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ABSTRACT 
 

The fcc metal Rhodium is treated as having both positive 
and negative Cauchy’s discrepancy and the three low-index 
surfaces  of  the  metal  calculated  using  the  generalized 
embedded-atom  method  (GEAM),  a  model  developed  by 
[1]. The low-index surface energies investigated are 
{𝛤(111 ) , 𝛤(100 )  and 𝛤(110 )}. The predicted values are in good 
agreement with the experimental values. The result shows 
𝛤(111 )  having the lowest and 𝛤(110 )  having the highest 
energy value.  

 

 
 
INTRODUCTION 

The  surface  energy  is a  very  important  physical  quantity  for  understanding  various  surface 
phenomena such as absorption, corrosion, crystal formation, and so on. 
The embedded - atom method (EAM) first introduced by [2,3] had been applied to calculate surface 
energy of different metals such as: face-centered cubic (fcc), body-centered cubic (bcc), and diamond 
structures [3,4-9]. The original EAM was however faced with the challenges of not being able to 
predict surface energy of  fcc metals with negative Cauchy’s discrepancy (ie, 𝑪𝟏𝟐 < 𝑪 𝟒𝟒 ) and the 
prediction of surface energy that is about 50% lower than the polycrystalline experimental value for 
single crystal surface energy [5].  
The need to improve on the original EAM of  [2,3] resulted in several modifications such as; the 
modified  embedded-atom  method  (MEAM)  [5,  6,  10],  the  analytical  embedded  atom  method 
(AEAM) by Johnson et al. [9,10,11], and the modified analytical embedded atom method (MAEAM) 
[13,14]. 
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This study focuses on the fcc metals Rhodium. One of the three most valuable metals which exists 
within the platinum group of metals. Available records seems not to be exact on the values its elastic 
constants 𝐶12   and 𝐶44 .  Some  researchers  had  presented  Rh  as  a  metal  with  positive  Cauchy 
discrepancy (𝐶12 >   𝐶44 )[13] and some as metal with negative Cauchy’s discrepancy(𝐶12 <
 𝐶44 )[15]. We have decided to use the generalized embedded atom method (GEAM) parameters’ 
iterated values to calculate the low-index surface energy of both cases.  

MATERIALS AND METHODS 

Like every other models of the EAM, the total energy of a system in the GEAM, 𝐸𝑐  is approximated 
to be, the sum total of the embedding and the pair potential function. 

𝐸𝑐 =  ∑ 𝐹𝑖 (𝜌 ℎ,𝑖 ) + 1
2

∑ 𝜙𝑖,𝑗 (𝑅 𝑖,𝑗 )𝑗≠𝑖         (1) 

where 𝐹(𝜌)  denotes the energy required to immerse an atom in the background electron density 𝜌(𝑅)  
at site i, and 𝜙𝑖,𝑗 (𝑅)  denotes the screened pair potential between atoms i and j. 
While the other models of the EAM tends to focus more in modifying the density function of the 
original EAM, the generalized embedding method (GEAM) designed by [1], decided to consider the 
embedding  function  and  had  modified  the  work  of  [16]  to  design  a  four  parameter  generalized 
embedding function 𝐹(𝜌) . 

𝐹(𝜌) = 𝐴𝐸 0(𝜌 𝜌0⁄ )
𝜆

[ln( 𝜌 𝜌0⁄ )
𝛼

− 𝑘]        (2) 

Where, A, 𝝀, 𝜶  and K are the GEAM parameters that provide flexibility to the model. 

In practice, functional forms are chosen for 𝑭𝒊 (𝝆 𝒉,𝒊 )  and 𝜙𝑖,𝑗  in equation (1) and the parameters in 
each of these functions are determined by fitting to a limited set of bulk properties. With U 0 as the 
total energy per atom (negative of the cohesive energy𝐸0) and 𝝆𝒉,𝒊  as the electron density function at 
position R, then within a nearest neighbour model, it can be shown that for a monoatomic fcc solid 
[3,17,18]. 

6𝜙1 (𝑟0 ) + 𝐹 (𝜌0) = 𝑈 0                     (3) 

𝜙1
′ (𝑟0) + 3𝐹 ′ (𝜌0) 𝑉11 𝑟0 = 0⁄             (4) 

𝜙1
′′ (𝑟0) + 𝑎

4Ω0
{𝐹′(𝜌0)[2𝑊11 − 8𝑊 12 − 5𝑉11 ]} − 𝑎

4Ω0
{2𝐹 ′′ (𝜌0)𝑉11

2 } = 3𝑎𝐵 0
4    (5) 

𝐺11 + 𝑎
4Ω0

𝐹′ (𝜌0)𝑊11 + 𝑎
4Ω0

𝐹′′ (𝜌0)𝑉11
2 =  𝑎

4 𝐶11       (6) 

𝐺12 + 𝑎
4Ω0

𝐹′ (𝜌0)𝑊12 + 𝑎
4Ω0

𝐹′′ (𝜌0)𝑉11
2 =  𝑎

4 𝐶12       (7) 

𝐺12 + 𝑎
4Ω0

𝐹′ (𝜌0)𝑊12 = 𝑎
4 𝐶44           (8) 

where 𝐺11 = 𝜙 1
′ (𝑟 0 )
2𝑟 0

+ 𝜙 1
′′ (𝑟 0 )

2           (9) 

and 𝐺12 = −5𝜙 1
′ (𝑟 0 )

4(𝑟 0 ) + 𝜙 1
′′ (𝑟 0 )

4          (10) 

The equations (3) – (6) are the basic equations of the EAM and they depend on three fundamental 
functions: 𝑭(𝝆) , 𝝆(𝒓)  and 𝝓(𝒓 ). 
The mono-vacancy formation energy 𝐸𝑖𝑣

𝑓  is of the form;  
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𝐸𝑖𝑣
𝑓 = 12𝐹 ( 11

12 𝜌0 ) − 11𝐹 (𝜌0) − 𝑈0                  (11) 

With 𝐸𝑖𝑣
𝑓  treated as a known physical input parameter. 

Solving equations (7) and (8) gives,  

𝑽𝟏𝟏 = ± √ 𝛀𝟎 (𝑪𝟏𝟐 −𝑪 𝟒𝟒 )
𝑭′′ (  𝝆𝟎 )                       (12) 

In equation (12), we demand that 𝑭′′ (𝝆𝟎 )  be positive definite for metals with 𝑪𝟏𝟐 > 𝑪 𝟒𝟒 ,  while for 
metal with 𝑪𝟏𝟐 < 𝑪 𝟒𝟒 ,  𝑭′′ (𝝆𝟎 )  must be negative definite .[1] 

At equilibrium, the equation (2) yields equations (13)-(15), where the prime denotes first and second 
differentiation with respect to the electron density, 𝝆 . 

𝐹(𝜌0) = −𝐴𝐸 0𝑘            (13) 

𝐹′ (𝜌0) = −𝐹 (𝜌 0 )
𝜌 0

[𝜆 − 𝛼
𝑘 ]         (14) 

𝐹′′ (𝜌0) = 𝐹(𝜌 0 )
𝜌 0 2 [𝜆2 − 2𝜆𝛼

𝑘 + 𝛼
𝑘 − 𝜆]         (15) 

To obtain the GEAM parameters, A, 𝝀, 𝜶  and K, we demand that the embedding function in equation 
(2) reproduced and satisfy the mono-vacancy formation energy equation (11) and the result gives; 

𝜆 =
ln {

1
12 [𝐸 𝑖𝑣

𝑓 +11𝐹 (𝜌 0 )+𝑈 0 ]

𝐴𝐸 0 [ln ( 11
12 )

𝛼
−𝑘]

}

ln (11 12⁄ )            (16) 

Knowing A, 𝝀, 𝜶  and K, the EAM functions and parameters are calculated and the results are there 
after used to calculate the surface energy. It is proper to state here that the flexibility of the model are 
provided by the robust parameters. 

 

RESULTS AND DISCUSSIONS 

The GEAM parameters are determined by fixing the parameter𝐴 = ±1 , the parameter 𝝀 is     obtained 
from equation (16) using iterated values of 𝛼 and K [19]. Different sets of iterated values of 𝜶  and K 
that produced good results were selected from the lot and the corresponding values EAM parameters 
and surface energies obtained are presented in Table 2 to Table 5, while the physical input parameters 
for Rh are in Table 1. Rh with 𝐶12 >   𝐶44  is denoted with Rh(+) while that with 𝐶12 >   𝐶44  is denoted 
as Rh(-). 

The GEAM parameters are determined by fixing the parameter𝐴 = ±1 , the parameter 𝝀 is     obtained 
from equation (16) using iterated values of 𝛼 and K [19]. Different sets of iterated values of 𝜶  and K 
that produced good results were selected from the lot and the corresponding values EAM parameters 
and surface energies obtained are presented in Table 2 to Table 5, while the physical input parameters 
for Rh are in Table 1. Rh with 𝐶12 >   𝐶44  is denoted with Rh(+) while that with 𝐶12 >   𝐶44  is denoted 
as Rh(-). 
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Table 1: Input Parameters for fcc metals Rh(+)[13] and Rh(-)[15]. 
 Lattice 

Constant 
a (Å) 

Mono-
vacancy 
Formation 
energy 
𝐸𝑖𝑣

𝑓  (eV) 

Cohesion 
energy 
E0 (eV) 

Elastic constant (Gpa) Bulk 
Modulus 
B (GPa) 

C11 C12 C44 

Rh(+) 3.8034 
 

1.7100 
 

5.7500 
 

4.1300 
 

1.9400 
 

1.8400 
 

2.7000 
 Rh(-) 3.8034 

 
1.7100 
 

5.7500 
 

4.1300 
 

1.9200 
 

1.9400 
 

2.7000 
 

 Table 2: Calculated model’s parameters for Rh(+) corresponding to the iterated values of 𝛼 and K. 

EAM 
Parameter 
 
 

Model 
I II III IV V 

A 1.0000 1.0000 1.0000 1.0000 1.0000 
𝜶 1.8000 

0.9000 
 

1.6500 
 

1.6000 
 

1.5000 
 

0.4400 
 K 0.9000 

 
0.7000 

 
0.6500 

 
0.5500 

 
-0.1500 

 𝝀 2.0558 
 

2.1405 
 

2.1531 
 

2.1845 
 

3.9897 
 𝐹(𝜌0 ) [eV] -5.1750 

 
-4.0250 

 
-3.7375 

 
-3.1625 

 
0.8625 

 
𝐹′ (𝜌0)[eV/𝜌0 ] -0.2890 

 
0.8719 

 
1.1526 

 
1.7166 

 
5.9711 

 
𝐹′′ (𝜌0)[eV/𝜌 02] 20.9729 

 
21.3027 

 
21.1381 

 
20.8745 

 
27.9453 

 V11  [𝜌0] (-) -0.2023 
 

-0.2007 
 

-0.2015 
 

-0.2028 
 

-0.1753 
 W11  [𝜌0] -9.0190 

 
2.4541 

 
1.7570 

 
1.0448 

 
0.0664 

 W12  [𝜌0] 0.9920 
 

-0.1950 
 

-0.1230 
 

-0.0486 
 

0.0445 
 

 

 Table 3: Calculated model’s parameters for Rh(-) corresponding to the iterated values of 𝛼 and K. 
EAM Parameter 
 
 

Model 
I II III IV V 

A -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 
𝜶 0.4400 

 
1.6800 

 
1.6800 

 
1.6800 

 
1.6400 

 K -0.2500 
 

0.1800 
 

0.1400 
 

0.1600 
 

0.1600 
 𝝀 -3.5253 

 
12.8693 

 
16.2189 

 
14.3144 

 
14.1830 

 𝐹(𝜌0 ) [eV] -1.4375 
 

1.0350 
 

0.8050 
 

0.9200 
 

0.9200 
 𝐹′ (𝜌0)[eV/𝜌0 ] -2.5642 

 
-80.8789 

 
-104.9876 

 
-91.5535 

 
-86.0450 

 𝐹′′ (𝜌0)[eV/𝜌 02] -2.5642 
 

-80.8789 
 

-104.9876 
 

-91.5535 
 

-86.0450 
 
 V11  [𝜌0] (-) -0.2588 

 
-0.0461 

 
-0.0404 

 
-0.0433 

 
-0.0447 

 W11  [𝜌0] 0.5989 
 

0.6820 
 

0.7533 
 

0.7207 
 

0.6936 
 W12  [𝜌0] 0.2310 

 
0.0934 

 
0.0961 

 
0.0950 

 
0.0935 
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Table  4:  Predicted  values  of  three  low-index  surface  energy  for  Rh(+)  in  Ergs/cm 2  and  the 
experimental average value for Rhodium [20]. 
 
Model 

Present work EXPERIMENTAL 
Г111 Г100 Г110 AVERAGE AVERAGE 

I 2061.733 
 

2868.121 
 

3142.659 
 

2690.838 
 

2700 
II 2065.301 

 
2868.995 

 
3137.984 

 
2690.760 

 III 2057.274 2855.641 
 

3123.043 
 

2678.653 
 IV 2043.332 2832.027 

 
3096.165 

 
2657.174 

 V 2131.584 
 

2900.206 
 

3096.420 
 

2709.403 
  

Table  5:  Predicted  values  of  three  low-index  surface  energy  for  Rh(-)  in  Ergs/cm 2  and  the 
experimental average value for Rhodium [20]. 
 
Model 

Present work EXPERIMENTAL 
Г111 Г100 Г110 AVERAGE AVERAGE 

I 1429.970 
 

2560.307 
 

4515.975 
 

2835.418 
 

2700 
II 1931.999 

 
2776.658 

 
3039.707 

 
2582.788 

 III 2218.850 
 

3071.456 
 

3241.862 
 

2844.056 
 IV 2065.971 

 
2919.366 

 
3139.562 

 
2708.300 

 V 2069.043 
 

2920.477 
 

3139.783 
 

2709.768 
  

Table 4 and Table 5 show the three low-index surfaces for Rh either as Rh(+) or Rh(-). In all, the 
surface energies of the Г 100 surface are lower than that of the Г 110 surface while the Г 111 (the close-
packed) surface has the lowest surface energy of the three. These findings are in agreement with the 
works of [8,13].  

 

CONCLUSION 

The low-index surface energies of Rh irrespective of the nature of 𝐶12  and 𝐶44  have been calculated 
using the generalized embedded atom method (GEAM) iterated parameter values, and the findings 
show a trend of Γ 111 < Γ100 < Γ 110 for all the values. And their average being within the range of  
0.3% − 1.6%  for Rh(+) and 4.4% − 5.3%   for Rh(-). This result is in no doubt in good agreement 
with experimental average and a good improvement over the EAM predictions in [8,9,13]. Thus the 
GEAM will be a useful instrument for calculating relative values of surface energy and other metal 
properties.  
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