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ABSTRACT 

In this study, a random forest model was compared to a statistical model for 

predicting heavy metal concentrations in groundwater in Edo State, Nigeria. The 

pH of groundwater samples was determined using a pH meter, and heavy metal 

concentrations were measured with Atomic Absorption Spectrophotometer 

(AAS). Pearson Correlation Coefficient was used to evaluate correlations 

between heavy metal concentrations. Both Random Forest Model (RFM) and 

Multiple Linear Regression (MLR) were employed to model these 

concentrations, with goodness of fit assessed via R-squared and root mean 

square error (RMSE). Results showed that heavy metal concentrations, except 

for lead, were generally within acceptable limits. The RFM outperformed MLR 

in predicting iron and lead concentrations but was less effective for arsenic. 

Python was used for modelling and data extraction. Both models are suitable for 

predicting groundwater contamination, with RFM showing better overall 

performance. 

 

 

1. INTRODUCTION  

Groundwater, commonly referred to as the "lifeblood of ecosystems," is essential for human 

survival, agriculture, and the environment. Researchers, legislators, and environmental scientists 

have paid particular interest to groundwater quality and pollution patterns because they have a 

direct impact on human health and ecological stability. Contaminants in groundwater are often 

caused by dissolving of mineral deposits in the Earth's crust [1],[2],[3],[4],[5]. However, as the 

world's population, urbanisation, industrialization, agriculture, and economy grow, anthropogenic 

toxins now pose a threat to the environment [5] investigated the appropriateness of groundwater 

for drinking and irrigation in Akhmim, Egypt. The researchers reported that about 95% of the 

gathered groundwater samples are significantly polluted. 
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[6] Performed a physiochemical assessment of groundwater pollution resulting from the discharge 

of industrial wastewater in Faisalabad, Pakistan and provided data of the levels of contamination 

of groundwater in Faisalabad. 

Groundwater is a critical resource in the agricultural, civil, and industrial sectors. Groundwater 

pollution caused by diverse chemical components must be predicted in order to plan, policy, and 

manage groundwater resources effectively. This will help to mitigate the complex and numerous 

issues associated with addressing groundwater contamination. To accurately analyse 

contemporary groundwater pollution patterns, new techniques and methodologies are required. 

Statistical models such as multiple linear regression (MLR) have long been a cornerstone of 

environmental research, providing structured frameworks for data analysis and insights into 

complex phenomena; however, in the last two decades, the use of machine learning (ML) 

techniques for groundwater quality (GWQ) modelling has increased exponentially [7]. 

Machine learning (ML) is the algorithmic study of how computers replicate or apply human 

learning behaviour. Machine learning algorithms are intended to accurately anticipate patterns in 

multivariate data [8]. They are frequently utilised in a variety of applications, including pattern 

recognition, anomaly detection, and classification. Many writers have tried and analysed the use 

of machine learning (ML) techniques such as Logistic Regression and Random Forest to forecast 

water quality and groundwater contamination [9]. 

Random Forest (RF) is an ensemble classification/regression method that trains many classifiers 

and then combines their findings via a vote procedure [10], [11]. It is a method in which a large 

number of decision trees are generated and trained on the original training data, with the output 

class selected by a majority vote of the trees [9]. The random forest model excels at managing big, 

missing, and outlier data because to its robust model structure. [12] used Random Forest regression 

to estimate groundwater contamination in Africa and compared its results to a multiple linear 

regression model. [13] utilized artificial neural network techniques to forecast the likelihood of 

groundwater arsenic contamination in Cambodia, Laos, and Thailand and provided data and 

information on the potential health hazards it poses to nearby communities. 

The present study aims to develop an efficient predictive model for groundwater 

contamination using Random Forest (RF) and comparison its effectiveness with Multiple linear 

Regression (MLR). 

2.0 MATERIALS AND METHODS 

2.1 Sample Collection 

Groundwater samples were collected from 14 locations or stations (Table 1) across 3 Local 

Government Areas (LGAs) of Edo State and a control sample, a bottled water sold within the 

Benin City Environ was purchased.  

The pH of the groundwater samples was determined using a pH meter while the concentrations of 

the heavy metals were determined using Atomic Absorption Spectrophometer (AAS) after 

digestion. The results obtained will be compared to [14] and [15] standards of portable water. 

2.2 Statistical Analysis 

Regression and correlation analysis was employed to determine the mathematical relationships 

and closeness between the values of the variables understudy. Results of descriptive statistics for 

the relevant variables used to predict groundwater contamination will also be provided which 

include mean and standard deviation.  

Table 1: Sampling locations across 3 Local Government Area (LGA) of Edo State 

LGA Location Stations 

Oredo GRA1` 1 



Udegbe and Ukaoha.- Journal of NAMP 67, 2 (2024) 207-218 

209 

New Benin 2 

Ibiwe 3 

Ihogbe 4 

Ekehuan 5 

Oreoghene 6 

Egor 

Uselu 7 

Uwelu 8 

Okhoro 9 

Ugbighoko 10 

Uhunwhonde 

Obadan 11 

Ogheghe 12 

Igieduma 13 

Ehor 14 

 Control 15 

2.3 Multiple Linear Regression (MLR) and Random Forest Model (RFM) 

The general methodology of machine learning includes (a) data preparation, analyses, and 

visualization; (b) normalization; (c) model selection and implementation; and (d) performance 

metrics. In this study, the following steps were implemented using “Python” Code within 

“Anaconda Notebook”: (i) import the required libraries, (ii) import the “-.csv” file containing the 

dataset (concentrations of Mn, As, Fe, Pb, and Zn variables and pH), (iii) statistical analyses and 

data visualization, (iv) Multiple Linear Regression and Random Forest models, and (v) 

performance metrics.  

A comparative analysis of the predictive performance of both MLR and RF models were utilized 

for forecasting concentrations of three selected heavy metal species, namely Fe, Pb and Pb. This 

evaluation was based on key model evaluation metrics outlined earlier in the methodology, 

specifically focusing on the R-squared (R2) value and Root Mean Square Error (RMSE). Both 

models were belt on same size train test split, which is 70% train to 30% test splits. The RF model 

run under the following parameters: criterion=“entropy,” n_estimators = 10, and random_state = 

0. By comparing the R-squared values and RMSE obtained from both the RFM and MLR models, 

their relative effectiveness in predicting the concentrations of heavy metals in the groundwater 

samples were assessed. The model with higher R2 value and lower RMSE value was considered 

more reliable and accurate in predicting metal species concentrations in groundwater. The 

flowchart of the MLR and RFM prediction of the heavy metal concentrations in groundwater is 

presented in Figure 1. 

  
Figure 1: Flowchart of study methodology of RFM and MLR prediction of groundwater heavy metal concentrations 
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3.0 RESULTS AND DISCUSSIONS 

3.1 Concentrations of Heavy Metals in Groundwater 

The results of groundwater contamination study is presented in Table 2 for pH and the 

concentrations of various heavy metals under study which includes manganese (Mn), iron (Fe), 

zinc (Zn), arsenic (As) and lead (Pb) taken from groundwater from 14 locations across 3 Local 

Government Area (Uhunwhonde, Egor and Oredo) of Edo State in comparison with some 

standards of portable water. 

Table 2: Concentration of heavy metals in groundwater taken from 14 Locations  

LGA Location pH 
Concentration (mg/l) 

Mn Fe Zn As Pb 

Oredo 

GRA 6.40 0.38 0.30 1.14 0.02 0.03 

New Benin 6.21 0.36 0.31 1.25 0.02 0.03 

Ibiwe 6.31 0.35 0.28 1.22 0.02 0.03 

Ihogbe 6.40 0.32 0.27 1.19 0.02 0.03 

Ekehuan 6.51 0.33 0.27 1.19 0.01 0.03 

Oreoghene 6.55 0.30 0.26 1.18 0.01 0.03 

Egor 

Uselu 6.67 0.25 0.24 1.17 0.01 0.02 

Uwelu 6.63 0.27 0.24 1.15 0.01 0.02 

Okhoro 6.76 0.26 0.24 1.14 0.01 0.02 

Ugbighoko 6.87 0.24 0.23 1.12 0.01 0.02 

Uhunwhonde 

Obadan 6.94 0.23 0.23 1.12 0.01 0.02 

Ogheghe 7.03 0.24 0.24 0.11 0.01 0.02 

Igieduma 7.05 0.20 0.23 1.10 0.00 0.02 

Ehor 7.05 0.18 0.23 1.08 0.00 0.02 

 Control 7.07 0.17 0.23 1.08 0.00 0.02 

 Mean (mg/l) 6.70±0.29 0.27± 0.06 0.25± 0.03 1.08± 0.26 0.01± 0.01 
0.02± 

0.01 

 NIS (2015) 6.5 - 8.5 0.10 0.30 5.00 0.01 0.01 

 WHO (2017) 6.5 - 8.5 0.40 0.30 3.00 0.01 0.01 

Nigerian Industrial Standard (NIS), World Health Organization (WHO) 

From Table 2, New Benin exhibited the highest concentrations for the heavy metals except for 

manganese while the control exhibited the lowest concentrations across all observed heavy metals. 

The mean values of pH was found to be 6.70 ± 0.29 which is within the permissible limit by [15] 

and [14] standards for portable drinking water. Water with lower or much higher pH is unsafe for 

drinking and this can result from chemical or heavy metal pollution [16].  The mean concentration 

of the heavy metals in the ground water from the different locations was found to be 0.27 ± 0.06, 

0.25 ± 0.03, 1.08 ± 0.26, 0.01 ± 0.01 and 0.02 ± 0.01 mg/l for Mn, Fe, Zn, As and Pb respectively. 

Zinc had the highest concentration in the groundwater while Arsenic had the least concentration. 

One notable observation was the inverse relationship between pH values and metal concentrations. 

As the concentration of heavy metal species increased across the sampling locations, the pH values 

decreased. This phenomenon indicates a positive correlation between acidity and increasing heavy 

metal concentrations. This correlation can be attributed to several factors, including increased 

solubility and the liberation of hydrogen ions in acidic environments. Additionally, competitive 

sorption processes may play a role, causing faster displacement of heavy metals from soil into 

groundwater. It is noteworthy that, in general, the concentrations of heavy metal species at most 

sampling locations was within the accepted limit of both [15] and [14] standards of portable water. 

However, at a few sampling points, concentrations exceeded these accepted limits.  The average 

concentrations of Mn, Fe and Pb were observed to be lower than those reported by [17] who 

reported the values of these HMs to be 1.76, 0.71 and 0.04 mg/l respectively for groundwater 

samples collected from Okomu National Park in Ovia South West LGA of Edo State while the 
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concentration of Zn from this study was higher than the value of 0.01 mg/l the authors reported. 

Also, the average concentrations of Mn, Zn and Pb in groundwater reported in this study were 

found to above the range of 0.0014 to 0.0904 mg/l, 0.0014 to 0.2829 mg/l and 0 to 0.0115 mg/l of 

Mn, Zn and Pb respectively reported by [18] for studies carried out on groundwater samples from 

selected communities in Edo State while the average concentration of Fe from this study was 

within the range of 0.0218 to 0.4570 mg/l the authors reported. 

3.2 Correlation between Groundwater Variables  

The correlation analysis of pH and the concentrations of heavy metals present in the groundwater 

under study is presented in Table 3. 

Table 3: Correlation between groundwater variables (pH and the heavy metals) 

  pH Mn Fe Zn As Pb 

pH 1      

Mn -0.9464 1     

Fe -0.8980 0.9253 1    

Zn -0.4653 0.2807 0.2734 1   

As -0.8766 0.9083 0.8174 0.1697 1  

Pb -0.8598 0.8747 0.8901 0.3471 0.7206 1 

 

From Table 3, pH showed strong negative correlations with Mn (r =-0.9464), Fe (r = -0.8980), As 

(r = -0.8766) and Pb (r = -0.8598) and weak negative correlation with Zn (r = -0.4653), indicating 

that the concentrations of the metals decreased with rise in pH. Mn showed strong positive 

correlations with Fe (r =0.9253), As (r = -0.9083) and Pb (r = 0.8747) and weak positive correlation 

with Zn (r = 0.2807), indicating that the concentrations of Mn in the groundwater increased with 

the concentrations other metals in the water. Fe showed weak positive correlations with Zn (r = 

0.2734) and strong positive correlations with As (r = -0.8174) and Pb (r = 0.8901) indicating that 

the concentrations of Fe in the groundwater increased with the concentrations other metals in the 

water. Zn showed weak positive correlations with As (r = 0.1697) and Pb (r = 0.3471) while As 

showed strong positive correlations with Pb (r = 0.7206). The negative correlation exhibited by 

pH on the concentration of heavy metals in the groundwater and the positive correlations between 

the heavy metals are consistent with results reported by [19] for correlation of heavy metals in 

groundwater sourced from Hunan Province, China. The correlation between these variables is 

represented diagrammatically by the correlation map in Figure 2. 

 

   
Figure 2: The correlation map between the measured variables 
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3.3  Linear Regression between the Heavy Metals in the Groundwater 

The linear regressions between the concentrations of the heavy metals in the groundwater are 

shown in Figure 3. From Figure 3 (a) to (i), there were positive relationships between Mn, Fe, Zn, 

As and Pb, with especially stronger relations of Mn with Fe, As and Pb, indicating that these heavy 

metals likely co-varied with each other [20]. This indirectly proved that these heavy metals could 

have the same source of metals and nonferrous metal minerals present in the study areas [19]. 

 

 
                                          (a)                                                                    (b) 

 

 
(c)      (d) 
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(f) 

 

Figure 3: Linear regressions between the concentrations of the heavy metals in the groundwater (a) Mn vs 

Fe, (b) Mn vs Zn, © Mn vs As, (d) Mn vs Pb, (e) Fe vs Zn, (f) Fe vs As, (g) Fe vs Pb, (h) Zn vs Pb and (i) 

As vs Pb  

3.4.1  Evaluation for Concentration of Fe, Pb and As in groundwater 

The scatter plot in Figure 4 (a), (b) and (c) visually represent Fe, Pb and As concentration across 

the 15 stations respectively, with an emphasis on the pH levels. The hue of the markers intensifies 

as the acidity increases, while the size of the markers corresponding to higher Fe concentrations. 

This visualization effectively illustrates the positive correlation between Fe concentration and 

acidity as seen in Figure 4 (a). Similar to iron, the markers' color intensifies with increasing acidity, 

and their size increases with increasing Pb concentrations (Figure 4b). The positive relationship 

between acidity and Pb concentration was also demonstrated by this visualization. The behavior 

observed in the relationship between As concentration and acidity remained consistent with the 

trends seen in the cases of Fe and Pb as seen in Figure 4 (c). 

 

 
(a) 
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(b) 

 
(c) 

Figure 4: (a) Fe, (b) Pb and (c) As concentrations in groundwater stations 
 

3.4.2 Evaluation for RFM and MLR for Concentration of Fe, Pb and As in groundwater 

For comparative evaluation of RFM and MLR suitability for predicting Fe concentrations, RFM 

outperformed the MLR model in terms of R2 and RMSE metrics. Specifically, the RFM gave a better fit 

with a higher R2 value of 0.8410, which indicates over 84% explanation of the variability in Fe 

concentrations by the predictor variables in the model while the MLR model achieved a slightly lower R-

squared value of 0.8182, suggesting that it can explain approximately 82% of the variability in Fe 

concentrations in the groundwater samples. Furthermore, the RFM also exhibited a lower RMSE value of 

0.0122 in comparison with 0.0130 obtained by the MLR model. This indicate 1.22% deviation in  RFM 

and 1.33 in MLR model. The regression plots for (a) RFM and (b) MLR Model for Fe concentration in 

groundwater is Figure 5 (a) and (b) respectively. 

 



Udegbe and Ukaoha.- Journal of NAMP 67, 2 (2024) 207-218 

215 

       

(a)                                                                (b) 

Figure 5: The regression plots for (a) RF and (b) MLR models for Fe concentration in groundwater 
For the prediction of Pb concentrations in groundwater by MLR and RFM, both models showed promise in 

predicting Pb concentrations, although the RFM model performed better. The RFM model achieved an R-

squared value of 0.9389, signifying that approximately 94% of the variation in the Pb concentrations can 

be elucidated by the predictor variables. In contrast, the MLR model attained a marginally lower R-squared 

value of 0.8919, suggesting an explanation of about 89% of the variation in Pb concentrations. The superior 

R-squared value achieved by the RFM model denotes a more optimal fit to the data in comparison to the 

MLR model. Additionally, the RFM model displayed a lower RMSE value of 0.0013 than the MLR model 

with RMSE OF 0.0017. Specifically, RFM indicates an average deviation of approximately 0.13% of 

concentrations of Pb in groundwater while MLR model showed 0.17% deviation of the  observed Pb 

concentrations in groundwater. The regression plots for (a) RFM and (b) MLR Model for Pb concentration 

in groundwater is Figure 6 (a) and (b) respectively. 

       
(a)                                                                 (b) 

 Figure 6: The regression plots for (a) RFM and (b) MLR models for Pb concentration in groundwater 

3.4.3 Evaluation for Concentration of Arsenic 

In contrast to the Fe and Pb cases, the MLR model emerged as the superior performer in predicting arsenic 

concentrations in groundwater. Specifically, the MLR model exhibited an R2 value of 0.9619. This value 

indicates that approximately 96% of the variance in As concentrations could be explained by the predictor 

variables in the model. Moreover, the RMSE associated with the MLR model was measured at 0.0013. This 

low RMSE value suggests that, on average, the predictions made by the MLR model deviated from the 

observed As concentrations by only 0.13%. In contrast, the RFM model, while still performing well, 

showed slightly lower results for the prediction of As concentrations. The RFM model yielded an R2 value 

of 0.8577, indicating that it could explain approximately 86% of the variance in As concentrations. 

Furthermore, the corresponding RMSE value for the RFM model was 0.0025, which is slightly higher than 

that of the MLR model. These comparative metrics suggest that, for the As case, the MLR model provided 

more accurate and reliable predictions compared to the RFM model. The higher R-squared value and lower 

RMSE associated with the MLR model indicate a better fit to the data and a smaller prediction error. This 
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outcome underscores the importance of considering the specific characteristics of each metal species and 

selecting the most appropriate modeling approach accordingly. The regression plots for (a) RFM and (b) 

MLR Model for As concentration in groundwater is Figure 7 (a) and (b) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)………………………………………………………..(b) 

Figure 7: The regression plots for (a) RFM and (b) MLR for As concentration in groundwater 

3.4.4 Most Influential Environmental Factors Contributing to Groundwater Contamination 

Tables 4, 5 and 6 gives the feature importance data of groundwater heavy metal contaminants indicating the 

most significant factors (heavy metals) affecting groundwater contamination using Fe, Pb and As 

respectively. From the tables, it can be observed that pH was the most important explanatory variable to 

describe the groundwater contamination by As, Fe and Pb in this study. 

Table 4: Features importance of Fe contamination 

 

 

 

 

 

 

 

 

 

 

Table 5: Features importance of Pb contamination 

Index Features Feature_Importance 

0 pH 0.3054 

1 Manganese 0.2251 

2 Zinc 0.1307 

3 Arsenic 0.1567 

4 Lead 0.1821 

Table 6: Features importance of As contamination 

Index Features Feature_Importance 

0 pH 0.3066 

1 Manganese 0.1773 

2 Iron 0.1813 

3 Zinc 0.1399 

4 Arsenic 0.1950 

Index Features Feature_Importance 

0 pH 0.2948 

1 Manganese 0.1979 

2 Iron 0.2087 

3 Zinc 0.1186 

4 Lead 0.1799 
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CONCLUSION 

The RFM algorithm demonstrated superior performance over the MLR algorithm in predicting 

concentrations of the heavy metals (iron and lead) with higher R squared value and lower RMSE except for 

Arsenic. The observed differences in model performance can be attributed to the intricate nature of heavy 

metal behavior in groundwater. From the study it can be concluded that both MLR and RFM can be used 

to model or predict groundwater contamination with heavy metals. RFR is therefore considered a very 

promising technique for large-scale modeling of groundwater heavy metal contamination. 
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