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ABSTRACT 
 
Even with bigger storage disks, it is very necessary to explore opportunities 
to maximize the potential capacity of the required storage disks. The act of 
transforming  data  such that  it  uses less  memory  space  is  known  as  data 
compression. Huffman and Shannon Fano encoding algorithms can 
compress different forms of data such as images, text, audio, and video. This 
paper  centres  on  a  comparative  evaluation  of  the  stated  data  encoding 
algorithms  in  terms  of  code  word  generation  operations,  average  code 
length per symbol, CRP, compression factor, and time complexity analysis 
with a sample data string. The evaluation culminated in the computation 
and a pictorial representation of the running time of the two data encoding 
algorithms.  The  Huffman  encoding  algorithm  takes  a  shorter  time  than 
Shannon Fano encoding algorithm. However, the two compressions have 
similar  average  code  length  per  symbol  and  operate  within  the  same 
compression ratio and factor performance 
 
 

1. Introduction  
Even as disk capacities continue to increase, data storage vendors are constantly seeking methods by which 
their customers can cram ever-expanding mountains of data into storage devices. Even with bigger storage 
disks, it is very necessary to explore opportunities to maximize the potential capacity of the required storage 
disks. One way in which a massive amount of data can be reduced in size before storage is data deduplication. 
Data deduplication is a commonality factoring data reduction technique that involves redundant copies of 
data being removed from a system. 
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It is applied in both data backup and network data schemes, and enables the storage of a unique model of 
data within a database and broader information system.  
 
Data deduplication works by examining and then comparing incoming data pieces with already stored data. 
If any specific data is already present, the applied data deduplication technique remove the new data and 
replace it with a reference to the data already in place. Storage vendors rely on data deduplication technique 
to make better use of storage space, and the goal here is increased storage efficiency (Pujar and Kadlasker, 
2017). With a proper deduplication technique, businesses can effectively store more data than their overall 
storage capacity might suggest. For example, with the application of a proper deduplication technique, a 
business can get a 4:1 reduction benefit, meaning it would be possible to store 60 TB of data on a 15 TB data 
storage device (Muhammad, 2018). 
Different techniques can be used to carried out data deduplication. The various techniques are shown in 
Figure 1.1. 
 

 
 
Figure 1: Data deduplication techniques 
 

Text  or  string  compression  can  be  done  by  eliminating  unnecessary  characters,  embedding  a  repeat 
character to specify repeated characters, and substituting a smaller bit string for a commonly occurring bit 
string. Data compression can cut a text file to 50%, or to a percentage still smaller than its original size 
(Ahmad and Mahmoud, 2019).  
A particular data compression operation is either lossy or lossless mechanism.  In lossless compression 
mechanism, bits reduction is done by identifying and eliminating statistical redundancy, and no data or 
information is lost in the process. Lossless compression is possible because most real-world data exhibits 
statistical redundancy. For example, an image may have areas of colour that do not change over several 
pixels. In this mechanism, compressed data can be reversed. A typical example of lossless compression is 
Huffman data encoding algorithm. Lossy compression mechanism reduces bits by removing unnecessary 
or less important information resulting in some form of data loss. A data compression operation can also 
be carried by a device (Tanvi et al., 2019). A device that performs data compression is referred to as an 
encoder, and one that performs the reversal of the process (decompression) as a decoder. This means that 
a given data compression algorithm has two forms (encoding and decoding).   
 Massive  data  files  are  transferred  from  one  computer  to  another,  and  even  between  computer 
networks with ease and minimal bandwidth every second. It is also known that a given storage device with 
a smaller memory space can accommodate a data file with possible much larger memory size. This is 
possible because the large data files can have their memory sizes reduced to the barest minimum before 
transmission. Therefore, the research study is motivated to carry out a vivid study of the selected data 
compression algorithms in order to understand the procedures or processes involve in the reduction of a 
specified data file size.  
Given a data string {s i} with frequencies f(s i), and that the research interest is to find a set of binary code 
words C = {c(s1), c(s2), . . . c(sn)} such that the average number of bits used to represent the data string {si} 
is  minimized.  Mathematically,  the  data  string  reduction  operation  is  represented  by  the  equation  in 
expression 1: 



Aigbe P., Nwelih E.- Journal of NAMP 67, 1 (2024) 9-20 

11 
 

𝐵(𝐶) = ∑ 𝑓 (𝑠𝑖 ) | 𝑐 (𝑠𝑖 ) |
𝑛

𝑖=1
 

 
Where 𝐵(𝐶) is the reduced set binary codewords, that is, bits  representation of the data string si. Therefore, 
paper centres on the study of given data encoding compression algorithm, that is, Huffman encoding or 
compression algorithm that generates binary bits to accommodate or store the data string s i in a reduced 
memory storage space. 
 

2. Methodology 
The steps in the two selected algorithms, that is, Huffman and Shannon Fano data encoding algorithms, are 
carefully analysed for the purpose of showing the operations of these algorithms at each stage. Tree data 
structure is used to demonstrate pictorially the different stages of data compression process with a sample 
data string. Tables are used to show the code word and code length generated per symbol or character of 
the sample data string in the compression process. These tables help determine the average code length 
representation of the sample data string by the two selected data encoding algorithms, and this is done using 
a simple established mathematical expression. The average code length per symbol of the sample data 
string  gives  an  insight  of  the  compression  ratio  performance  (CRP)  of  the  two  selected  data  encoding 
algorithms. The tree data structure generated at each stage of the analysis are used to derived the time 
complexity or running time of the two data encoding algorithms. The difference in running time of the two 
algorithms are established using their average time complexities. The performance difference of the two 
encoding  algorithms  is  reached  using  the  criteria  of  average  code  length  per  symbol  or  character, 
compression ratio performance (CRP), and average running time. 
 

3. Data Encoding Methods 
An  effective  mechanism  or  technique  of  achieving  data  deduplication  is  data  compression.   Data 
compression is the process of encoding information using fewer bits than the original representation. A 
particular  data  compression  operation  is  either  lossy  or  lossless  mechanism.    In  lossless  compression 
mechanism, bits reduction is done by identifying and eliminating statistical redundancy, and no data or 
information is lost in the process. Lossless compression is possible because most real-world data exhibits 
statistical redundancy. For example, an image may have areas of colour that do not change over several 
pixels. In this mechanism, compressed data can be reversed. Lossy compression mechanism reduces bits 
by  removing  unnecessary  or  less  important  information  resulting  in  some  form  of  data  loss.  A  data 
compression operation can also be carried by a device (Tanvi et al., 2019). A device that performs data 
compression is referred to as an encoder, and one that performs the reversal of the process (decompression) 
as a decoder. This means that a given data compression algorithm has two forms (encoding and decoding).   
For a given file or document of specific memory size to take less memory space, some form of encoding 
must be performed on the file or document. Encoding methods are of two types, and these are fixed length 
encoding and variable length encoding. 
i. In fixed length encoding, length of code for a character or symbol is fixed. 
 The fixed length encoding method has the following advantages and disadvantages: 
Advantages: 
a. Decoding of files or documents encoded with fixed length encoding method is faster as there is no 
need to determine the position of the codes. 
b. It is easy to encode and decode to compressed file or document  
Disadvantages: 
a. Inefficient. as a result of wastage of space. 
b. Uses more bits 
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ii. In variable length encoding, code representation for a given character or symbol is of variable length. 
The variable length encoding method has the following advantage and disadvantage: 
Advantages: 
a. An improvement over fixed length encoding method as a result space efficiency. 
b. Decoding of compressed file or document is with zero error. 
Disadvantages: 
a. Decoding of files or documents encoded with this method is more difficult since as a result of chances 
of ambiguity. 
b. Harder to encode and decode file or document. 
Huffman and the Shannon Fano encoding algorithms are two famous methods of variable length encoding 
for lossless data compression. 
 4. Huffman Compression Algorithm 
 Huffman encoding algorithm is a very popular algorithm for encoding data. Huffman encoding is a greedy 
algorithm, reducing the average access time of codes as much as possible. This method generates variable-
length bit sequences called codes in such a way that the most frequently occurring character has the shortest 
code length. This is an optimal way to minimize the average access time of characters. It provides prefix 
codes and hence ensures lossless data compression and prevents ambiguity (Manjeet, 2017). The following 
steps illustrate the Huffman encoding algorithm for the compression of string data: dddd yyy w r qqqqqq 
Step 1: 
The sample data string to be encoded for compression is dddd yyy w r qqqqqq 
Step 2: 
Calculating the frequency of every character in the data string including spaces. Hence frequencies = {'d':4, 
‘y:3, 'sp':4, 'w':1, 'r':1, ‘q:'6}. Space character is denoted as sp.  
Step 3: 
Create nodes of all the unique characters and their frequency. This is shown in Figure 2. 

 
Figure 2: Data string characters represented by nodes 
 
Step 4: 
At every step, select 2 nodes of least frequency and combine them to form node x of frequency equal to 
sum of selected nodes. This is shown in Figures 3a through 3d. 

  
Figure 3a: Creation of node x,2 

  
Figure 3b: Creation of node x,5 
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Figure 3c: Creation of node x,8 

  
Figure 3d: Creation of node x,11 
 
Step 5: 
At this step the final tree is obtained with the root node x,19 s shown in Figure 4. The tree can now be 
traversed to assign codes. 

  
Figure 4: Creation of a tree representation of the data string 
 
Step 6: 
Start traversing from the root node. Every path to the left of a node is assigned 0 and that to the right is 
assigned 1. The traversed tree with the assigned codes is shown in Figure 5. 

 

Figure 5: Traversed tree 
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Step 7: 
To generate the code word corresponding to a given character y, traverse the tree in Figure 5 starting from 
the  node  root  to  leaf  node  y.  The  code  word  will  be  the  numbers  encountered  on  the  path.  Hence  for 
character y in the data string, the generated code word or length is 110. Generally, the code generated for 
the sample data string is shown in Table 1. 

Table 1: Code Generated using Huffman Encoding Method 
 Symbol Code word Code Length 

w 1110 4 
r 1111 4 
y 110 3 
d 01 2 

sp (space) 00 2 
q 10 2 

 
4.1 Huffman Compression Algorithm Data Size Reduction Process 
Character is 1 byte long = 8 bits. In the given sample, the data string "dddd yyy w r qqqqqq" requires: 8x19 
= 152 bits, where 19 is the total number of symbols in the data string. Since 0 and 1 take only 1 bit each, 
with Huffman Encoding method, the data string requires code length for: d = 01 = 2 bit; y = 110 = 3 bits; 
q = 10 = 2 bits; w = 1110 = 4 bits 
r = 1111 = 4 bits; sp = 00 =2 bits. 
The total number of bits required to represent the compressed sample data string in memory is given by the 
expression as follows: 
𝑇𝑜𝑡𝑎𝑙 𝐵𝑖𝑡𝑠  = ∑ (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖𝑡ℎ 𝑠𝑦𝑚𝑏𝑜𝑙 ∗ 𝐶𝑜𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑖𝑡ℎ 𝑠𝑦𝑚𝑏𝑜𝑙) )𝑛

𝑖=1   (2) 
Using expression 2 for the sample data string, the total bits is computed as follows: 
Total bits = (d*2) + (y*3) + (w*4) + (r*4) + (sp*2) + (q*2)  
Total bits = (4x2) + (3*3) + (1*4) + (1*4) + (4*2) + (6*2) = 45 bits. 
The average code length to represent the compressed equivalent of the given data string, and is given by 
the expression 3 as follows: 
Average code length = Total no. of symbols / Total no. of bits     (3) 
Using expression 3 for the sample data string, the average code length is computed as follows: 
Average code length = 45/19 = 2.38. This means that the average code length is 2.38 bits per symbol as 
compared to 8 bits per symbol before encoding or compression. The compression ratio using the Huffman 
encoding algorithm for the compression of the given data string, can be computed with the expression given 
as follows: 
Compression Ratio = Total no. of Symbols (input) / Total no. of Bits (output)   (4) 
   = 45 / 19 
Compression Ratio = 2.38 
This value shows that the rate of compression of uncompressed data string to the compressed data string is 
approximately 3 to 1. This is the compression ratio performance (CRP) of the data compression algorithm. 
This is equivalent to the average code length of 2.38 bits per symbol as compared to 8 bits per symbol 
before encoding or compression. 
Similarly, the compression factor of Huffman data compression algorithm is computed as the inverse of 
the compression ratio, and this is given in expression 5. 
Compression Factor = (Total no. of Bits (output) / Total no. of Symbols (input)) * 100  (5) 
Using expression 5 for the sample data string, the compression factor is computed as follows: 
Compression factor = (19 / 45) * 100 

 = 0.42 * 100 
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   = 42%.  This value represents the percentage compression of the sample data string using 
Huffman data compression algorithm. 
 
4.2 Time Complexity analysis of Huffman Encoding Method 
Given n symbols to be represented by n nodes in a tree, the construction of a tree data structure for the n 
nodes takes O(n). Every iteration takes out two nodes and insert one node therefore, for n nodes, it takes n 
- 1 iterations to make the tree (Ardilus and Hertog, 2018). Using heap to store the weight of each tree, each 
iteration requires 2*(n - 1) times, that is, the time taken to determine the extraction of code of a given 
symbol with minimum frequency from the priority queue with the time complexity of O(log2 n), and this is 
average case of the algorithm, and to fetch code for all the nodes, the tree must be traversed in O(n) time 
(Kodituwakku  and  Amarasinghe,  2019).  Therefore,  the  worst  case  time  complexity  of  the  Huffman 
encoding method for data compression is: O(n) + O(log2 n) = O(n log2 n). 
 
5.   Shannon Fano Compression Algorithm 
Shannon Fano Algorithm is an entropy encoding method used for lossless data compression. It uses the 
probabilities of occurrence of a character and assigns a unique variable-length code to each of characters 
(Mohammed  and  Ibrahim,  2018).  If  x  is  a  character,  the  probability  of  x  is  given  by  the  following 
expression: 
Probability(x) = Frequency(x) / sum of frequencies.                  (6) 
Given the data string:  dddd yyy w r qqqqqq, the following steps illustrate the Shannon Fano encoding 
algorithm for the compression of string data. 
Step 1: 
The probability computation of each symbol or character that makes up the data string using expression (3) 
is shown in Table 2. 
Table 2: Probability Computation   

S/n Symbol Frequency Probability 
1. D 4 4/19 = 0.21 
2. Y 3 3/19 = 0.16 
3. W 1 1/19 = 0.05 
4. R 1 1/19 = 0.05 
5. Q 6 6/19 = 0.32 
6. Sp (space) 4 4/19 = 0.21 
7. Sum of Frequencies = 19  

The symbols or characters that constitute the data string are sorted in increasing  order of frequency  as 
shown Figure 6. 
 
 
Figure 6: Sorted symbols in terms of frequency 
 
Step 2: 
Divide the symbols or characters that make up the data string into two halves (left half and right half) such 
that the sum of frequencies is as close as possible as shown in Figure 7. 

   
Figure7: Division of data string into two halves 

r,0.05 w,0.05 y,0.16 d,0.21 sp,0.21 Q,0.32 
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Step 3: 
Repeat the step 2 for each half until individual elements are left (Ashok et al., 2017). The repetitions are 
shown in Figure 8a through 8d. 

            
Figure 8a: Division of x1 halves 

 
Figure 8b: Division of x2 and x3 halves 

            
Figure 8c: Division of x4 and x5 halves 
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Figure 8d: Final tree representation of the sample data string 
 
The generated code for the sample data string by traversing the final tree representation is shown in Table 
3. 
Table 3: Code Generated using Shannon Fano Encoding method 

Symbol Code word Code Length 

w 0000 4 

r 0001 4 

y 001 3 

d 01 2 

Sp (space) 10 2 

q 11 2 

 
5.1   Shannon Fano Compression Algorithm Data Size Reduction Process  
A character is 1 byte long = 8 bits (VidyaSayer and Victor, 2018). In the given sample, the data string 
"dddd yyy w r qqqqqq" requires: 8x19 = 152 bits, where 19 is the total number of symbols in the data 
string. Since 0 and 1 take only 1 bit each, with Shannon Fano Encoding method, the data string requires 
code length for: 
w = 1110 = 4 bits; r = 1111 = 4 bits; y = 110 = 3 bits; sp = 00 = 2 bits; d = 01 = 2 bit; 
q = 10 = 2 bits 
The total number of bits required to represent the compressed sample data string in memory is given by the 
expression (2) as follows: 
𝑇𝑜𝑡𝑎𝑙 𝐵𝑖𝑡𝑠  = ∑ (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖𝑡ℎ 𝑠𝑦𝑚𝑏𝑜𝑙 ∗ 𝐶𝑜𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑖𝑡ℎ 𝑠𝑦𝑚𝑏𝑜𝑙) )𝑛

𝑖=1      
Using expression (2) for the sample data string, the total bits is computed as follows: 
Total bits = (d*2) + (y*3) + (w*4) + (r*4) + (sp*4) + (q*2)  
Total bits = (4x2) + (3*3) + (1*4) + (1*4) + (4*2) + (6*2) = 45 bits 
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The average code length to represent the compressed equivalent of the given data string, and is computed 
using expression (3). 
Average code length = Total no. of symbols / Total no. of bits            
Using expression (3) for the sample data string, the average code length is computed as follows: 
Average code length = 45/19 = 2.38. This means that the average code length is 2.38 bits per symbol as 
compared to 8 bits per symbol before encoding or compression. 
The compression ratio of the Shannon Fano encoding algorithm for the compression of the given data 
string, can be computed with expression (4) as follows: 
Compression Ratio = Total no. of Symbols (input) / Total no. of Bits (output) = 45 / 19 
Compression Ratio = 2.38 
This value shows that the rate of compression of uncompressed data string to the compressed data string is 
approximately  3  to  1.  This  is  the  compression  ratio  performance  (CRP)  of  the  Shannon  Fano  data 
compression algorithm. This is equivalent to the average code length of 2.38 bits per symbol as compared 
to 8 bits per symbol before encoding or compression. 
Similarly, the compression factor of Shannon Fano data compression algorithm is computed as the inverse 
of the compression ratio, and this is given in expression (5). 
Compression Factor = (Total no. of Bits (output)/Total no. of Symbols (input)) * 100         
Using expression (5) for the sample data string, the compression factor is computed as follows: 
Compression factor = 19 / 45 

= 0.42. 
           = 42%.  This value represents the percentage compression of the sample data string 
using Shannon Fano data compression algorithm. 
 
5.2 Time Complexity analysis of Shannon Fano Algorithm 
The individual symbols that constitute the sample data string may be arranged in the increasing order of 
frequency or decreasing order of probability are repeatedly partitioned (Ahamad et al., 2019). The partitions 
carried out each time may be extremely unbalanced (Mahdi et al., 2016), for instance, if the probabilities 
are 0.06, 0.1, 0.11, 0.2, and 0.4, the recurrence relation is:  
T(n) = T(n – 1) + O(n) 
T(n) = O(n2)); This is the worst case of the Shannon Fano encoding algorithm for data compression. If the 
partition can be divided in such a way that their sizes are nearly equal [Sullivan et al., (2015, for instance, 
if the probabilities are 0.4, 0.7, 0.7, 0.5, the recurrence relation is: T(n) = 2*T(n/2) + O(n) 
T(n)  =  O(n*log2  n);  this  is  the  average  and  best  cases  the  Shannon  Fano  encoding  algorithm  for  data 
compression. 
 
6. Comparison of the Selected Data Compression Algorithms 
The selected encoding algorithms, that is, Huffman and Shannon Fano, for data compression are compared 
using the following criteria: 
a.  Average code length per symbol 
The average code length per symbol is computed using expression (2) for the sample data string given as: 
"dddd yyy w r qqqqqq" is 2.38 for the two algorithms. This means that the two data encoding algorithms 
take  approximately  2.38  bit  codes  to  represent  one  symbol  or  character  for  the  sample  data  string 
considered. 
b. Compression ratio performance (CRP) 
The  compression  ratio  performance  (CRP)  of  the  two  data  encoding  algorithms  is  computed  using 
expression (4). The value obtained is: 
   Compression Ratio = 45 / 19 = 2.38 
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This value shows that the rate of compression of uncompressed data string to the compressed data string is 
approximately 3 to 1. This is the compression ratio performance (CRP) which is equivalent or similar for 
the two data compression algorithm. 
c. Compression factor 
The  compression  factor  of  the  two  selected  data  compression  algorithms  for  the  sample  data  string 
considered is computed using expression (5) as follows: 
Compression Factor = (Total no. of Bits (output)/Total no. of Symbols (input)) * 100         
Compression factor = 19 / 45 = 0.42 = 42%.  This value represents the percentage compression of the 
sample data string using the both Huffman and Shannon Fano data compression algorithms. The two data 
compression algorithms exhibit similar compression factor. 
d. Running time: 
The analysis of the running time of the two encoding algorithms for data compression, that is, Huffman 
and Shannon Fano, shows that they take different running time to generate codes for input symbols. The 
time complexity of the two data encoding algorithms considered is shown in Table 4. 
Table 4: Complexity of Huffman and Shannon Fano Data Encoding Algorithms 

Data encoding Algorithm Time Complexity 
Best Time Average Time  Worse Time 

Huffman O(Log2 n) O(Log2 n) O(n*Log2 n) 
Shannon Fanon O(n*Log2 n) O(n*Log2 n) O(n2) 

 
The running time to generate codes for different input size using the two data encoding algorithms average 
time complexity is shown in Table 5. 
Table 5: Average Running Time of Huffman and Shannon Fano Data Encoding Algorithms 

S/N Input Size (n) Huffman Encoding 
Algorithm: t(n) = Log2 

n 

Shannon Fano Encoding  
Algorithm: t(n) = n*Log2 

n 
1 5 2.3219 11.6095 
2 10 3.3219 33.2190 
3 15 3.9065 58.5975 
4 20 4.3219 86.4380 
5 25 4.6039 115.9750 
6 30 4.9069 147.2070 
The computation in Table 5 shows that the Huffman encoding algorithm takes a smaller or shorter 

time in seconds to generate codes compared to the Shannon Fano encoding algorithm for the same input 
size using their average time complexity. The performance behavior is further shown in Figure 11: 

 
Figure 11: Average running time of Huffman and Shannon Fano encoding Algorithms 
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The graph in Figure 11 shows pictorially that given the same size of data of a specified amount of memory 
space  to  be  compressed,  Huffman  encoding  algorithm  compresses  the  data  in  a  superior  time  than  the 
Shannon Fano encoding algorithm.     
7. Findings 
 The analysis and evaluation performance of the two selected data encoding algorithms with the data string 
of the same memory size for compression results in the following findings: 

i.The Huffman encoding algorithm takes a shorter time than Shannon Fano encoding algorithm. 
ii.The Huffman and Shannon Fano encoding algorithms have the same average code length per symbol. 

iii. The Huffman and Shannon Fano encoding algorithms operates within the same range of compression ratio 
performance and compression factor. 
8. Conclusion 
Algorithmic analysis of the Huffman and Shannon Fano data encoding algorithms for compression reveals 
that  the  two  encoding  algorithms  have  the  same  characteristic  behaviour  in  terms  of  the  average  code 
generated per symbol or character as well as compression ratio performance (CRP) and compression factor 
based on the sample data string used for investigation. Evaluation of the two encoding algorithms based on 
time complexity shows that the Huffman encoding algorithm has a superior average running time over the 
Shannon Fano encoding algorithm when subjected to the compression of sample data string of the same 
size. 
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