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1.0 Introduction

One of the most important equations in finance is the Black-Scholes (B-S) equation. This is because it allows
for accurate pricing of options [1]. The B-S equation is a partial differential equation that is made up of two
constants and two variables. The constants are r, the risk-free interest rate, assumed to be constant in time
and o, the volatility of the underlying asset, while the variables ar#/(z, s) , the value of the tradable
derivative and s(x, ) , the value of the underlying asset s at time ¢, which is assumed to follow geometric
Brownian motion. In real market, some of the assumptions of B-S equation do not hold, hence, Merton [2]
using stochastic calculus extended the model by removing some of the assumptions. Many ways of pricing
options based on the B-S model have been investigated.
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Han and Wu [3], Ehrhardt and Mickens [4], and Jeong et al. [5] used finite difference method on American
option pricing governed by the B-S equation. This method was extended by Cen and Le [6] for a generalized
B-S equation. The Stratonovich calculus was applied by Perelloa et al. [7] to derive the B-S equation. The
fitted finite volume spatial discretization and an implicit time stepping method for B-S governing option
pricing was introduced by Wang [8]. Jodar et al. [9] applied Mellin transform to the solution of B-S
equation. Ad hoc B-S approach was used by Berkowitz [10] to outperform the B-S formula out-of-sample.

A new successive over-relaxation method was developed by Li and Lee [11] to calculate the B-S implied
volatility. A new second-order exponential time differencing method was used by Yousuf et al. [12] for
pricing American option with transaction cost. An upwind finite difference method was applied by

Lesmana and Wang [13] to the solution of nonlinear B-S equation under transaction cost. The same method
was applied by Tagliani and Milev [14] in discrete monitored barrier options. A reduced basis method for
pricing options based on B-S and Heston models was introduced by Burkovska et al. [15]. A new operator
splitting method for solving fractional B-S under American options was presented by Chen et al. [16].
Hence, there is need for a method that can analyze functions defined on unbounded domains and offering
insights into their frequency components. Fourier transform is a powerful method of solving the Black-
Scholes equation. The reason being that it provides a complete solution method that is normally not
explored in financial mathematics. It maps a function defined on physical space to a function defined on
the space of frequencies whose values quantify the amount of each periodic frequency contained in the
original function. This work deals with the analytical solution of B-S equation using the Fourier Transform
method and its application in the valuation of cash-or-nothing binary options.

2.0 Fourier Transform

One-dimensional Fourier transform & (g(x))(4) of a function g(x) such that IR dx lg(x) 17 < oo is
defined by

F@))(W) =g (A)
1 —iAx
= Efm dxe ™™ g(x) , 1)
where i = -1 . The inverse Fourier transform is defined by
F'EONHkx) =g (x)
1 x ~
= e dhe™ 20) . €y
The Fourier transform of the n-th derivative of a function g is given by
F ("W (x)) (A) = (iIM)"F(g(x)A) . 3

The property in equation (3) can be proven by successive integrations by parts. That is for two functions
fand g with the appropriate regularity properties,

Ifs ' =fe- [f's, (3a)

where £ denotes the derivative of f .
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Proof of Equation (3)

From equation (1) and the regularity condition [, dx 1g(x) 1* < co, it follows that & (g™ (x)) (A) =
1

EIR dx e 7** g™ (x) . From equation (3a),

I (g(n) (x) 1) =- «I%IR dx (—=id) e—iAx g(n—l) (x)

= (iA)(-1 )J%IR dx (=il ) e ™ g2 ()

= (1) F(g(x))(),
which establishes equation (3).

Convolution Theorem: The convolution theorem states that the Fourier transform of the convolution
product of two functions fand g is equal to the product of the Fourier transforms of fand g . Hence, if
we denote by f= g the convolution product of fand g:

1
(fxg )x) = =g dyf (x=y )80 , C)
then the Fourier transform of the convolution product is

Ff«g)=FNF () . (5)
Proof of equation (5)

From the right hand side of equation (1) and equation (5), we have

FAR) = 7=, dae™ fia) =], dbe " gb)

! —il (a
= = Jpodadbe P fiayg(b) (5a)
By change of variables r=a + b, s =a,dadb = |Jlds dt where the Jacobian of the transformation is
=1 } (1)I =1 , then from equation (4), equation (5a) becomes

o 1 iy 1

Ff)Hg) = EJR dte M EIR ds f(t — 5)g(s)
From equation (1), #(f )% (g) = # (f= g ), which establishes the convolution theorem of equation (5).
3.0 Reducing Black-Scholes equation to a diffusion equation

The Black-Scholes partial differential equation is written as [17]

w1 92w oW
_t+ EGZSZBS—Z+FS K—I’WZO,SZO,IE[O,T] , (6)
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where W(s, r) is the value of the option, s the price of the underlying asset, ¢ the time, T the expiration
date, o the volatility of the underlying asset and r the risk-free interest rate. Let r and ¢ be constants in
equation (6), then by change of variables

s=2e ¥, (71)
W(s, t) =Aw(x, 1) , (7ii)
"o 2
- (7ii)

We therefore obtain the partial derivatives of W(s, ) and substitute them back in equation (6). From

. ..y OW ow ot . .oy OT o?
equation (7ii), > = A o But from equation (7iii), = S Hence,
oW o2 ow .

o T T (81)
From equation (7ii)
W dwar
ds  ox Os
dw 0 s
A ow ..
= ;g (811)

From equation (8ii),

A 3w
s2 ox s ds ox

=- S taanT (8ii)

Substituting equations (8) into equation (6) gives

o2 ow 1 5 9 A ow 292w A ow
—A 28r+2 (_ s28x+szax2)+rs Sax—er—O : (9)
.. . . o2 ow 92w ow 2r ow 2rw
Divide both sides of equation (9) by A S to have — Tt Tt ST 0.
Hence,
ow 0w 2r ow 2r
-zt (D - 5w (10)
Define
2r .
a= —- 1 (11i)
and
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2r

b=- ;:—(1+a) . (11ii)
Equation (10) becomes

ow 92w ow

e ax—2+a g+bw. (12)

We then reduce equation (12) to a diffusion equation. The solution of equation (12) is of the form

w(x, ) =1 (t)m(x)px, 7). (13)

We then obtain the partial derivatives of w(x, t). That is

aa—v: = (9, )mp +Im (d,p) (14i)
aa%= 1 (dym)p +1Im (0,p) (14ii)
E;,ZC—V§=1(3X2171)19+2I (9,m)(9,p) +Im (3?2p), (14iii)

where 97 [ = ngj. Substituting equations (14) in equation (12) gives
(0. )mp +1Im (9,p) =1(37m)p + 21 (,m)(d,p) + Im (97 p)
+al (0, m)p +alm (d,p) + bl (t)m(x)p(x, 7). (15i)
From equation (13), we have
(0. )mp +Im (9,p) =1(3Zm)p +21 (,m)(d,p) + Im (9Zp)
+al (d,m)p +alm (d,p) + blmp . (15ii)
Equations (15) can be satisfied if / and m are of the form
I(7) = Ae '@ (16i)
m(x) = Be " (16ii)
where A € R and B € R are constants. Therefore,
3,1(1) = ,1(r) » Ae®
=1@ 1) (17)
d,m(x) =0 ,mi(x) + Be "™
=m (0,7i) (17ii)
02m(x) =m (92m) +m (9,1 )>. (17iii)

Substituting equations (16) and (17) in equation (15) gives
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100, 1)mp +Im (9,p) =pl (md Zrit) + lpm (9,1 )* + 2lm (9,1 )(9,p)
+Im (92p) + alpm (9,.1mM) + alm (9,p) + bimp . (18)
Divide both sides of equation (18) by /m and collect like terms to have

(0,p) = (3%p) +9,p{2(d,m) +a }

+p{=@ D+ (32m) + (3,1)? +a (D) + b} . (19)

In order to make equation (19) a diffusion equation, we let 2(d, M) +a=0 ord,m =— g, which gives
m(x) =— %+A (201)
and
—@, 0+ (32A) + (3A) 2 +a (3, ) +b=0
2, a? a? A al

implies that —(d , ) + S -5 +b=0 or 0,l-=b - - Hence,

A 2

lr)=(b- J)T+B, (20ii)

where A € R and B € R . From equations (11) and (16), we have

a2
_(T+a+l )T B

I(7) =Ae 1) =Ae

m(x) = Be m(x) = Be (P, et
Equation (13) becomes

a2 a
_(T+a+l )re_( E)X

w(x, 1) =Ae px, 7). (21)

Substituting equation (20) in equation (19) gives

2 2
a,p:afporzi;—a—f’ xeR,7€l0, GZ—T]. (22)

T oox 2’

From equations (7), (21) and (22), we have

p _ %
or  ox?2
s=Ae *
(72

T= (T_l)T 2
W(s, t) =Aw (x,7) =Ae - Grard )re_( E)xp()c, 7) (23)
a= 2—2— 1.

(62

3.1 Solving the resultant diffusion equation
Equation (23) with initial condition p(x, 0) is then solved using Fourier transforms. Hence, by definition

52



Adindu-Dick J.I.- Journal of NAMP 67, 1 (2024) 47-56

F &)= (iHFp@) @)

= (id) J%IR dr e p(7) .

But #(p) = p(A) which is the Fourier transform of the function p with respect to the variable 7. Hence,
the Fourier transform of equation (23) is

L = (1)

=-1 2p. (24)

Solving equation (24) by separation of variables gives

Inp=-1 2t+c

pOLD =5 (4, 00e™7, (25)
where 5 (4, 0) is the Fourier transform of the initial condition for p which corresponds to the terminal

condition at expiry =T of the option. In order to find the solution for p(x, ) , we apply the inverse
Fourier transform of equation (25). Let

Fp)=pi=e *7 (26i)

Hp2) =ps=p (4,0). (26ii)
Then equation (25) becomes . .

P4, 1) =pi(A Dp3(4, D). (27)

By convolution theorem, the inverse Fourier transform of equation (27) becomes
p(x, ) = (p1 *p2)(x, 7)
1
= =)z P 1(x=C0)pa(C D). (28)

Next, we derive the inverse Fourier transforms of equations (26i) and (26ii). From the definition of
inverse Fourier transform, we have

Tl ey = J%fR di e 7 ¢=7T (29)
By completing the square, we require that
A2t+ilx=A (A+B)?>+c, (30)

where A, B and ¢ are to be determined. Equating coefficients of like terms we have -t = A, ix =
i 2
2ABand AB 2 +¢=0. Thatis,A=—-7 ,B= % and ¢ = :T. Substituting the values of A, B and ¢ in

2
equation (30) gives — (A — %) - z—r =—A %7 +ilx . Hence, e~

x?

2
L ; 2 .
30 iz ik Pt Equation (29)

becomes
1 a2 1 o X7 o_xf
F e )= \/T_nfR dhe ™ 2 o,
By factorization, we have
x2 ix 2
FV (e Ty = \/%e_ﬂfR dhe ™ W (31)
By change of variables, let { = V7 (A — ;ir) and % = /7, which implies that d{ = dA N7 and dA =

%dg . Equation (31) becomes

. 127 |- | 2
gl(e A ) = \/T_ne 4TJ_?IR dge ¢
2
1 X 2
==e " fR dce™". (32)

In evaluating the integral [, d{e ~ * wenote that { = (;,%) € R2. Hence,
2 2
Jppdse =7 = [, dby [y d5y e T
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= Jp doie T [ dby et

2
=(fp de=™) . (32i)
Similarly, using polar coordinates { = ({;, %) =r (cos 0, sin 0) and d{ d(, = rdrd® where r €
[0, ), O € [0,277] we have

fRZ die™ o fom drr fozn de ="
=2 fooo drre ™"’

=21 [ d(- se7)

=7. (32ii)
From equations (32i) and (32ii),
Jp die™ =z (33)
Substituting equations (33) in equation (32) glves
F ey = —e 4f(«/n)
%2
= Ee Tar,
That is,
2
o~ 1 = .
T (p)=p, = ¢ " (341)
Similarly, from equation (26ii)
F () =p2=p (x,0). (341)

Substituting equations (34) in equation (28) gives
p(x,7) = ‘12 = & =

(x=¢ )
- = d@exp - =—1r&0). (35)
4.0 Application to cash-or —nothing binary options
Consider a binary option whose payoff at expiry is given as:

. 1, mone
payoff at expiry = { 0 otherwisey'

The initial condition reads

@p(s—4) for a call,
@ (s —A) for a put,

where @(a) is the Heaviside distribution which isOifa<0 and 1 if ¢ >0 . Equation (36) can be

expressed in terms of the new variables from equation (23). That is, using the properties that ¢ (fa) =

@(a) forpeR*,e*—1>0 ifandonlyifx>0 and 1 - ¢ (x) = @(—x) , we have from equation (23)

that

W(s, T) = { (36)

p(s=21)=¢ (le* = 1)
=g (e* —1) —fp(X) (37)

(4+a+1 )T _( )x

Hence, from equation (23), we have W (s, t) = Ae p(x, 7). But 7 =0 implies that

2
T _ 0, which means that 7 =¢. Therefore, W(s, T) = Ae ~ (3 * p(x, 0) or

2
p(x,0) = —e(2)x W(s, T) . From equation (37) we have

p(x,0) = —e(Z)x @(nx) , (38)
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where 7 =1 foracalland »=-1 for a put. Substituting equation (38) into the general solution
(equation 35) gives

plrr) = Lo [ dbexp (= S0y e T i) (39)
By change of variables, let ¢ = 5 and de = —. Equatlon (39) becomes
p(x,7) = % [, ndeexp (= S} B g %)
= %«I_I nde exp {- M}e(2)£'7 @(€)
= 1 _f de exp {— Ca 877 i —}e 3 2 (40)
From [18],
1 00 (x—en )2 Lyep x+ar
Tl deexp (= S} PT = O Do 50, (41)

where @ denotes the cumulative standard normal distribution fUIlCtIOIl Substituting equation (41) in
equation (40) gives

pla) = LD Do (2. (42)
Substituting equation (42) in equatlon (23) glves
2

W(s,t) =e ~(Gratl )T (5 %e(%)(ﬁ )q)( xtaz o)

x+ar

=ne N 0 (p o).
From equation (23), we have
W(s, t) =ne T @ (n T =)
=ne T CD(nd ), (43)
where d| = xj‘%
Conclusion

Fourier transform is a powerful method of solving the Black-Scholes equation. The reason being that it
provides a complete solution method that is normally not explored in financial mathematics. After obtaining
the solution for the general derivative via the Fourier transform, the valuation of cash-or-nothing binary
options was performed. For a call option with 7 =1, one gets as expected the discounted risk neutral
probability that the stock price s is above A at time 7. Similarly, for a put option withz =—1 , one gets the
discounted risk neutral probability that the stock price s is below 4 at time 7.
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