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1. Introduction

Broberg [1] defines crack in a structure as a material separation comprising of disjoint upper and
lower faces with the separation distance substantially smaller than the separation extant. This
separation if it occurs in a structure, and no action is taken to arrest its growth, the crack may
propagate until the structure breaks. This breakage may entail loss of life depending of the usage.
To avert this occurrence, many researchers have proffered several methods of arresting crack
propagation [2-9]. One of the efficient methods is to install a circular crack breaker(stop-hole) at
the end of crack to prevent or delay its growth [ 10-15]. The effectiveness of the stop hole method
depends on a proper understanding of the influence of the hole size and shape.

“Corresponding author: NDUBUEZE G. EMENOGU
E-mail address: nemenogu@gmail.com

https://doi.org/10.60787/jnamp.v67i2.372
1118-4388© 2024 INAMP. All rights reserved

181


mailto:nemenogu@gmail.com
https://doi.org/10.60787/jnamp.v67i2.372
https://nampjournals.org.ng/

Ndubueze G.E. and Emelike U.- Journal of NAMP 67, 2 (2024) 181-198

A survey of most work in literature in this regard shows that the numerical techniques were
extensive employed while the theoretical methods were few. The theoretical analysis of a crack
problem plays a significant role in the understanding of the mechanism of failure of structural
components as well as serve as a benchmark for the purpose of judging the accuracy of various
numerical techniques. To contribute to the knowledge of theoretical methods of solutions of crack
arrest,

we investigated the influence of the elliptic crack breaker on mode 111 deformation behavior of a
semi-infinite crack in a homogeneous, elastic orthotropic material subjected to longitudinal shear
loads starting with the formulation the governing boundary value problem for anti-plane
deformation and constructing two analytic functions that transforms the initial configuration of the
problem to one analyzable by method of integral transform, which transform the governing
equations into algebraic equations using complex variable and Mellin-integral transform
techniques .Closed form solutions for the displacement and stress fields are obtained leading to
mode 111 stress intensity factor (SIF) at the boundary of the crack breaker.

2 Theoretical Analysis

a. Formulation of the problem
Consider an infinite elastic orthotropic material containing a semi- infinite crack which occupies
the region —oo < X' <0 in a moving coordinate system (X, y’,z") . A pair of longitudinal shear

loads of magnitude Q is applied along the crack surface on an interval [—a,—d] of length L. An
elliptical crack breaker (stop hole) with minor and major axes m, =sinhaand m, =cosh«

respectively is introduced at the center of the orthotropic material which is at the origin of a fixed
coordinate system (x, y,z) . Fig. 1 illustrates the configuration of the problem under

consideration. Suppose that, at timet=0 , the crack tip starts to move with constant velocity v
along the X'-direction and ends up at the crack breaker , attaining a displacement vt. Suppose ,

also, that the disturbance due to the load is anti-plane so that it creates only an out of plane
displacement and stresses in the Z -direction . The problem is to investigate the influence of the
elliptical stop hole on the stress intensity factor at the crack tip

y y

sinha

xx
/ cosha

v

Fig 1. Geometry of the problem
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Under the prevalence of anti-plane strain condition, i.e. the only nonzero component of the
displacement vector is the one the z'direction, here denoted by W. The state depends only on the
coordinates X' andY’, so that derivatives with respect to z’vanish. Consequently, the only non-zero

stress components o,, and o, are given by
ow

Oy, =Cyy &' Oy, = Css 5 (21)
where ¢,, and c., are the shear moduli in the x” and y'directions.
Accordingly, the equation of motion takes the form
oo, 0o, 2
O-xz + y — a w (22)

8X( 8}/' p atZ
Where p is the mass density of the elastic material
Substituting the stress-displacement relations (2.1) into equation (2.2) and simplifying the result
leads to the two-dimensional wave equation
2 2 2
R 23
ox'= n°oy c” ot

Cu g Cu 2
where 7 =|—| and c=| —| isthe wave speed.
Css P

The corresponding boundary conditions on the crack surface under anti-plane strain loading Q are
as follows:

oW ., |EQ , a<x'<d
Cu g(x 0)= {0 ,otherwise @4
a—W!(b,O):O b>0 (2.5)
w(x,0)=0 x>0 (2.6)

3. Methods

For a crack moving with constant velocityV in the X'-direction, it is convenient to introduce the
Galilean transformation

x=x-vt ,y=ny , t'=t (3.2)
With this transformation, the wave equation becomes independent of time and eq. (2.3) reduces
to Laplace’s two-dimensional equation
o°'w  o*w
~+— =0 (3.2)
ox: oy
In terms of polar coordinates (r, §) which are related by
X=rcosé, y=rsind ,the non-zero stresses are

ow 10w
Orz(1,0) = Cs5 - (1,0) , 09,(1,0) = Cag 75, (1, 6) (3.3)

Viw(x,y) =

and eqgn (3.2) becomes
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o*w(r,0 ow(r,6 2
(r0) 10w(r0) 10w _

2 >—— =0, r>b,-z<6<nxn (3.4)
or r or r- o6
subject to the boundary conditions
£rQ asr<d
C44
M (¢ tr)= (35)
00 .
0 Otherwise (r<a,r>d
ow(b, 6 : .
( ) =0, b=1(unit radius) (3.6)

or
b. Transformation of problem

Because of the nature of the geometry of the problem, we shall transform the configuration twice

using two holomorphic functions. Since

1
W= E(Ze‘“ + Z"le“) where  is real (3.7a)

maps a circle |Z| =1, z=¢" onto an ellipse with the lengths of the major and minor axes as 2cosh «

. 1
and 2sinh o respectively, the inverse function f (W)= E(We’“ + W’le“) maps back the ellipse into

a unit circle. We then use the function

5(2):%(z+1j—1 ,z=re" (3.8)
z

to map the circular hole onto a line with the edge terminating at the origin.

Resulting in v

Fig 2: The transformed configuration of the original problem

Then, using the holomorphic function defined in equation (3.8),Eqns. (3.4),(3.5) and (3.6)
transforms to

(az 10 18

O 1019 lw(pg)=0 p>0, 0<p<z (3.9)
op*  pop p28¢2j (»9)
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subject to the boundary conditions

Sp[ (?_1)2) +1} a<p<p
4 | A P\P—
M = (3.10)
¢
0 otherwise
a@"; (p.4)=0 O<g<r (3.11)
W (p,0)=0 p>0 (3.12)

c. Analytic solution of the transformed problem

Employing Mellin integral transform of W ( p, ¢) defined by W (s,¢) = JW (p.¢)p°'0p to eqns.
0

(3.9) -(3.12), the differential equation derived is

2
ddTW(S ¢)+sW (s,¢)=0 —%< Res<0 (3.13)
The solution of egn. (3.13), subject to the boundary conditions (3.10)- (3.12) is
W (s.¢) = < 5(p,ars) 2098 (3.14)
Cyy SCOS 7S
where
1 21
P 2 2
3(B.as)=|| o (1—3] —p“(l—gj +p* |op (3.15)
> P P
Given the inverse Mellin transform of W (s,4) as W (p,9) :i _[W (s.¢)p
K 1 % sin¢s . Q 1 °¢ sings
w = X dsW(p,¢)=—— | 3(B,a;s ds,
(o9 Cy 27 -[, scos;rsp (p:9) Cyy 271 % (B )scosm'o
(3.16)
Then term by term evaluation of the integrals in (3.15) using the convergent series, Nnadi [16]
1 [e]
(1-t)2=>"jt", [t <1, (3.17)
k=0
where the coefficients are defined by
. 2k )!
Jk = 2(k ) 2 (318)
2% (k1)
For the first term, we have
s e
Ips(l——j op=> 52 [ pop
a k=0 a
o s—k+1 B o0 s—k+1 s—k+1
. A el 3.19
kZ::;Jk [s—k+1l ;Jk { s—k+1 (3.19)

For the second term,
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For the third term,
B se1 178 s+1 s+1
s a
Ip op = |:,0 :| = B —

s+la s+1 s+1

Hence,

s+1

3(B,a:3) ZJk {

Inserting eqgn. (3.22) into eqgn. (3.16), we obtain
W (p,¢)= ( 9 -

(2) 3)
12+ |aﬂ)

Term by term evaluation of the three terms in eqn. (3.21) yields

s k+l — s—k+1 e sk sk s+l
o —ijZk p a |, g a
s—k+1 r s—k s+1 s+1

s+1

|

D2

Inserting eqgn. (3.26) into eqgn. (3.23), we obtain

W(p,¢)=g{ 1P 19— Q =019 +19}
c

ﬁas ijk sk+l_as—k+1 _oo
“ s—k+1 r

44 44
where
e 271 7 (s—k+1)scoszs| B
T j sin g (ﬁjsds
e 27 2, (s—k+1)scoszs\ o

0 o okpk 1L sings  (p

= 2 = ds
¥ kzz(;]k ey e-[ (s—k scoms(ﬂj
@ &k 1 sings Yj

= 2'a —| ds
. kZ:;,Jk 27i eL(s k scos;:s(a

I(;):ﬂ 1 e]PO sin ¢s (Ej ds

27i 7, (s+1)scoszs| S
I(a):a 1_ J- sin gs (Ij ds
“ 27, (s+1)scoszs\a

Evaluating the integrals |
1 2 3 1 2 3
| | 15,12 12

we have

The displacement for p <

,Bs_k—(ls_k . ﬂs+l_a
s—k s+1 s+1

|

(3.20)

(3.21)

(3.22)

(3.83)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(;) and |(aj) , 1=1,2,3 using residue theory and Jordan lemma,
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=—4-2singp+ 2

(12 32) 5 (n+7j(”_lj

i 1) (YY) L 1) .(r) 2
P () P (i)
+(5s2° = J62°) =5 +(§s2° - 52" )= > +..(3.34)

st e )
+(1323—J424),[;32 +(J42“—1525)m4zl & +..(3.35)
= (Mi)(n—J = (M?j(n_;j

Experimental work
Since the loading split the upper half p¢ -plane into three regions denoted by R, ,R,, and

R, defined as follows:
R ={(p.9)|0<p<a ,0<¢<n}, Ry ={(p.9)|a<p<p,0<¢p<x}and
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R111 ={(p.d)|f<p<wo ,0<p<r}

Fegion 1T

Region 1T

-5 — o I
g = d /]\ B =g
=< P < f8

Fig.3. Solution regions induced by loading
Since stresses concentrates at the crack tip, we shall proof that our derived displacement

Wiot)= 220010 12 B 0 1210 peppaa

Cyy (3.35)
satisfies both the governing Laplace equation
2 2
8V\2/+£8W+i28Vl/:0 (3.36)
op° pop p°oP
and the boundary conditions
W (p,0)=0, a<p<p (3.37)
-1
ﬂ(p,iz):bQ’o (p-1) +1|, a<p<p, p>2 (3.38)
op Cus \/,0(,0 - 2)

Now using eqn.(3.35) for p > a (Region Il (A))

N\ _1 B —n% 1\ _E B —n%
0 |20 S'”(” 2j¢[a) 11 i( ) S'”(" 2]%]

W(p.g)=—=
e

Nl . 1 P "2 nl . 1 Yo "2
inzg , 1@l Sm(n 2}'{(1} ssin3g > 15 oY S'”(” 2)‘/’(& (3.39)
+ prlt— += p ===, +...
2 o = 5 1 8 3 8na” o 7 1
n-=|n-= n-—|n-=
2 2 2 2

Therefore
W (p, O) =0 (3.40)
Rewriting eqn. (3.39), we have
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1 e el 1 1 —n% e
(-1)"sin|n- |ga Zp 2 (<) sin[n-Z1g| = | “p

bQ |2 & 2 1. ., 1¢& 2

=— +singo +—). +

Cu |73 1 1 2 2 3 1 2

n+=1{ n-= n-—|{n-=

2 2 2 2

5 7
n+l . 1 1 2 sl n+l . 1 1 M nel
~1)"*sin| n-= 2 . 1N sinl n==lg| = 2
o (FYs ( 2j¢(aj P issingg , 15l S ( 2)¢(aj p
+=y = +
T

G O R ) = R
n-=|n-= n-—|n-=
2 2 2 2
Differentiating eqn.(3.41) ,we have
n 1, ned oned nt 1 (1Y nid
L (1) cos| n—= |ga 2p 2 . (-1 cos|n-=|¢ p 2
awa(;)’m:% %; ( le +%cos¢p’1+i§ ( Z)S[aj +COS2¢p % +... (3.42)
2 2
(3] 3)
Therefore
oW ( p,
o¢ Cu L 2 8

nel 1 1) (1Y"2 -l et 1 1) (1Y™2 il
12(—1) (n zjsm(n—;jqﬁ((x] 55in3¢p3—;5n2(_1) (n—zjsm(n—?zj(ﬁ(a) . ca
B &
ne1 1) . 1), nd ol
1 W (p,¢) bQ| 2¢ (=3) (n_zjs'n(n_zjm r o
e Rt i S —5singp
P o¢ Cu | 7T (n_’_lj
2
I I
gz; 3 i —sm2¢p’4—§§ : ¢ ——sin3gp
-2 -
1) . 1) (1Y"2 -3
gl
b 2 a o (3.45)
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n+l 1. 1 n+g ’“’% o\ 1 . _E i HH% 417%
6W(p.¢)_b£ Ei:(—1) (—n+§)sm(n—5j¢a el T 1i( 1) (n+2)sm(n 2);15(0[] el N

= —singp +—
op Cag |72 (n+lj(n_£j 2 21 (n_§j(n_1j
2 2 2 2

8
|
[N
SN—
S
?
Ry
7/ N
=
+
|
Ne—
[<2]
=
7/ N\
=
|
N |-
N
>
VR
R |+
Ne—
5
7
N
R
?
(K%
N |-
D15
|
[N
SN—
S
?
Ry
VR
=
+
|
Ne—
<2)
=
VR
=
|
|
N—
>
VR
R |+
Ne—
5
7
~
i)
?
(K%

+%sin 3gp~°

n+l . 1 1 —n-% *"*E n+l . 1 1 —n+§ —n—E
R T I T
_lz 2 a _%sin3¢p’5+iz 2 @ +...p (3.47)

()
2

n+1 1) . 1 n+; ,n,g
62W(p,¢):b_Q 2¢ (-1) (n—zjsm(n—zjm; ) L
2

1
Lo 25 ~Jsingo
P o¢ Cu | 7T (n_’_lj
2
i (—1)n+l(n—ljsm[n—;j¢(ijn+2 pfng ) (—1)”+1[n—1jsm(n—)¢(ij E pfnf§
) ( 3) —sm2¢p“‘——; ( 5) -—sin3gp
n-= n--
2 2
naf 1) 1) (1) -n-3
_Ei(_l) (n—zjsm(n—zjg/{aj Y . (3.48)
2
Therefore
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2 2 © n+§ _n_§
0 V\Zl +1%+i26 V\2/ = b_Q{EZ(—l)"”sin(n—quﬁa 2p 2 4singp’®
op° pop p° 09 Cu |7 2

n=1
; (—1)"+1(n+]sm(n—jyﬁ(ljmz pin% . (—1)n+1(n+)sm(n—ljvﬁ(ljn+2 2
+— @ +3sin2¢p™ +lz 2) \a
27[ n=1 3 T =1 5
n-> n-=
( 2) ( 2]
el
5 15 & (_1)n+1(n+j3in(n_j¢(l) s
+—sin3gp " +— e +
87[ n=1 (n_7)
2

Now for  p < S (Region Il (B))

W(p,qj):a —25in¢p+%g ( 3)( 1) E;;ﬂé (n+1j(n_lj
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- (_1)n+15in(n—lj¢(pjn_; . (—1)nﬂsin[n—1j¢(pjn_;
zZﬂ“; ”*9(:‘5 +876;5; (”*2)(:-5 +.t  (350)
(1) cos[n— Jg| 2 K (1) cos[ n— 1|9 "
GW;Z’¢)—2T? —2008¢p+—'8nz_; Cosél:)j [ﬁ j 27153”2_;‘ COS((nnJr 5) E j
(-1 cosn— |g[ 2 K (<1 cos[n— < || 2 "
_ﬂ-;z ; COS((:_}_ 22)} (ﬂj 83[;3 nz:l: COS[(nn+ 22)) (ﬂ}
. ()" cos| n——g| & (o[ n-L)g( 2] ?
_27;4”21: COS((:JFD) (ﬂj +876;5n21: COS((nZZj) (ﬂj 4L (35
Therefore
~ é;””) = bg {2p} (3.52)
gt ANy n% IRV S T i £ ”’%
g e 2y O g A
L ()7 = fsin|n—"Jg) £ (o n=Lsin[n-1)g( 2]
R R =
st (“][:"l%%’@ s 1(n)(:'i(%]¢(2) s
2 2
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n+l 1). 1 g—n ”*g _ n+l _1 . _1 l n% n—;
LW (pd) bQ|, 4zwm)@3%%“JW” 1w“)b2%%"J4A ’
: = =—=12singp -= ) )
p- 0f Cu TS 3 2w o 1
3 &

63 &
to - +..p  (354)
2 ('”j sﬂé (Mj
n+l . 1 1 gin n-— n+l 1 "2 n--
(-1) sm(n—}zﬁ(] (-1) sm(n— ¢(j P
oW (p,4) bQ > 2)°\ B 1 B
o o] (3 ) ok ( ) )
Z-n n+=
2
n+l 1 n+g ”*% n+l 1 "3 n—>

li(—1) sm(n—}¢(ﬂJ Ei:(—1) sm(n—];ﬁ(ﬁj
7T n21 ( j 87[ n=1 ( j

n+§ n+§

(~1)"sin (n —J¢(ljn+; Pnig (-1)"sin (n —j¢(ljn+z Pnig

li p + 335 p +..b  (3.55)
27[ n=1 ( j 87[ n=1 ( ]

n+ n+

2 2
ni 1),(1 . n-> nil . 1),(1 " w2
10W(p.¢) bQ L 2 (-1) S'”(”—Zj(b(ﬂJ p | = (-1) Sm(n_Z}b(ﬁJ p
— =—=<-2singp " +=) -=>
p Op Cas o (3_ j 2 o ( 1)
n n+
2 2
<—1>"“sm[n—j¢[1j”+2 (e[l 2)7
iy pl 7 s p) ”
T h=1 ( 3) 872' n=1 ( 5)
n+— n+—
2 2
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n+l . 1 1 n+g n-2 nel . 1 1 n+% n-2
, (1) S'”(n—j¢(j p 2 () sm(n—jq{j p 2
i s S 2 P (3.56)

- + +...

27 3 (n + 7) 873 (n + 9)
2 2

N

_;ﬂi(_l)m (n —gjsin [n —;jqﬁ(;jm; pm5 ii(—l)n+1 (n —2

n=1

.. (3.57)

Therefore

2 2 0 é_n n_§
SIECTIE TR TR VI A e
op° pop p° 0 Cu | 72 2

1 & n+l 3) . 1 1 n+% n-2 1 nal 3) . 1 1 nJ% n->
Dl U Y 7 Al G s G
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n+l s 1 1 g‘” n-> nl . 1 1 n+% n->
(-2) sm(n—j%j p? (-1) sm(n—jyj[j p 2
bQ ) Hsingot+2S 2)"\ B 1¢ 2)"\ B
+a —2singp +;; [3 j _5; ( 1)
PR n+3

2 2
n+Z 5 n+g 5
(—1)””[n—1]sin[n—1]¢(lj an_E (—1)””(n—1jsin(n—lj¢(lj an_i
Ly 2 2) \F By 2 2/ \b ~0 (3589)
2 S ( 7] 8r S ( 9) '
n+— n+=
2 2
6. Conversion of the boundary condition for region Il to series form
Recall the boundary condition for region Il
-1
aﬂ(,o,;r):b—Q M+p , a<p<pf, p>2 (3.59)
%7 cu| Jo((p-2))
We convert the above equation to series form using the formula
1 0
(1-t)2=> J,t" (3.60)
k=0
Where
2k)!
J. = (2K) : (3.61)
2% (k1)
Now
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-1 -1
aﬂ(p’ﬂ-) b_QM.kp :b_Q M_’_p
o¢ Caa p(p—Z) Caa 2 z
p*(p—2)2
b plp-1 b 1 1
:C_Q 1( )1+ :—Q|:p2(p—1)(p—2)2+p:|
44 ,Oa(p—Z)E 44
b : JER S
=—Q{p2p(/)—2)2—p2(p—2)2+p}
C44
i 1 1 _1 1 1 _1
_bQ pzpp_z(l_gj i pzp_z(l_gj * tp
Cua P P
: 1 L
_bQ p(l_éjz_(l_éjﬂ,) (3.62)
Cas P P
But
1
2)2_ & (2) & e
(1-t)yz=) jt'=> [1-=| =Dc|=| =D i2p
k=0 P k=0 P k=0
Hence
1
2 2 S k 1-k
pl1-=| =2 (3.63)
P k=0
Therefore
1 1
oW hQ ( 2}2 ( 2}2 [ Lk ’
—(po 1-——| —|1-——| +p|=— J.2p iW2p ™+ p
8¢( )= Caa P P Cy ; ‘ Z ‘
:2—[(1'02%—1'02°p°)+(1'121p°—1'121p’1)+(1'222p’1—1222p’2)+(1'323p’2—1323p’3)+(1'424p’3—1'42“p’4)+---+p]
—b—Q — §>< ’1—§>< -2 5>< —5 -3 ﬁx ’3—£x 4
_CM[(,; D+(1-p )+[8 4p o 4p J (16 8p2 T x8p j+(128 16p 18 16 )+...+p}
b -1 3 _ 3 2 5 -2 5 -3 j [35 -3 35 4 ]
=— -1)+(1- +|=p —= +|=p —= +| —p " —— +...+
CJ(p )+( p)(zp 2pj(2p > P iy p
bQ{2p+1p +p +Ep +.. } (3.64)
Cyy 2 8
From region 1l (A)
8W(p,7z') bQ{ 1 5, 5 15 5 }
S U A e - Ry R O 3.65
o0 . P P e p>a (3.65)
From region 11(B)
W (p.7) _bQ
————=—12p P<p (3.66)
8¢ C44{ }
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Hence by superposition principle
oW (p, ) bQ{2 - bQ{ 1 L, 15 }
o¢ Caa Cas

(3.67)

= bQ{2p+ oa —p2+Ep3+...}
Cua 2 8

Which satisfies the boundary condition in series form.

Results and discussion

Having established the validity of our solution, we now investigate the tip of the crack for the
stress fields using the solution obtained above

The tip is at the origin and is approached as p — 0 . The asymptotic value is obtained as

W(p ¢)— (ng) x(f)]sm p? (3.68)

Next we introduce local polar coordinate(R,l//) at the intersection of the crack breaker boundary
and the X -axis to obtain the required displacement field as

W(R.w) = mm[{;_ﬁ) XF)]TRsmw—%éRsinw (3.69)

where

220 L—

o L \f((ﬂ o) o (3.70)

I N e i Y I Ouy g e ZE R R

is the mode 111 stress intensity factor. This is a very important parameter in analyzing crack growth
and has the ability to predict whether catastrophic failure will occur due to unstable crack
propagation.

Now
6V\I(R’l//) III 1
6‘/’ r Cas RCOSW ’ (371)

Hence the near crack-tip stress field is given by

o-.,,Z(R,l//)sz%aW(ail//):?%COSl// (3.72)
CONCLUSION

Arresting crack initiation and propagation using the stop hole technique has been adopted by many
researchers. But a survey of their method of solutions shows that the finite element methods have
been mostly used to derived the stress fields and the stress intensity factors. As we know,
analytical solutions in closed-form are desired for accurate analysis and design due to their many
advantages over numerical and approximate solutions. Moreover, an analytical solution can serve
as a benchmark for the purpose of judging the accuracy and efficiency of various numerical and
approximate techniques. In this regard, this study has made the following contributions to
knowledge
i.  we have been able to use analytical means to derive closed form solutions which agrees
with the numerical results in the literature.
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ii.  The construction of the mapping functions
f(w)= i(we’“ +wler) Mmaps the ellipse into a circular hole
2

£(z)=%(z+1)-1  mapsthe hole unto astraight line
2 z

Thereby making the problem analyzable by method of integral transform.

ili.  We can see from Fig.2 that infinite crack terminates at the origin, it was not able to cross
the origin establishing the fact that the elliptical stop hole (crack breaker) actually arrested
the advancing crack.
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