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ABSTRACT 

This  work  deals  with  the  explicit  closed-form  solution  of  Black-Scholes 

equation  and  its  application  to  cash-or-nothing  binary  options.  We  first 

transform the Black-Scholes equation into a diffusion equation by change of 

variables. We then apply the Fourier Transform method to find the general 

solution of the diffusion equation. Finally, we establish an explicit closed-

form solution for binary options. Hence, for a call (put) option, one gets the 

discounted risk neutral probability that the stock price is above (below) the 

strike price at time, 𝑇.  

 
1.0 Introduction 

 
One of the most important equations in finance is the Black-Scholes (B-S) equation. This is because it allows 
for accurate pricing of options [1]. The B-S equation is a partial differential equation that is made up of two 
constants and two variables. The constants are 𝑟 , the risk-free interest rate, assumed to be constant in time 
and 𝜎 ,  the  volatility  of  the  underlying  asset,  while  the  variables  are 𝑊(𝑡, 𝑠) ,  the  value  of  the  tradable 
derivative and 𝑠(𝑥, 𝑡) , the value of the underlying asset 𝑠  at time 𝑡 , which is assumed to follow geometric 
Brownian motion. In real market, some of the assumptions of B-S equation do not hold, hence, Merton [2] 
using stochastic calculus extended the model by removing some of the assumptions. Many ways of pricing 
options based on the B-S model have been investigated.  
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 Han and Wu [3], Ehrhardt and Mickens [4], and Jeong et al. [5] used finite difference method on American 
option pricing governed by the B-S equation. This method was extended by Cen and Le [6] for a generalized 
B-S equation. The Stratonovich calculus was applied by Perelloa et al. [7] to derive the B-S equation. The 
fitted finite volume spatial discretization and an implicit time stepping method for B-S governing option 
pricing  was  introduced  by  Wang  [8].  Jodar  et  al.  [9]  applied  Mellin  transform  to  the  solution  of  B-S 
equation. Ad hoc B-S approach was used by Berkowitz [10] to outperform the B-S formula out-of-sample. 
A new successive over-relaxation method was developed by Li and Lee [11] to calculate the B-S implied 
volatility. A new second-order exponential time differencing method was used by Yousuf et al. [12] for 
pricing  American  option  with  transaction  cost.  An  upwind  finite  difference  method  was  applied  by 
Lesmana and Wang [13] to the solution of nonlinear B-S equation under transaction cost. The same method 
was applied by Tagliani and Milev [14] in discrete monitored barrier options. A reduced basis method for 
pricing options based on B-S and Heston models was introduced by Burkovska et al. [15]. A new operator 
splitting method for solving fractional B-S under American options was presented by Chen et al. [16]. 
Hence, there is need for a method that can analyze functions defined on unbounded domains and offering 
insights into their frequency components. Fourier transform is a powerful method of solving the Black-
Scholes  equation.  The  reason  being  that  it  provides  a  complete  solution  method  that  is  normally  not 
explored in financial mathematics. It maps a function defined on physical space to a function defined on 
the space of frequencies whose values quantify the amount of each periodic frequency contained in the 
original function. This work deals with the analytical solution of B-S equation using the Fourier Transform 
method and its application in the valuation of cash-or-nothing binary options.  

2.0 Fourier Transform    

One-dimensional Fourier transform ℱ(𝑔(𝑥))(𝜆)  of a function 𝑔 (𝑥 )  such that ∫ 𝑑𝑥 | 𝑔(𝑥) | 2 < ∞ℝ  is 
defined by  

   ℱ(𝑔(𝑥)) (𝜆) = 𝑔̃ (𝜆)  

             = 1
√2𝜋 ∫ 𝑑𝑥 𝑒 −𝑖𝜆𝑥 𝑔(𝑥)ℝ ,    (1) 

where 𝑖 = √−1 . The inverse Fourier transform is defined by 

   ℱ−1 (𝑔̃ (𝜆)) (𝑥 ) = 𝑔 (𝑥 )  

             = 1
√2𝜋 ∫ 𝑑𝜆 𝑒 𝑖𝜆𝑥 𝑔(̃𝜆)ℝ .      (2) 

The Fourier transform of the 𝑛-th derivative of a function 𝑔  is given by  

   ℱ (𝑔(𝑛) (𝑥 )) (𝜆) = (𝑖𝜆)𝑛 ℱ(𝑔(𝑥))(𝜆) .    (3) 

The property in equation (3) can be proven by successive integrations by parts. That is for two functions 
𝑓 and 𝑔  with the appropriate regularity properties,  

∫ 𝑓𝑔 ′ = 𝑓𝑔 − ∫ 𝑓 ′ 𝑔 ,        (3a) 

where 𝑓 ′  denotes the derivative of 𝑓 .  
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Proof of Equation (3)  

From equation (1) and the regularity condition∫ 𝑑𝑥 | 𝑔(𝑥) | 2 < ∞ℝ , it follows that  ℱ (𝑔(𝑛) (𝑥 )) (𝜆) =
1

√2𝜋 ∫ 𝑑𝑥 𝑒 −𝑖𝜆𝑥 𝑔 (𝑛) (𝑥)ℝ . From equation (3a), 

 ℱ (𝑔(𝑛) (𝑥 )) (𝜆) = − 1
√2𝜋 ∫ 𝑑𝑥 (−𝑖𝜆 ) 𝑒−𝑖𝜆𝑥 𝑔 (𝑛−1) (𝑥)ℝ    

       = (𝑖𝜆)( −1 ) 1
√2𝜋 ∫ 𝑑𝑥 (−𝑖𝜆 ) 𝑒−𝑖𝜆𝑥 𝑔 (𝑛−2) (𝑥)ℝ  

        = ⋯  

         = (𝑖𝜆)𝑛 ℱ(𝑔(𝑥)) (𝜆), 

which establishes equation (3).  

Convolution Theorem: The convolution theorem states that the Fourier transform of the convolution 
product of two functions 𝑓 and 𝑔 is equal to the product of the Fourier transforms of 𝑓 and 𝑔 . Hence, if 
we denote by 𝑓 ∗ 𝑔  the convolution product of 𝑓 and 𝑔:  

  ( 𝑓 ∗ 𝑔 )( 𝑥 ) = 1
√2𝜋 ∫ 𝑑𝑦 𝑓 (𝑥 − 𝑦 )𝑔(𝑦)ℝ ,     (4) 

then the Fourier transform of the convolution product is  

  ℱ(𝑓 ∗ 𝑔 ) = ℱ(𝑓)ℱ(𝑔) .       (5) 

Proof of equation (5)  

From the right hand side of equation (1) and equation (5), we have  

  ℱ(𝑓 )ℱ(𝑔 ) = 1
√2𝜋 ∫ 𝑑𝑎 𝑒 −𝑖𝜆𝑎 𝑓(𝑎) 1

√2𝜋 ∫ 𝑑𝑏 𝑒 −𝑖𝜆𝑏 𝑔(𝑏)ℝℝ  

           = 1
√2𝜋 ∫ 𝑑𝑎 𝑑𝑏 𝑒 −𝑖𝜆 (𝑎+𝑏 ) 𝑓(𝑎)𝑔(𝑏)ℝ2 .    (5a) 

By change of variables 𝑡 = 𝑎 + 𝑏, 𝑠 = 𝑎, 𝑑𝑎 𝑑𝑏 = | 𝐽| 𝑑𝑠 𝑑𝑡  where the Jacobian of the transformation is 
| 𝐽| = | 1 0

1 1| = 1 , then from equation (4), equation (5a) becomes 

 ℱ(𝑓 )ℱ(𝑔 ) = 1
√2𝜋 ∫ 𝑑𝑡 𝑒 −𝑖𝜆𝑡 1

√2𝜋 ∫ 𝑑𝑠 𝑓(𝑡 − 𝑠)𝑔(𝑠)ℝℝ . 

From equation (1), ℱ(𝑓 )ℱ(𝑔 ) = ℱ(𝑓 ∗ 𝑔 ) , which establishes the convolution theorem of equation (5).  

3.0 Reducing Black-Scholes equation to a diffusion equation  

The Black-Scholes partial differential equation is written as [17]  

 𝜕𝑊
𝜕𝑡 + 1

2 𝜎 2𝑠 2 𝜕 2 𝑊
𝜕𝑠 2 + 𝑟𝑠 𝜕𝑊

𝜕𝑠 − 𝑟𝑊 = 0, 𝑠 ≥ 0, 𝑡 ∈ [0, 𝑇] ,    (6)  
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where 𝑊(𝑠, 𝑡)  is the value of the option, 𝑠  the price of the underlying asset, 𝑡  the time, 𝑇 the expiration 
date, 𝜎  the volatility of the underlying asset and 𝑟  the risk-free interest rate. Let 𝑟  and 𝜎  be constants in 
equation (6), then by change of variables 

    𝑠 = 𝜆𝑒 𝑥 ,       (7i) 

    𝑊 (𝑠, 𝑡) = 𝜆𝑤(𝑥, 𝜏) ,      (7ii) 

    𝜏 = (𝑇−𝑡)𝜎 2

2 .       (7iii) 

We therefore obtain the partial derivatives of 𝑊(𝑠, 𝑡)  and substitute them back in equation (6). From 
equation (7ii), 𝜕𝑊

𝜕𝑡 = 𝜆 𝜕𝑤
𝜕𝜏

𝜕𝜏
𝜕𝑡 . But from equation (7iii), 𝜕𝜏

𝜕𝑡 = − 𝜎 2

2 . Hence,  

 𝜕𝑊
𝜕𝑡 = −𝜆 𝜎 2

2
𝜕𝑤
𝜕𝜏 .      (8i) 

From equation (7ii) 

 𝜕𝑊
𝜕𝑠 = 𝜆 𝜕𝑤

𝜕𝑥
𝜕𝑥
𝜕𝑠     

         = 𝜆 𝜕𝑤
𝜕𝑥

𝜕
𝜕𝑠 ln ( 𝑠

𝜆)  

 = 𝜆
𝑠

𝜕𝑤
𝜕𝑥 .       (8ii) 

From equation (8ii), 

    𝜕 2 𝑊
𝜕𝑠 2 = 𝜕

𝜕𝑠 ( 𝜆
𝑠

𝜕𝑤
𝜕𝑥 )   

           = − 𝜆
𝑠 2

𝜕𝑤
𝜕𝑥 + 𝜆

𝑠
𝜕
𝜕𝑠

𝜕𝑤
𝜕𝑥  

           = − 𝜆
𝑠 2

𝜕𝑤
𝜕𝑥 + 𝜆

𝑠 2
𝜕 2 𝑤
𝜕𝑥 2 .     (8iii) 

Substituting equations (8) into equation (6) gives  

  −𝜆 𝜎 2

2
𝜕𝑤
𝜕𝜏 + 1

2 𝜎 2𝑠 2 (− 𝜆
𝑠 2

𝜕𝑤
𝜕𝑥 + 𝜆

𝑠 2
𝜕 2 𝑤
𝜕𝑥 2 ) + 𝑟𝑠 𝜆

𝑠
𝜕𝑤
𝜕𝑥 − 𝑟𝜆𝑤 = 0 .   (9) 

Divide both sides of equation (9) by 𝜆 𝜎 2

2  to have − 𝜕𝑤
𝜕𝜏 + 𝜕 2𝑤

𝜕𝑥 2 − 𝜕𝑤
𝜕𝑥 + 2𝑟

𝜎 2
𝜕𝑤
𝜕𝑥 − 2𝑟𝑤

𝜎 2 = 0 . 

Hence,  

   𝜕𝑤
𝜕𝜏 = 𝜕 2 𝑤

𝜕𝑥 2 + ( 2𝑟
𝜎 2 − 1) 𝜕𝑤

𝜕𝑥 − 2𝑟
𝜎 2 𝑤 .     (10) 

Define    

    𝑎 = 2𝑟
𝜎 2 − 1        (11i) 

and 
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    𝑏 = − 2𝑟
𝜎 2 = −(1 + 𝑎) .     (11ii) 

Equation (10) becomes  

    𝜕𝑤
𝜕𝜏 = 𝜕 2 𝑤

𝜕𝑥 2 + 𝑎 𝜕𝑤
𝜕𝑥 + 𝑏𝑤 .     (12) 

We then reduce equation (12) to a diffusion equation. The solution of equation (12) is of the form 

    𝑤(𝑥, 𝜏) = 𝑙 (𝜏)𝑚 (𝑥)𝑝(𝑥, 𝜏) .     (13) 

We then obtain the partial derivatives of 𝑤(𝑥, 𝜏) . That is  

   𝜕𝑤
𝜕𝜏 = (𝜕𝜏 𝑙)𝑚𝑝 + 𝑙𝑚 (𝜕𝜏 𝑝)      (14i) 

   𝜕𝑤
𝜕𝑥 = 𝑙 (𝜕𝑥 𝑚 )𝑝 + 𝑙𝑚 (𝜕𝑥 𝑝)       (14ii) 

   𝜕 2 𝑤
𝜕𝑥 2 = 𝑙 (𝜕𝑥

2𝑚 )𝑝 + 2𝑙 (𝜕𝑥 𝑚 )( 𝜕𝑥 𝑝) + 𝑙𝑚 (𝜕𝑥
2𝑝),   (14iii) 

where 𝜕𝑥
𝑛 𝑙 = 𝜕 𝑛 𝑙

𝜕𝑥 𝑛 . Substituting equations (14) in equation (12) gives 

 (𝜕𝜏 𝑙)𝑚𝑝 + 𝑙𝑚 (𝜕𝜏 𝑝) = 𝑙 (𝜕𝑥
2𝑚 )𝑝 + 2𝑙 (𝜕𝑥 𝑚 )( 𝜕𝑥 𝑝) + 𝑙𝑚 (𝜕𝑥

2𝑝)  

       +𝑎𝑙 (𝜕𝑥 𝑚 )𝑝 + 𝑎𝑙𝑚 (𝜕𝑥 𝑝) + 𝑏𝑙 (𝜏)𝑚(𝑥 )𝑝(𝑥, 𝜏) .  (15i) 

From equation (13), we have  

 (𝜕𝜏 𝑙)𝑚𝑝 + 𝑙𝑚 (𝜕𝜏 𝑝) = 𝑙 (𝜕𝑥
2𝑚 )𝑝 + 2𝑙 (𝜕𝑥 𝑚 )( 𝜕𝑥 𝑝) + 𝑙𝑚 (𝜕𝑥

2𝑝)    

      +𝑎𝑙 (𝜕𝑥 𝑚 )𝑝 + 𝑎𝑙𝑚 (𝜕𝑥 𝑝) + 𝑏𝑙𝑚𝑝 .    (15ii) 

Equations (15) can be satisfied if 𝑙 and 𝑚  are of the form 

    𝑙(𝜏) = 𝐴𝑒 𝑙 (𝜏)          (16i) 

    𝑚 (𝑥) = 𝐵𝑒 𝑚 (𝑥) ,      (16ii) 

where 𝐴 ∈ ℝ  and 𝐵 ∈ ℝ  are constants. Therefore,  

    𝜕𝜏 𝑙(𝜏) = 𝜕 𝜏 𝑙 (𝜏) ∙ 𝐴𝑒𝑙 (𝜏)    

     = 𝑙 (𝜕 𝜏 𝑙 (𝜏))       (17i) 

    𝜕𝑥 𝑚 (𝑥) = 𝜕 𝑥 𝑚̂(𝑥) ∙ 𝐵𝑒 𝑚 (𝑥)  

        = 𝑚 (𝜕𝑥 𝑚̂ )      (17ii) 

    𝜕𝑥
2𝑚 (𝑥) = 𝑚 (𝜕𝑥

2𝑚̂ ) + 𝑚 (𝜕𝑥 𝑚̂ )2 .    (17iii) 

Substituting equations (16) and (17) in equation (15) gives  
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 𝑙(𝜕𝜏 𝑙)𝑚𝑝 + 𝑙𝑚 (𝜕𝜏 𝑝) = 𝑝𝑙 (𝑚𝜕 𝑥
2𝑚̂ ) + 𝑙𝑝𝑚 (𝜕𝑥 𝑚̂ )2 + 2𝑙𝑚 (𝜕𝑥 𝑚̂ )( 𝜕𝑥 𝑝) 

       +𝑙𝑚 (𝜕𝑥
2𝑝) + 𝑎𝑙𝑝𝑚 (𝜕𝑥 𝑚̂ ) + 𝑎𝑙𝑚 (𝜕𝑥 𝑝) + 𝑏𝑙𝑚𝑝 .  (18) 

Divide both sides of equation (18) by 𝑙𝑚  and collect like terms to have 

  (𝜕𝜏 𝑝) = (𝜕𝑥
2𝑝) + 𝜕 𝑥 𝑝{2(𝜕𝑥 𝑚̂ ) + 𝑎 }    

   +𝑝{−(𝜕 𝜏 𝑙 ) + (𝜕𝑥
2𝑚̂ ) + (𝜕𝑥 𝑚̂ )2 + 𝑎 (𝜕𝑥 𝑚̂ ) + 𝑏} .    (19) 

In order to make equation (19) a diffusion equation, we let 2(𝜕𝑥 𝑚̂ ) + 𝑎 = 0  or 𝜕𝑥 𝑚̂ = − 𝑎
2 , which gives  

    𝑚̂ (𝑥 ) = − 𝑎𝑥
2 + 𝐴       (20i) 

and 

  −(𝜕 𝜏 𝑙 ) + (𝜕𝑥
2𝑚̂ ) + (𝜕𝑥 𝑚̂ )2 + 𝑎 (𝜕𝑥 𝑚̂ ) + 𝑏 = 0  

implies that −(𝜕 𝜏 𝑙 ) + 𝑎 2

4 − 𝑎 2

2 + 𝑏 = 0  or 𝜕𝜏 𝑙 = 𝑏 − 𝑎 2

4 . Hence,  

   𝑙 (𝜏) = (𝑏 − 𝑎 2

4 ) 𝜏 + 𝐵 ,      (20ii) 

where 𝐴 ∈ ℝ  and 𝐵 ∈ ℝ . From equations (11) and (16), we have  

   𝑙(𝜏) = 𝐴𝑒 𝑙 (𝜏 ) = 𝐴𝑒 − ( 𝑎 2
4 +𝑎+1 ) 𝜏 ∙ 𝑒𝐵  

   𝑚 (𝑥) = 𝐵𝑒 𝑚 (𝑥 ) = 𝐵𝑒 −( 𝑎
2 )𝑥 ∙ 𝑒𝐴 . 

Equation (13) becomes  

  𝑤(𝑥, 𝜏) = 𝐴𝑒 − ( 𝑎 2
4 +𝑎+1 ) 𝜏 𝑒 −( 𝑎

2 )𝑥 𝑝(𝑥, 𝜏) .     (21) 

Substituting equation (20) in equation (19) gives  

  𝜕𝜏 𝑝 = 𝜕 𝑥
2𝑝 or 𝜕𝑝

𝜕𝜏 = 𝜕 2𝑝
𝜕𝑥 2 , 𝑥 ∈ ℝ, 𝜏 ∈ [0, 𝜎 2 𝑇

2 ].      (22) 

From equations (7), (21) and (22), we have  

   𝜕𝑝
𝜕𝜏 = 𝜕 2 𝑝

𝜕𝑥 2  
   𝑠 = 𝜆𝑒 𝑥  
   𝜏 = (𝑇 − 𝑡 ) 𝜎 2

2      

   𝑊 (𝑠, 𝑡 ) = 𝜆𝑤 (𝑥, 𝜏) = 𝜆𝑒 − ( 𝑎 2
4 +𝑎+1 ) 𝜏 𝑒−( 𝑎

2 )𝑥 𝑝(𝑥, 𝜏)    (23) 
   𝑎 = 2𝑟

𝜎 2 − 1 . 
3.1 Solving the resultant diffusion equation  
Equation (23) with initial condition 𝑝(𝑥, 0)  is then solved using Fourier transforms. Hence, by definition 
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 ℱ (𝜕𝑝
𝜕𝜏 ) = (𝑖𝜆)ℱ(𝑝(𝜏) )(𝜆)     

             = (𝑖𝜆) 1
√2𝜋 ∫ 𝑑𝜏 𝑒 −𝑖𝜆𝜏 𝑝(𝜏)ℝ . 

But ℱ(𝑝) = 𝑝̃(𝜆)  which is the Fourier transform of the function 𝑝 with respect to the variable 𝜏. Hence, 
the Fourier transform of equation (23) is 
    𝜕𝑝

𝜕𝜏 = (𝑖𝜆)2𝑝̃  
          = −𝜆 2𝑝̃ .       (24) 
Solving equation (24) by separation of variables gives  
    ln 𝑝̃ = −𝜆 2𝜏 + 𝑐  
    𝑝̃(𝜆, 𝜏) = 𝑝̃ (𝜆, 0)𝑒−𝜆 2𝜏 ,     (25) 
where 𝑝̃(𝜆, 0)  is the Fourier transform of the initial condition for 𝑝 which corresponds to the terminal 
condition at expiry 𝑡 = 𝑇  of the option. In order to find the solution for 𝑝(𝑥, 𝜏) , we apply the inverse 
Fourier transform of equation (25). Let  
    ℱ(𝑝1) = 𝑝 1̃  = 𝑒 −𝜆 2𝜏         (26i) 
    ℱ(𝑝2) = 𝑝 2̃  = 𝑝̃ (𝜆, 0) .     (26ii) 
Then equation (25) becomes 
    𝑝̃(𝜆, 𝜏) = 𝑝 1̃ (𝜆, 𝜏)𝑝2̃ (𝜆, 𝜏) .     (27) 
By convolution theorem, the inverse Fourier transform of equation (27) becomes  
   𝑝(𝑥, 𝜏) = (𝑝1 ∗ 𝑝2)( 𝑥, 𝜏)  
    = 1

√2𝜋 ∫ 𝑑𝜁 𝑝 1(𝑥 − 𝜁, 𝜏 )ℝ 𝑝2(𝜁, 𝜏) .    (28) 
Next, we derive the inverse Fourier transforms of equations (26i) and (26ii). From the definition of 
inverse Fourier transform, we have   
   ℱ−1 (𝑒 −𝜆 2𝜏 ) = 1

√2𝜋 ∫ 𝑑𝜆 𝑒 𝑖𝜆𝑥 𝑒−𝜆 2 𝜏
ℝ .     (29) 

By completing the square, we require that   
   −𝜆 2𝜏 + 𝑖𝜆𝑥 = 𝐴 (𝜆 + 𝐵 )2 + 𝑐 ,     (30) 
where 𝐴, 𝐵 and 𝑐  are to be determined. Equating coefficients of like terms we have −𝜏 = 𝐴, 𝑖𝑥 =
2𝐴𝐵 and 𝐴𝐵 2 + 𝑐 = 0. That is, 𝐴 = −𝜏 , 𝐵 = −𝑖𝑥

2𝜏  and 𝑐 = −𝑥 2

4𝜏 . Substituting the values of 𝐴, 𝐵 and 𝑐  in 

equation (30) gives −𝜏 (𝜆 − 𝑖𝑥
2𝜏 )

2
− 𝑥 2

4𝜏 = −𝜆 2𝜏 + 𝑖𝜆𝑥 . Hence, 𝑒 −𝜏(𝜆− 𝑖𝑥
2𝜏 )

2
− 𝑥 2

4𝜏 = 𝑒 𝑖𝜆𝑥−𝜆 2 𝜏 . Equation (29) 
becomes  

  ℱ−1 (𝑒 −𝜆 2𝜏 ) = 1
√2𝜋 ∫ 𝑑𝜆 𝑒 −𝜏(𝜆− 𝑖𝑥

2𝜏 )
2

𝑒 − 𝑥 2
4𝜏

ℝ . 
By factorization, we have 

  ℱ−1 (𝑒 −𝜆 2𝜏 ) = 1
√2𝜋 𝑒 − 𝑥 2

4𝜏 ∫ 𝑑𝜆 𝑒 −𝜏(𝜆− 𝑖𝑥
2𝜏 )

2

ℝ .     (31) 

By change of variables, let 𝜁 = √𝜏 (𝜆 − 𝑖𝑥
2𝜏 )  and 𝑑𝜁

𝑑𝜆 = √𝜏, which implies that 𝑑𝜁 = 𝑑𝜆 √𝜏 and 𝑑𝜆 =
1

√𝜏 𝑑𝜁 . Equation (31) becomes 

  ℱ−1 (𝑒 −𝜆 2𝜏 ) = 1
√2𝜋 𝑒 − 𝑥 2

4𝜏
1

√𝜏 ∫ 𝑑𝜁 𝑒 −𝜁 2
ℝ .  

             = 1
√2𝜋𝜏 𝑒 − 𝑥 2

4𝜏 ∫ 𝑑𝜁 𝑒 −𝜁 2
ℝ .     (32) 

In evaluating the integral ∫ 𝑑𝜁 𝑒 −𝜁 2
ℝ , we note that 𝜁 = (𝜁1 , 𝜁2) ∈ ℝ2 . Hence,  

   ∫ 𝑑𝜁 𝑒 −𝜁 2
ℝ2 = ∫ 𝑑𝜁1  ℝ ∫ 𝑑𝜁 2  𝑒−𝜁 1

2 −𝜁 2
2

ℝ   
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            = ∫ 𝑑𝜁1𝑒 −𝜁 1
2  ℝ ∫ 𝑑𝜁 2  𝑒−𝜁 2

2
ℝ  

             = ( ∫ 𝑑𝜁 𝑒 −𝜁 2  ℝ )
2
.     (32i) 

Similarly, using polar coordinates 𝜁 = (𝜁1 , 𝜁2 ) = 𝑟 (cos 𝜃, sin 𝜃) and 𝑑𝜁 1𝑑𝜁 2 = 𝑟𝑑𝑟𝑑𝜃  where 𝑟 ∈
[0, ∞), 𝜃 ∈ [0,2𝜋]  we have  
   ∫ 𝑑𝜁 𝑒 −𝜁 2

ℝ2 =  ∫ 𝑑𝑟 𝑟∞
0 ∫ 𝑑𝜃𝑒 −𝑟 22𝜋

0  
             = 2𝜋 ∫ 𝑑𝑟 𝑟𝑒 −𝑟 2∞

0   

              = 2𝜋 ∫ 𝑑 (− 1
2 𝑒 −𝑟 2 )∞

0  
               = 𝜋 .       (32ii) 
From equations (32i) and (32ii),  
   ∫ 𝑑𝜁 𝑒 −𝜁 2

ℝ = √𝜋.       (33) 
Substituting equations (33) in equation (32) gives  

   ℱ−1 (𝑒 −𝜆 2𝜏 ) = 1
√2𝜋𝜏 𝑒− 𝑥 2

4𝜏 (√𝜋)  

             = 1
√2𝜏 𝑒 − 𝑥 2

4𝜏 . 
That is,  

   ℱ−1 (𝑝1̃ ) = 𝑝 1 = 1
√2𝜏 𝑒− 𝑥 2

4𝜏 .      (34i) 
Similarly, from equation (26ii)    
   ℱ−1 (𝑝2̃ ) = 𝑝 2 = 𝑝 (𝑥, 0) .      (34ii) 
Substituting equations (34) in equation (28) gives  
  𝑝(𝑥, 𝜏) = 1

√2𝜋 ∫ 𝑑𝜁 1
√2𝜏 exp {− (𝑥−𝜁 )2

4𝜏 }ℝ 𝑝(𝜁, 0)   

    = 1
√4𝜋𝜏 ∫ 𝑑𝜁 exp {− (𝑥−𝜁 )2

4𝜏 }ℝ 𝑝(𝜁, 0) .     (35) 
4.0 Application to cash-or –nothing binary options 
Consider a binary option whose payoff at expiry is given as: 

    payoff at expiry = { 1,        money
0, otherwise . 

The initial condition reads 

   𝑊 (𝑠, 𝑇) = { 𝜑(𝑠 − 𝜆 )        for a call,
1 − 𝜑 (𝑠 − 𝜆 ) for a put,       (36)  

where 𝜑(𝛼)  is the Heaviside distribution which is 0 if 𝛼 < 0  and 1 if 𝛼 > 0 . Equation (36) can be 
expressed in terms of the new variables from equation (23). That is, using the properties that 𝜑(𝛽𝛼 ) =
𝜑(𝛼)  for 𝛽 ∈ ℝ + , 𝑒 𝑥 − 1 > 0  if and only if 𝑥 > 0  and 1 − 𝜑 (𝑥) = 𝜑(−𝑥) , we have from equation (23) 
that 
   𝜑(𝑠 − 𝜆 ) = 𝜑 (𝜆𝑒 𝑥 − 𝜆 )  
       = 𝜑 (𝑒 𝑥 − 1 ) = 𝜑(𝑥) .     (37)   

Hence, from equation (23), we have 𝑊 (𝑠, 𝑡) = 𝜆𝑒 − ( 𝑎 2
4 +𝑎+1 ) 𝜏 𝑒−( 𝑎

2 )𝑥 𝑝(𝑥, 𝜏) . But 𝜏 = 0  implies that 
(𝑇−𝑡 )𝜎 2

2 = 0 , which means that 𝑇 = 𝑡.  Therefore, 𝑊 (𝑠, 𝑇) = 𝜆𝑒 −( 𝑎
2 )𝑥 𝑝(𝑥, 0)  or 

 𝑝(𝑥, 0) = 1
𝜆 𝑒 ( 𝑎

2 )𝑥 𝑊(𝑠, 𝑇) . From equation (37) we have 

       𝑝(𝑥, 0) = 1
𝜆 𝑒 ( 𝑎

2 )𝑥 𝜑(𝜂𝑥) ,      (38) 
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where 𝜂 = 1  for a call and 𝜂 = −1  for a put. Substituting equation (38) into the general solution 
(equation 35) gives 

  𝑝(𝑥, 𝜏) = 1
𝜆

1
√4𝜋𝜏 ∫ 𝑑𝜁 exp {− (𝑥−𝜁 )2

4𝜏 }ℝ 𝑒 ( 𝑎
2 )𝜁 𝜑(𝜂𝜁) .    (39) 

By change of variables, let 𝜀 = 𝜁
𝜂  and 𝑑𝜀 = 𝑑𝜁

𝜂 . Equation (39) becomes  

  𝑝(𝑥, 𝜏) = 1
𝜆

1
√4𝜋𝜏 ∫ 𝜂𝑑𝜀 exp {− (𝑥−𝜀𝜂 )2

4𝜏 }ℝ 𝑒 ( 𝑎
2 )𝜀𝜂 𝜑(𝜂 2𝜀)  

   = 1
𝜆

1
√4𝜋𝜏 ∫ 𝜂𝑑𝜀 exp {− (𝑥−𝜀𝜂 )2

4𝜏 }ℝ 𝑒 ( 𝑎
2 )𝜀𝜂 𝜑(𝜀)  

   = 𝜂
𝜆

1
√4𝜋𝜏 ∫ 𝑑𝜀 exp {− (𝑥−𝜀𝜂 )2

4𝜏 }∞
0 𝑒 ( 𝑎

2 )𝜀𝜂 .    (40) 
From [18],  

 1
√4𝜋𝜏 ∫ 𝑑𝜀 exp {− (𝑥−𝜀𝜂 )2

4𝜏 }∞
0 𝑒 ( 𝑎

2 )𝜀𝜂 = 𝑒 ( 𝑎
2 )(𝑥+ 𝑎𝜏

2 ) Φ (𝜂 𝑥+𝑎𝜏
√2𝜏 ) ,    (41) 

where Φ denotes the cumulative standard normal distribution function. Substituting equation (41) in 
equation (40) gives  

  𝑝(𝑥, 𝜏) = 𝜂
𝜆 𝑒 ( 𝑎

2 )(𝑥+ 𝑎𝜏
2 ) Φ (𝜂 𝑥+𝑎𝜏

√2𝜏 ) .      (42) 
Substituting equation (42) in equation (23) gives  

  𝑊 (𝑠, 𝑡 ) = 𝜆𝑒 − ( 𝑎 2
4 +𝑎+1 ) 𝜏 𝑒−( 𝑎

2 )𝑥 𝜂
𝜆 𝑒 ( 𝑎

2 )(𝑥+ 𝑎𝜏
2 ) Φ (𝜂 𝑥+𝑎𝜏

√2𝜏 )  

     = 𝜂𝑒 (−𝑎−1 )𝜏 Φ (𝜂 𝑥+𝑎𝜏
√2𝜏 ) . 

From equation (23), we have 
      𝑊 (𝑠, 𝑡 ) = 𝜂𝑒 −𝑟(𝑇−𝑡) Φ (𝜂 𝑥+𝑎𝜏

√2𝜏 )  
         = 𝜂𝑒 −𝑟(𝑇−𝑡) Φ(𝜂𝑑1) ,     (43) 
where 𝑑1 = 𝑥+𝑎𝜏

√2𝜏 .   
  
Conclusion 
Fourier transform is a powerful method of solving the Black-Scholes equation. The reason being that it 
provides a complete solution method that is normally not explored in financial mathematics. After obtaining 
the solution for the general derivative via the Fourier transform, the valuation of cash-or-nothing binary 
options was performed.  For  a call option with 𝜂 = 1 , one gets  as expected the discounted risk neutral 
probability that the stock price 𝑠  is above 𝜆 at time 𝑇. Similarly, for a put option with 𝜂 = −1 , one gets the 
discounted risk neutral probability that the stock price 𝑠  is below 𝜆 at time 𝑇.   
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