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ABSTRACT 
Kinematic  wave  speed  represents  the  propagation  of  information  within 
traffic states. How well equilibrium functional form of an empirical 
fundamental diagram predicts this parameter determines how well a 
kinematic wave model replicates observed traffic phenomena during 
simulation. In the light of this, we investigated the kinematic wave speed 
prediction of some selected functional forms of an empirical fundamental 
diagram. GA400 data was used to calibrate the models and access their 
fitting accuracy. The first derivatives of the selected models were plotted 
against density, and the predicted jam density for each model was 
substituted into its derivative to determine its kinematic wave speed at jam. 
The results show that the newly proposed model [14] produces the most 
likely kinematic wave speed observe on GA400 highway followed the model 
[2 and 17] respectively. These result shows that the proposed model could 
be more suitable for dynamic analysis using kinematic wave model. 

 
1.0 Introduction 

Kinematic wave speed is an important dynamic parameter in dynamic analysis of traffic flow using 
continuum models. The kinematic wave speed originated from the kinematic wave model of Lighthill-
Whitham-Richard given by eqn. (1) & (2). It is the speed at which small disturbances (Traffic 
information) propagate within a traffic stream. It can be thought of as the limiting case of shock wave 
speed when the difference in densities of the two traffic states approaches zero. 

𝜕𝑘 (𝑥, 𝑡 )
𝜕𝑡 +

𝜕𝑞 (𝑥, 𝑡 )
𝜕𝑥 = 0                              (1)  

𝑞 = 𝑄 (𝑘 )                                                      (2) 
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Where, 𝑘  and 𝑞 are traffic density and flow respectively. 

Eqn. (2) which is called equilibrium fundamental diagram is deduced from the fundamental equation of 
traffic expressed as eqn. (3) by assuming speed, 𝑣(𝑥, 𝑡)  to be a function of density, 𝑘 (𝑥, 𝑡 )  only. 

𝑞 = 𝑘 (𝑥, 𝑡 )𝑣(𝑥, 𝑡)                                     (3) 

Substituting eqn. (2) in eqn. (1) leads to eqn. (4) given as: 

𝜕𝑘 (𝑥, 𝑡 )
𝜕𝑡 +

𝑑𝑄
𝑑𝑘

𝜕𝑞 (𝑥, 𝑡 )
𝜕𝑥 = 0                      (4)  

Eqn. (4) has a solution of the form: 

𝑘 (𝑥, 𝑡 ) = 𝐹 (𝑥 − 𝑐𝑡, 𝑡 )                                    (5) 

With 𝐹 being any arbitrary function and 𝑐 given as:  

𝑐 =
𝑑𝑄
𝑑𝑘                                                               (6) 

Eqn. (6) is the kinematic wave speed. It can be seen that kinematic wave speed is the first derivative of 
eqn. (2), the equilibrium fundamental diagram. Its value depends on the equilibrium fundamental 
diagram. Therefore, how accurate the functional form of any equilibrium fundamental diagram fits a 
given empirical fundamental diagram determines how well the kinematic wave model replicates the 
dynamics of the given traffic flow. It is in the light of this, that this research aims to investigate the 
kinematic wave speed of selected functional forms of equilibrium fundamental diagrams. The rest of the 
paper is organized as follows, section 2 provide the literature review on some selected fundamental 
diagram models, section 3 outlines the methodologies employed in the study, section 4 presents the 
findings, and section 5 presents the results discussion and conclusion. 

An explicit form of eqn. (2) started with the work of [1] and since then, tones of other functions have been 
proposed. This is owing to the importance of fundamental diagram in traffic flow management, control and 
analysis; and lack of a single successful model that accurately describe traffic states within all density 
range.  Literature has shown that existing functional forms of the equilibrium fundamental diagram perform 
poorly at mid and high densities. And, it is believed that it is at these density ranges that most interesting 
traffic phenomena arise [2], [3], [4].The debate as to whether the empirical fundamental diagram can be 
described  accurately  by  a  single  function  or  multiple  functions  representing  different  regions  on  the 
empirical fundamental diagram has remain active for many decades now. The lack of consensus among 
researchers is due to inability of any previously proposed model to consistently represent accurately the 
traffic states at all densities. This has led to two schools of thoughts - those that believe the fundamental 
diagram is continuous and hence can be represented by a single function [5,6] and those that believe that 
discontinuity exist and hence, there is the need for two or more functions [7,8,9] to correctly represent 
empirical fundamental diagram. 

Single-Regime  fundamental  diagrams  are  fundamental  diagrams  represented  by  a  single  mathematical 
expression.  Their  greatest  attraction  is  mathematical  elegance.  Some  of  the    recently  proposed  single-
regime models include Five-Parameter logistic model by  [10], longitudinal control model by  [11], and 
models by [12], [13], [2], [14]. Multi-regime fundamental diagram on the other hand requires two or more 
mathematical functions to correctly represent empirical fundamental diagram. [8] was the first to propose 
a  multi-regime  fundamental  diagram.  Two  mathematic  functions  were  used  in  his  work  –  Greenberg 
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logarithmic function [15] used to describe congestion regime and Underwood exponential function [16] 
used to describe free-flow regime. Since the work of Edie, many more multi-regime models have been 
proposed for various purposes. Two of these models that are investigated in this research are presented in 
Table 1 alongside some selected single-regime models. 

 Table 1 
Some Selected Single-regime and Multi-regime Models 

Author(s) Functional Form Parameters 
[17]  𝑞 =

𝑣
𝑐1 + 𝑐2

𝑉𝑓 − 𝑣 + 𝑐 3𝑣
     𝑜𝑟 

 𝑞 = 𝛼 (1 − 𝛽𝑘
− (( 𝛾𝑘 − 1 )2

+ 𝛿𝑘 2)1 2⁄ )   𝐵𝑟𝑎ℎ𝑚𝑖𝑐 𝑒𝑡 𝑎𝑙, (2022)  

𝑉𝑓 , 𝑐1 , 𝑐2 , , 𝑐3  
 
 
 

𝛼, 𝛽, 𝛾, 𝛿 

[10]  

𝑞 = 𝑘

(

 𝑉𝑏 +
𝑉𝑓 − 𝑉𝑏

[1 + 𝑒𝑥𝑝 ( 𝑘 − 𝑘 𝑡
𝜃1

)]
𝜃2

)

  

𝑉𝑓 , 𝑉𝑏 , 𝑘𝑡 , 𝜃1 , 𝜃2  

[13] 

𝑞 = 𝑉 𝑓 𝑘
( 1 − ( 𝑘

𝑘𝑗
)

𝑎
)

𝑏

1 + 𝐸 ( 𝑘
𝑘𝑗

)
𝜃  

𝑉𝑓 , 𝐸, 𝑘𝑗 , 𝜃, 𝑎, 𝑏 
Parameter 𝑏  was 
fixed at 1 

[13]  

𝑞 = 𝑉 𝑓 𝑘

[
 
 
 
 
 ( 𝑒 −( 𝑘

𝑘 𝑐
)

(1+𝑎 )

− 𝑒 − (
𝑘 𝑗
𝑘 𝑐

)
(1+𝑎 )

)

1 − 𝑒 − (
𝑘 𝑗
𝑘 𝑐

)
(1+𝑎 )

]
 
 
 
 
 
𝑏

 

𝑉𝑓 , 𝑘𝑐 , 𝑘𝑗 , 𝑎, 𝑏 
Parameter 𝑏  was 
fixed at 1. 

[2]  𝑞 =
𝑉𝑓 𝑘

[1 + ( 𝑘
𝑘 𝑐

)
𝑚

]
2 𝑚⁄  

𝑉𝑓 , 𝑘𝑐 , 𝑚 

Proposed [14]  𝑞(𝑘 ) = 𝑉𝑓 𝑘 [0.35 (1 − (𝑔 (𝑘 )) 𝑛−1 )

+ 0.65 {1 − (𝑔 (𝑘 )) 𝑛−1 }
2𝑛

]     

𝑔 (𝑘 ) = 1 −
1.2(𝑘 𝑗

𝑛 − 𝑘 𝑛−1 𝑘𝑗 )
(1.2 1 𝑛⁄ 𝑘𝑗 + 𝑘) 𝑛  , ∀𝑛 ∈ ℛ: 𝑛 > 1     

𝑉𝑓 , 𝑘𝑗 , 𝑛 

[8]  

𝑞 = {
𝑉𝑓 𝑘𝑒𝑥𝑝 − 𝑘

𝑘 𝑚          𝑘 < 𝑘 𝑏

𝑉𝑚 𝑘𝑙𝑛
𝑘𝑗
𝑘                   𝑘 ≥ 𝑘𝑏

 

𝑉𝑓 , 𝑘 𝑚 , 𝑉𝑚 , 
 𝑘𝑗 ,  𝑘𝑏  

[7] 
𝑞 = {

𝑉𝑓 𝑘 − 𝑐𝑘 2                         𝑘 ≤ 𝑘𝑏

𝑣𝑏𝑤 𝑘 − (
𝑣𝑏𝑤
𝑘𝑗

) 𝑘 2                   𝑘 > 𝑘𝑏
 

𝑉𝑓 , 𝑐, 𝑣𝑏𝑤 , 
 𝑘𝑗 ,  𝑘𝑏  
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2. Methodology 

2.1 Models selection 
The equilibrium functional forms of empirical fundamental diagram selected for this study and given 

in Table 1 were selected on the following basis: 1. The Edie multi-regime model, Drake et al.’s two-regime 
model, Wang et al five-parameter logistic model, and van Aerde model were selected because of their 
performance ranking according to the comprehensive comparison study by [18], [19]. 2. The remaining 
models considered in this research were selected because they are relatively new and were not covered in 
the comparative study by [18, 19]. 

 
2.2 Model Calibration 

GA400 data set was used for the calibration because it is fairly complete. It has data points in all 
operational state of traffic. Least square technique was used via Levenberg-Marquardt algorithm in python. 
Fitting accuracy was determined using the error metrics presented in eqns. (7), (8), and (9). 

𝑀𝑒𝑎𝑛 𝑠𝑞𝑎𝑢𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) =
1
𝑁 ∑ (𝑦𝑒𝑖 (𝑘) − 𝑦 𝑚𝑖 (𝑘) )2

𝑁

𝑖=1
                    (7) 

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑎𝑢𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸 ) = √ 1
𝑁 ∑ (𝑦𝑒𝑖 (𝑘) − 𝑦 𝑚𝑖 (𝑘) )2

𝑁

𝑖=1
    (8)  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 (𝐴𝑅𝐸) =
1
𝑁 ∑

|𝑦𝑒𝑖 (𝑘 ) − 𝑦 𝑚𝑖 (𝑘 )|
| 𝑦𝑚𝑖 (𝑘 )|

𝑁

𝑖=1
             (9) 

𝑦𝑒𝑖 (𝑘 ), 𝑦𝑚𝑖 (𝑘) , and 𝑁  are experimental or observed values, model’s predicted values, and number of data 
points respectively. These are preferred because they are the most common used metrics to measure fitness 
statistically. 
2.3 Kinematic wave speed determination 
 To determine the kinematic wave speed, first derivative of all the selected models were determined 
(Table 2) and graphed against density. Kinematic wave speed at jam density was determined for models 
that predict jam density by substituting the values of jam density predicted. 
Table 2 
First and Second Derivatives of the Models being compared 

Model Derivatives  
Proposed 
[14] 

First 𝑞 ′ =   𝑉𝑓 [0.35(1 − (𝑔 )𝑛−1 ) + 0.65 {1 − (𝑔 )𝑛−1 }2𝑛 ]
− 𝑉𝑓 𝑘 (𝑛 − 1 )𝑔 ′ (𝑔 )𝑛−2 [0.35
+ 1.3𝑛 {1 − (𝑔 )𝑛−1 }2𝑛−1 ] 

𝑔 ′ (𝑘) =
1.2(𝑛 − 1 )𝑘𝑗 𝑘 𝑛−2 + 1.2𝑛(𝑘 𝑗

𝑛 − 𝑘 𝑛−1 𝑘𝑗 )(1.2 1 𝑛⁄ 𝑘𝑗 + 𝑘) −1  
(1.2 1 𝑛⁄ 𝑘𝑗 + 𝑘) 𝑛  

𝑔(𝑘 ) = 1 −
1.2(𝑘 𝑗

𝑛 − 𝑘 𝑛−1 𝑘𝑗 )
(1.2 1 𝑛⁄ 𝑘𝑗 + 𝑘) 𝑛  

Wang 
5PL 

First 

𝑞 ′ (𝑘 ) = (𝑉 𝑏 +
𝑉𝑓 − 𝑉𝑏

[1 + 𝑒𝑥𝑝 ( 𝑘 − 𝑘 𝑡
𝜃1

)]
𝜃2

) − 𝑘
(𝑉𝑓 − 𝑉𝑏 )𝜃2𝑒𝑥𝑝 ( 𝑘 − 𝑘 𝑡

𝜃1
)

𝜃1 [1 + 𝑒𝑥𝑝 ( 𝑘 − 𝑘 𝑡
𝜃1

)]
𝜃2 +1  
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Modified 
Lee 

First 

𝑞 ′ (𝑘 ) = 𝑉𝑓

(1 − (𝑎 + 1) ( 𝑘
𝑘𝑗

)
𝑎

)

1 + 𝐸 ( 𝑘
𝑘𝑗

)
𝜃 −

𝑉𝑓 𝐸𝜃
𝑘 𝜃 (𝑘 𝜃 − 𝑘 𝑎+𝜃

𝑘𝑗
𝑎 )

(1 + 𝐸 ( 𝑘
𝑘𝑗

)
𝜃

)2
 

Gaddam 
& Rao 

First 𝑞 ′ (𝑘 )

= 𝑉𝑓

( 𝑒−( 𝑘
𝑘 𝑐

)
(1+𝑎 )

− (1 + 𝑎) ( 𝑘
𝑘 𝑐

)
(1+𝑎 )

𝑒−( 𝑘
𝑘 𝑐

)
(1+𝑎 )

− 𝑒 − (
𝑘 𝑗
𝑘 𝑐

)
(1+𝑎 )

)

1 − 𝑒 − (
𝑘 𝑗
𝑘 𝑐

)
(1+𝑎 )  

Cheng  et 
al. 

 

𝑞 ′ (𝑘 ) =
𝑉𝑓

[1 + ( 𝑘
𝑘 𝑐

)
𝑚

]
2 𝑚⁄ −

2𝑉𝑓
𝑘
𝑘 𝑐

( 𝑘
𝑘 𝑐

)
𝑚−1

[1 + ( 𝑘
𝑘 𝑐

)
𝑚

]
2 𝑚⁄ +1

 

Edie First 

𝑞 ′ (𝑘 ) =

{
 

 𝑉𝑓 (1 −
𝑘

𝑘 𝑚
)𝑒𝑥𝑝 − 𝑘

𝑘 𝑚          𝑘 < 𝑘 𝑏

𝑉𝑚 (𝑙𝑛
𝑘𝑗
𝑘 − 1)                 𝑘 ≥ 𝑘 𝑏

 

Drake First 
𝑞 ′ (𝑘 ) = {

𝑉𝑓 − 2𝑐𝑘                        𝑘 ≤ 𝑘𝑏

𝑣𝑏𝑤 − 2 (
𝑣𝑏𝑤
𝑘𝑗

) 𝑘                  𝑘 > 𝑘 𝑏
 

Van 
Aerde 

First 𝑞 ′ (𝑘 ) = 𝛼 (−𝛽 − (( 𝛾𝑘 − 1 )2 + 𝛿𝑘 2 )−1 2⁄ ((𝛾𝑘 − 1 )𝛾 + 𝛿𝑘))  

 
3. Results 
The results of this research are presented in charts, graphs, and tables for compactness, easy reference, and 
clarity. Firstly, the calibration  results are presented, Fig. 1 & 2, and Table 3. These explain the fitting 
accuracy of each model. Lastly, the kinematic wave speed results are presented in Fig. 3 and table 4. 
 
3.1 Calibration Results 
 

  
Figure 1 Group bar chart of the statistical metrics used to measure model fitness to empirical data 
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Fig. 2. Graph of the optimized models and average curve of the GA400 data 

Table 3  
Estimates of the parameters using LM algorithm and GA400 data 

Models Parameters  Parameter Values   

Proposed 

Model 

Parameters 𝑉𝑓  𝑘𝑗  𝑛    

Initial 100.00 160.00 4.00   

Optimized  105.76 176.89 5.31   

Wang   5PL 

Model 

Parameters 𝑉𝑓  𝑉𝑏  𝑘 𝑡  𝜃1  𝜃2  

Initial  104.00 9.00 17.00 2.10 0.07 

Optimized 103.49 9.00 13.90 1.29 0.04 

Edie  Multi-

Regime 

Model 

Parameters 𝑉𝑓  𝑉𝑐  𝑘 𝑐  𝑘𝑗  𝑘 𝑏  

Initial 104.00 65.00 30.00 175.00 20.00 

Optimized 118.96 43.83 76.27 118.73 20.00 

Cheng 

Model 

Parameters 𝑉𝑓  𝑘 𝑐  𝑚    

Initial 105.00 65.00 4.00   

Optimized 111.45 30.40 2.45   

Gaddam 

Model 

Parameters 𝑉𝑓  𝑘𝑗  𝑘 𝑐  𝑎   

Initial  105.00 179.00 65.00 0.60  

Optimized 138.95 820.27 37.75 0.07  

Modified 

Lee Model 

Parameters 𝑉𝑓  𝑘𝑗  𝐸 𝜃 𝑎  

Initial 105.00 179.00 10.30 2.14 4.00 

Optimized  115.59 151.60 24.87 2.11 131.83 
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Drake  Two 

Regime 

Model 

Parameters 𝑉𝑓  𝑘𝑗  𝑘 𝑏  𝑐 𝑣𝑏𝑤  

Initial 105.00 80.00 25.00 5.00 -15.00 

Optimized  120.26 114.72 25.00 1.52 65.62 

van Aerde 

Model 

Parameters 𝛼 𝛽  𝛾 𝛿  

Initial 1000.00 0.007 0.050 0.5000  

Optimized  1098.56 -0.044 0.051 0.0002  

 

3.2 Kinematic wave speed Results 

 
Fig. 3. Graphs of first derivatives against density of the compared models  

Table 4 
Predicted Kinematic Wave Speeds at Jam density for GA400 ITS data set 

S/n Model Kinematic Wave 

Speed (km/hr) 

1 Proposed Model −19.50  

2 Wang  5PL Model Nil 

3 Edie Multiple Regime Model −13.96  

4 Cheng Model Nil 

5 Gaddam Model −5.9 × 10 −9  

6 Modified Lee Model −221.04  

7 Drake Two Regime Model −65.62  

8 van Aerde Model −9.79  
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Note: Nil indicates that the model does not estimate kinematic wave speed 
4. Discussion  

 From Fig. 1, it can be observed that the proposed model has the least error, irrespective of the error 
metric, followed by the models of van Aerde and Cheng et al. respectively. This clearly shows that the 
proposed model [14] fits GA400 data better. Furthermore, Fig. 2 shows that the proposed model could 
predict the equilibrium traffic state more accurately across all the branches of traffic operation – free-flow, 
transition, and congestion branch. While van Aerde’s model shows relatively good performance in this 
aspect, it appears to under estimate the equilibrium capacity and speed  at high densities. All the other 
models over estimate the traffic states at mid densities and under estimate the traffic states at high densities. 
Table 3 gives the parameters estimate of the models. It can be observed that all the models predict free-
flow speed values that are within the observed range of values [10] and those that can predict jam density 
equally estimates acceptable values except the model of Gaddam and Rao that predicted unrealistic values. 
This result therefore implies that the kinematic wave speeds that the proposed model predicts could reflect 
the actual kinematic wave speeds observed on GA400 highway. 

Fig. 3 gives the first derivative of the flow-density functional forms of the models against density. It can 
be observed that all the models have positive rates before the predicted critical densities and negative rates 
after the critical densities. This shows that the functions are monotone increasing at the right branch of the 
flow-density curve up to capacity and monotone decreasing on the left branch up to jam density [2]. The 
proposed model predicts a critical density of 27veh/km and the [17], [13] and [2] models equally predicts 
critical density values of 26veh/km, 21.5veh/km, and 31.5veh/km respectively. These values are closed to 
that of the proposed model and also appear realistic when observed from Fig. 2. Every other model predicts 
an unrealistic value, particularly the multi-regime models.  The kinematic wave speed for densities less the 
critical densities is positive i.e. the positive quadrant of Fig 3. This means that small disturbances travel in 
the  direction  of  the  traffic  flow.  However,  beyond  the  critical  densities,  the  kinematic  wave  speed  is 
negative implying that small disturbances travel against the direction of travel of traffic flow. 

Given that the proposed model produces the correct kinematic wave speeds owing to its fitting accuracy as 
discussed above, the model with the next good performance is van Aerde’s model going by Fig. 3.  This is 
not surprising as the model is the next most accurately fitted after the proposed model. However, after the 
critical density the model appears to predict a constant kinematic wave speed which is unrealistic. The trend 
of kinematic wave speed of the proposed model is worth noting. Immediately after critical density, the 
kinematic wave speed falls rapidly until it reaches minimum and then begins to increase again for some 
densities and thereafter, falls again steadily. This trend is consistent with field and simulation observation 
and  the  microscopic  basis  for  this  is  some  sequences  of  acceleration,  deceleration,  and  car-following 
processes leading to possibly different capacities [3]; hence the appearance of the reverse lambda shape of 
which the proposed model clearly captures (Fig. 2). Similarly, the modified Lee’s models seems to follow  
the same trend, kinematic wave speed only begins to fall again  after increasing far away from critical 
density which implies that reversed lambda shape is formed far away from capacity and this is unrealistic. 
Lastly, the trend of Wang et al.’s model is interesting as well. The model’s kinematic wave speed increases 
until it becomes positive at some high densities. This is completely awkward because this implies that 
drivers ahead receive information from those behind contrary to the unidirectional flow of information 
across traffic particles. This may be connected to the undesirable backward-bending phenomenon of the 
model at high densities as observed by some authors [2], [20]. 

The proposed model predicts a kinematic wave speed at jam of about -19.5km/hr annotated by the red line. 
This kinematic wave speed’s value falls within the observed range for United States[2]. Moreover, all the 
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models apart from the proposed model predict kinematic wave speed at jam outside the narrow range of -
18km/hr to -20km/hr observed in the United State. 

Conclusion 

 The kinematic wave speed prediction of some selected functional forms of an empirical fundamental 
diagram has been investigated and compared in the light of their fitting accuracy. Proposed model [14] 
predicts more realistic kinematic wave speeds at all densities followed by van Aerde’s model and Cheng et 
al’s models respectively. These shows that these models are likely to replicate field observation better 
during simulation using kinematic wave model. 
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