ranging from [5, 50] 

 

[0, -0.70] 

𝛿 = −0.05 

Negative values of the Coulomb interaction strength 𝑈/4𝑡 
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9058.0  for interval of -0.05 ranging from [0, -0.70] 

[-1, -4] 

𝛿 = −0.5 

 

5653.0  for interval of -0.5 ranging from [-1, -4] 
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Table 2.2: Theoretical exact simulation of the total energy 𝐸for two electrons on a six sites system. 

 (model II: −𝑡 + 𝑈). 

Number of 

lattice site 

Interval 

𝛿 = 𝑈1 − 𝑈2 

Positive values of the Coulomb interaction strength 𝑈/4𝑡 

The Hubbard model: −𝑡 + 𝑈 

 

 

 

 

 

6 −sites 

 

[5, 50] 

𝛿 = 5 

 























 

t

U

t

U
E

44
12

2

 

7252.1  for interval of 5 ranging from [5, 50] 

 

[0, -0.70] 

𝛿 = −0.05 

 

Negative values of the Coulomb interaction strength 𝑈/4𝑡 

 























 

t

U

t

U
E

44
12

2

 

9494.0  for interval of -0.05 ranging from [0, -0.70] 

[-1, -4] 

𝛿 = −0.5 

 

4565.0  for interval of -0.5 ranging from [-1, -4] 

 
 

Table 2.3: Theoretical exact simulation of the total energy 𝐸for two electrons on a six sites system. 

(model III: −𝑡 − 𝑡′ + 𝑈 + 𝑉). 

Number of 

lattice site 

Interval 

𝛿 = 𝑈1 − 𝑈2 

Positive values of the Coulomb interaction strength 𝑈/4𝑡 

The extended Hubbard model: −𝑡 − 𝑡′ + 𝑈 + 𝑉 

 

 

 

 

 

6 −sites 

 

[5, 50] 

𝛿 = 5 

 

























 


















 

t

t

t

V

t

U

t

t

t

V

t

U
E

444444
12

222

 

5962.1  for interval of 5 ranging from [5, 50] 

 

[0, -0.70] 

 

Negative values of the Coulomb interaction strength 𝑈/4𝑡 
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𝛿 = −0.05  

























 


















 

t

t

t

V

t

U

t

t

t

V

t

U
E

444444
12

222

 

8761.0  for interval of -0.05 ranging from [0, -0.70] 

[-1, -4] 

𝛿 = −0.5 

 

4000.0  for interval of -0.5 ranging from [-1, -4] 

 
Table 2.4: Theoretical exact simulation of the total energy 𝐸for two electrons on a six sites system. 

(model IV:−𝑡 + 𝑈 + 𝑉). 

Number of 

lattice site 

Interval 

𝛿 = 𝑈1 − 𝑈2 

Positive values of the Coulomb interaction strength 𝑈/4𝑡 

The extended Hubbard model: −𝑡 + 𝑈 + 𝑉 

 

 

 

 

 

6 −sites 

 

[5, 50] 

𝛿 = 5 

 
































 

t

V

t

U

t

V

t

U
E

4444
12

22

 

662.1  for interval of 5 ranging from [5, 50] 

 

[0, -0.70] 

𝛿 = −0.05 

 

Negative values of the Coulomb interaction strength 𝑈/4𝑡 

 
































 

t

V

t

U

t

V

t

U
E

4444
12

22

 

9651.0  for interval of -0.05 ranging from [0, -0.70] 

[-1, -4] 

𝛿 = −0.5 

 

4759.0  for interval of -0.5 ranging from [-1, -4] 
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3.0 Presentation of results. 

Table 3.0. Summary of the results of the total energies 𝐸 as a function of 𝑈/4𝑡. The numerical exact 

diagonalization (NED) of two electrons six sites system of the matrix given by (2.6) for the 

various models applied in this study. 

 

Variation in the interaction 

strength 

Total Energy 𝐸 

Numerical Exact Diagonalization(NED) 

 

𝑈/4𝑡 

 

𝑉/4𝑡 

 

𝑡′/4𝑡 

Model  I 

−𝑡 − 𝑡′ + 𝑈 

 

Model II 

−𝑡 + 𝑈 

 

Model III 

−𝑡 − 𝑡′ + 𝑈 + 𝑉 

Model IV 

−𝑡 + 𝑈 + 𝑉 

   

50.00 -0.1 -0.01 -3.3637 -3.4707 -3.4329 -3.5448 

45.00 -0.1 -0.01 -3.3643 -3.4714 -3.4336 -3.5457 

40.00 -0.1 -0.01 -3.3650 -3.4723 -3.4345 -3.5468 

35.00 -0.1 -0.01 -3.3659 -3.4735 -3.4356 -3.5482 

30.00 -0.1 -0.01 -3.3672 -3.4751 -3.4371 -3.5500 

25.00 -0.1 -0.01 -3.3689 -3.4772 -3.4393 -3.5526 

20.00 -0.1 -0.01 -3.3715 -3.4804 -3.4424 -3.5564 

15.00 -0.1 -0.01 -3.3757 -3.4857 -3.4476 -3.5627 

10.00 -0.1 -0.01 -3.3841 -3.4960 -3.4578 -3.5750 

5.00 -0.1 -0.01 -3.4078 -3.5252 -3.4867 -3.6096 

0.00 -0.1 -0.01 -3.8400 -4.0000 -3.9823 -4.1416 

-0.01 -0.1 -0.01 -3.8467 -4.0067 -3.9894 -4.1487 

-0.05 -0.1 -0.01 -3.8752 -4.0350 -4.0195 -4.1782 

-0.10 -0.1 -0.01 -3.9144 -4.0736 -4.0605 -4.2182 

-0.15 -0.1 -0.01 -3.9580 -4.1162 -4.1057 -4.2619 

-0.20 -0.1 -0.01 -4.0066 -4.1632 -4.1555 -4.3097 

-0.25 -0.1 -0.01 -4.0606 -4.2149 -4.2101 -4.3619 

-0.30 -0.1 -0.01 -4.1203 -4.2718 -4.2700 -4.4189 

-0.35 -0.1 -0.01 -4.1862 -4.3341 -4.3354 -4.4808 

-0.40 -0.1 -0.01 -4.2585 -4.4022 -4.4066 -4.5480 

-0.45 -0.1 -0.01 -4.3375 -4.4764 -4.4837 -4.6206 
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-0.50 -0.1 -0.01 -4.4232 -4.5568 -4.5669 -4.6990 

-0.55 -0.1 -0.01 -4.5156 -4.6435 -4.6563 -4.7831 

-0.60 -0.1 -0.01 -4.6146 -4.7365 -4.7516 -4.8729 

-0.65 -0.1 -0.01 -4.7200 -4.8357 -4.8530 -4.9686 

-0.70 -0.1 -0.01 -4.8315 -4.9409 -4.9600 -5.0699 

-1.00 -0.1 -0.01 -5.6091 -5.6845 -5.7087 -5.7864 

-1.50 -0.1 -0.01 -7.1776 -7.2187 -7.2397 -7.2829 

-2.00 -0.1 -0.01 -8.9219 -8.9467 -8.9623 -8.9883 

-2.50 -0.1 -0.01 -10.7550 -10.7713 -10.7828 -10.7998 

-3.00 -0.1 -0.01 -12.6381 -12.6495 -12.6582 -12.6701 

-3.50 -0.1 -0.01 -14.5520 -14.5604 -14.5672 -14.5759 

-4.00 -0.1 -0.01 -16.4861 -16.4925 -16.4980 -16.5046 

 
Table 3.1:  Comparison of the results of the total energies 𝐸obtained from numerical exact 

diagonalization (NED) and theoretical exact simulation (TES) for the various models. 

Coulomb 

strength 

 

𝑈/4𝑡 

 

 

Total Energy 𝐸 

2 – electrons on a 1D 6 – lattice system 

Model  I 

−𝑡 − 𝑡′ + 𝑈 

Model II 

−𝑡 + 𝑈 

Model III 

−𝑡 − 𝑡′ + 𝑈 + 𝑉 

Model IV 

−𝑡 + 𝑈 + 𝑉 

NED TES NED TES NED TES NED TES 

50.00 -3.3637 -3.3632 -3.4707 -3.4704 -3.4329 -3.4326 -3.5448 -3.5442 

45.00 -3.3643 -3.3654 -3.4714 -3.4726 -3.4336 -3.4348 -3.5457 -3.5464 

40.00 -3.3650 -3.3682 -3.4723 -3.4754 -3.4345 -3.4376 -3.5468 -3.5492 

35.00 -3.3659 -3.3717 -3.4735 -3.4789 -3.4356 -3.4412 -3.5482 -3.5528 

30.00 -3.3672 -3.3765 -3.4751 -3.4837 -3.4371 -3.4460 -3.5500 -3.5576 

25.00 -3.3689 -3.3831 -3.4772 -3.4903 -3.4393 -3.4527 -3.5526 -3.5643 

20.00 -3.3715 -3.3931 -3.4804 -3.5003 -3.4424 -3.4628 -3.5564 -3.5744 

15.00 -3.3757 -3.4098 -3.4857 -3.5169 -3.4476 -3.4796 -3.5627 -3.5912 

10.00 -3.3841 -3.4429 -3.4960 -3.5501 -3.4578 -3.5131 -3.5750 -3.6247 

5.00 -3.4078 -3.5412 -3.5252 -3.6484 -3.4867 -3.6124 -3.6096 -3.7240 
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0.00 -3.8400 -3.8317 -4.0000 -3.8994 -3.9823 -3.9820 -4.1416 -4.1401 

-0.05 -3.8752 -3.9342 -4.0350 -4.0019 -4.0195 -4.0845 -4.1782 -4.2426 

-0.10 -3.9144 -4.0416 -4.0736 -4.1093 -4.0605 -4.1920 -4.2182 -4.3501 

-0.15 -3.9580 -4.1540 -4.1162 -4.2217 -4.1057 -4.3043 -4.2619 -4.4624 

-0.20 -4.0066 -4.2713 -4.1632 -4.3390 -4.1555 -4.4214 -4.3097 -4.5795 

-0.25 -4.0606 -4.3932 -4.2149 -4.4609 -4.2101 -4.5433 -4.3619 -4.7014 

-0.30 -4.1203 -4.5197 -4.2718 -4.5874 -4.2700 -4.6697 -4.4189 -4.8278 

-0.35 -4.1862 -4.6506 -4.3341 -4.7183 -4.3354 -4.8004 -4.4808 -4.9585 

-0.40 -4.2585 -4.7857 -4.4022 -4.8534 -4.4066 -4.9354 -4.5480 -5.0935 

-0.45 -4.3375 -4.9248 -4.4764 -4.9925 -4.4837 -5.0743 -4.6206 -5.2324 

-0.50 -4.4232 -5.0677 -4.5568 -5.1354 -4.5669 -5.2170 -4.6990 -5.3751 

-0.55 -4.5156 -5.2142 -4.6435 -5.2819 -4.6563 -5.3633 -4.7831 -5.5214 

-0.60 -4.6146 -5.3640 -4.7365 -5.4317 -4.7516 -5.5130 -4.8729 -5.6711 

-0.65 -4.7200 -5.5170 -4.8357 -5.5847 -4.8530 -5.6658 -4.9686 -5.8239 

-0.70 -4.8315 -5.6729 -4.9409 -5.7407 -4.9600 -5.8215 -5.0699 -5.9796 

-1.00 -5.6091 -5.9791 -5.6845 -5.7414 -5.7087 -5.8555 -5.7864 -5.9872 

-1.50 -7.1776 -7.7562 -7.2187 -7.5185 -7.2397 -7.6311 -7.2829 -7.7628 

-2.00 -8.9219 -9.6227 -8.9467 -9.3851 -8.9623 -9.4966 -8.9883 -9.6284 

-2.50 -10.7550 -11.535 -10.7713 -11.2982 -10.7828 -11.4089 -10.7998 -11.5407 

-3.00 -12.6381 -13.475 -12.6495 -13.2376 -12.6582 -13.3477 -12.6701 -13.4795 

-3.50 -14.5520 -15.430 -14.5604 -15.1931 -14.5672 -15.3029 -14.5759 -15.4347 

-4.00 
-16.4861 -17.3968 -16.4925 -17.1592 -16.4980 -17.2687 -16.5046 -17.4004 
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Figure 3.1: Shows the spectrum of the total energies𝐸 as a function of the Coulomb interaction 

strength 𝑈/4𝑡 for the four types of Hubbard model. This is just the graphical representation 

of the four model results shown in Table 3.0. 

 

4.0 Discussion of Results 

Table 3.0 shows energy expectation values as a function of 𝑈/4𝑡. From the table it is observed that the 

ground state energies are negative and non-degenerate, this is because the electron energy levels were 

defined relative to the Fermi energy level. The negative groundstate energies mean attraction (correlation) 

between the two interacting electrons. We can see that as 𝑈/𝑡 increases, the potential energy decreases. 

For high positive𝑈/𝑡 it is unfavourable for the electrons to be together on one site, that means, as we 

increase 𝑈/4𝑡positively the fraction of doubly occupied sites will decrease. In other words, the term 

𝑛𝑖↑𝑛𝑖↓   goes to zero as we positively increase 𝑈/4𝑡 and this causes the potential energy to decrease. 

It is also shown in the table that the total energies consistently decreases negatively as the Coulomb 

interaction strength 𝑈/4𝑡is made to decrease and the values of the energies are non- degenerate. For high 

positive U/4t electrons can have enough hopping kinetic energy not to doubly occupy a site. While there 

is a tendency for on-site occupancy by the two electrons when the Coulomb interaction strength 𝑈/4𝑡 is 

made negatively high, the −𝑡 + 𝑈 + 𝑉 has the least values of non-degenerate energies while the −𝑡 −
𝑡′ + 𝑈 model has the highest values of non-degenerate energies.  

Table 3.1 provides the comparison of the results obtained from the numerical exact diagonalization and 

the theoretical exact simulation. The results compared favourably with one another particularly in the 

positive regime of the Coulomb interaction strength𝑈/4𝑡. The negative decrease in the total energies of 

the two interacting electrons as 𝑈/4𝑡 is decreased is consistent with the various models we applied in this 

study. 

Figure 3.1 shows energy expectation values as a function of 𝑈/4𝑡. The graph shows a very good 

correlation between the four types of Hubbard model we applied in this study. The energy spectrum of 

these models is almost a continuous one. It is also observed in the graph that the groundstate energies 

have negative values and with steepest gradient in the region of high negative values of the on-site 

Coulomb interaction 𝑈/4𝑡. The gradient goes to zero in the region of high positive values of the on-site 

Coulomb interaction 𝑈/4𝑡. 

 

5.0 Conclusion 

This study provides a theoretical exact method for calculating the groundstate energies of two interacting 

electrons on a one dimensional six sites system. This method in theory and practice can be generally 

extended to solve the groundstate of two electrons interaction on 𝑛 −dimensional lattice sites without 
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going through the rigours of numerical computations. This approach will also eventually minimize 

computational errors. It is revealed in this study that the groundstate energies generally have negative 

values and with steepest gradient in the region of high negative values of the on-site Coulomb interaction 

𝑈/4𝑡. The gradient goes to zero in the region of high positive values of the on-site Coulomb interaction 

𝑈/4𝑡. It is shown that not only are the energies negative but they are also non-degenerate. This arises 

from the fact that the electron energy levels are defined relative to the Fermi energy. 
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