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ABSTRACT 

 
This research paper explores the roles of convolution and Laplacian operators in 

image sharpening, with the primary objective of enhancing image clarity. The 

study delves into the mathematical foundations of these operators and their 

application in digital image processing. Methods are compared to evaluate their 

effectiveness in terms of computational efficiency and visual outcomes. The paper 

identifies the gaps in existing literature, particularly the lack of comprehensive 

literature on the derivation of the Laplacian kernel and reasons for post-processing 

methods after its convolution with an image. The literature in this paper helps 

understand the foundation of Laplacian kernel, offering valuable insights on its 

derivation, and setting the basis for other techniques that have been built on it, with 

applications in satellite imagery and digital photography. Also, comparison of 

Laplacian kernel with unsharp masking method is presented.  

 

 

1. Introduction  

Image sharpening is a crucial technique in digital image processing, aimed at enhancing the clarity 

and definition of images by accentuating edges and fine details. In recent years, the application of 

mathematical convolution approaches to image sharpening has gained significant attention, 

particularly in digital photography and satellite imaging [1], [2]. 

Numerous studies have investigated various methods for image sharpening. For instance, Gonzalez 

and Woods [3] provided a comprehensive overview of traditional sharpening techniques, including 

unsharp masking and high-pass filtering. More recently, adaptive sharpening method based on edge-

preserving filters, demonstrating improved performance in preserving textures while enhancing edges 

have been proposed [4] [5]. In the context of satellite imaging, multi-scale sharpening approaches that 

effectively enhances both local and global contrast in remote sensing images have been developed [6]. 
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Despite these advancements, there remains a gap in the literature concerning the comprehensive 

exploration of mathematical convolution approaches, particularly the derivation and application 

of Laplacian operators for image sharpening. Existing studies often overlook the combined 

application of convolution and Laplacian operators, leaving room for exploring potential synergies 

between these techniques. 

The present study aims to address this research gap by conducting a detailed comparative analysis 

of convolution and Laplacian operators in image sharpening. We investigated their individual and 

combined effects on image clarity, evaluating computational efficiency and visual outcomes. This 

research is motivated by the growing demand for high-quality image processing techniques in 

various fields, including digital photography, medical imaging, and remote sensing. 

The significance of this study lies in its potential to enhance the quality of digital and satellite 

images, which has far-reaching implications. In digital photography, improved sharpening 

techniques can lead to more visually appealing and detailed images, benefiting both amateur and 

professional photographers. In satellite imaging, enhanced sharpening methods can improve the 

accuracy of land use classification, urban planning, and environmental monitoring [7]. 

By providing a deeper understanding of these methods and their applications, this research aims 

to contribute to the advancement of image processing techniques and their practical 

implementation in real-world scenarios. The findings of this study may pave the way for more 

efficient and effective image sharpening algorithms, ultimately improving the quality and utility 

of digital and satellite imagery across various domains. 

2  Methodology: Mathematical Foundation 

 

2.1  Convolution in Mathematics 

Convolution is a fundamental mathematical operation applied in various fields of mathematics, 

engineering, and physics. It is an operation that combines two functions to produce a third function. 

It is sometimes denoted by the symbol "∗". 

Given two functions 𝑓 and 𝑔, their convolution, denoted as 𝑓 ∗ 𝑔, is defined as the integral of the 

product of the two functions after one is reversed and shifted. In the continuous domain, it is 

expressed as: 

 (𝑓 ∗ 𝑔)(𝑥) = ∫
∞

−∞
𝑓(𝑡) ⋅ 𝑔(𝑥 − 𝑡) 𝑑𝑡 

 

2.1.1  Properties of Convolution 

Some applicable properties of convolution in image processing are: 

    • Commutativity: 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓  

    • Associativity: (𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ)  

 1.  Commutativity: This means that the order of the convolution operations does not affect the 

final result. In image processing, commutativity allows for operations such as filtering and 

smoothing to be applied interchangeably without altering the outcome. For example, applying a 

blur filter on an image, followed by an edge detection filter produces the same result as applying 

the edge detection filter first, and then the blur filter. This property enables greater flexibility in 
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designing image processing pipelines and allows for experimentation with different sequences of 

operations to achieve desired effects. 

2.  Associativity: In image processing, the associativity property of convolution allows multiple 

convolution operations to be combined and performed in any order without affecting the final 

result. This is useful when applying multiple filters or kernels to an image successively. By 

exploiting associativity, complex image processing pipelines can be constructed by combining 

individual convolution operations, leading to more efficient and flexible image processing 

algorithms.  

2.2  Discrete Convolution 

In discrete domains, such as digital signal processing and computer vision, the convolution 

operation is defined similarly to its continuous counterpart. However, it uses summation in place 

of integration. Discrete convolution is particularly useful for processing digital signals represented 

as sequences of discrete values. 

Let’s consider two discrete functions 𝑓(𝑘) and 𝑔(𝑘). Their convolution, denoted as 𝑓 ∗ 𝑔, is 

defined as the sum of the element-wise multiplication of 𝑓 and 𝑔 with one function shifted relative 

to the other:   

 (𝑓 ∗ 𝑔)(𝑛) = ∑∞
𝑘=−∞ 𝑓(𝑘) ⋅ 𝑔(𝑛 − 𝑘) 

where:   

    • 𝑛 is the current position or index at which the convolution result is computed.  

    • 𝑘 is the discrete index or position within the summation.  

    • 𝑓(𝑘) and 𝑔(𝑘) are the values of the functions 𝑓 and 𝑔 at index 𝑘, respectively.  

The summation is taken over all possible values of 𝑘, ranging from negative infinity to positive 

infinity. However, in practice, it is truncated to a finite range based on the available data. Discrete 

convolution forms the basis for the development of various algorithms and techniques for 

analyzing and processing discrete signals and images. [8], [9] 

 

2.3  Convolution Operators in Image Sharpening 

 

2.3.1  Definition and Basic Principles 

The concept of convolution involves a mathematical operation where two functions are combined 

to produce a third function, representing the features of one, modified by the other. In image 

processing, these functions are an image and a kernel (filter or mask). 

The convolution process can be visualized as sliding the kernel across the image, computing a 

weighted sum of the pixel values under the kernel at each position. The result of this operation is 

a new image that highlights specific features, such as edges or textures, depending on the kernel 

used. Mathematically, the convolution of an image 𝐼 with a kernel 𝐾 is given by: 

 (𝐼 ∗ 𝐾)(𝑥, 𝑦) = ∑𝑚
𝑖=−𝑚 ∑𝑛

𝑗=−𝑛 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗) ⋅ 𝐾(𝑖, 𝑗) 

where (𝑥, 𝑦) are the coordinates of the image. 
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In image sharpening, convolution operators are used to enhance the high-frequency components 

of an image, which correspond to areas with rapid intensity changes, such as edges [3]. By applying 

a sharpening kernel, the convolution process highlights these high-frequency features, which 

results in a clearer and more defined image [10] [11]. 

2.3.2  Two-Dimensional Convolute Integer Operators 

Two-dimensional convolute integer operators are a specific class of convolution operators that 

utilize integer values in their kernels. These operators are useful in digital image processing due 

to their computational efficiency and simplicity [12]. 

Two key characteristics of two-dimensional convolute integer operators are [12]: 

 1.  Integer coefficients: The kernel values are restricted to integers, simplifying computational 

complexity and preventing quantization errors during convolution.  

2.  Frequency sensitivity: The operators are designed to selectively emphasize or suppress 

specific frequency ranges, allowing for targeted enhancement or attenuation of specific image 

features. For example, a kernel designed to emphasize high frequencies will enhance the edges 

and fine details of an image, making it appear sharper. Conversely, a kernel that targets low 

frequencies can be used for smoothing or blurring effects.  

2.4  Laplacian Operator 

The Laplace operator was first applied in celestial mechanics by Pierre-Simon de Laplace, to study 

planetary motion in space [13]. He introduced the Laplace operator in the context of his work on 

harmonic functions and other concepts related to it [14]. 

The Laplace operator has since then, been used to explain a variety of things. For example, it helps 

describe electric potentials, how heat and fluids move, and even some parts of quantum mechanics. 

It has also been recasted to the discrete space, where it has been used in applications related to 

image processing. 

The Laplacian operator is a second-order differential operator and it is defined as the divergence 

of the gradient of the scalar field. In Cartesian coordinates, the Laplacian operator is expressed as 

the sum of second partial derivatives: 

Divergence is denoted by ∇ and expressed as:  

 ∇= 〈
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
〉 

The gradient of a two-dimensional function, 𝑓, is given by:  

 ∇𝑓 = 〈
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
〉 

Then, the Laplacian (that is, the divergence of the gradient) of 𝑓 can be defined by the sum of 

unmixed second partial derivatives:  

 ∇ ⋅ ∇𝑓 = ∇2𝑓 =
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 

2.4.1  The Discrete Laplacian 

The discrete Laplacian is a computational analog of the Laplacian operator in continuous domains, 

designed for discrete spaces. In this study, we use it for image sharpening in image processing. 
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Definition: In discrete spaces, the Laplacian operator is typically defined as a numerical 

approximation of the continuous Laplacian. One common formulation of the discrete Laplacian is 

based on finite differences using the central difference approximation. 

2.4.2  Discretization of the Laplacian Operator using Central Difference Approximation 

In a 2D grid, the discrete Laplacian ∇2𝑓(𝑥, 𝑦) at a point (𝑥, 𝑦) can be approximated using 

differences along the horizontal and vertical directions to:  

 ∇2𝑓𝑥, 𝑦) ≈ 𝑓(𝑥 + 1, 𝑦) + 𝑓(𝑥 − 1, 𝑦) + 𝑓(𝑥, 𝑦 + 1) + 𝑓(𝑥, 𝑦 − 1) − 4𝑓(𝑥, 𝑦) 

To discretize the Laplacian operator of a function 𝑓(𝑥, 𝑦) using a second-order central difference 

approximation, we’ll approximate the second partial derivatives with respect to both 𝑥 and 𝑦. Let’s 

denote the grid spacing or step size in the 𝑥 direction as Δ𝑥 and in the 𝑦 direction as Δ𝑦. 

The Laplacian operator in two dimensions is given by: 

 ∇2𝑓 =
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 

Using the second-order central difference approximation, we can discretize the second partial 

derivatives as follows: 

 
𝜕2𝑓

𝜕𝑥2 ≈
𝑓(𝑥+Δ𝑥,𝑦)−2𝑓(𝑥,𝑦)+𝑓(𝑥−Δ𝑥,𝑦)

(Δ𝑥)2
 

 
𝜕2𝑓

𝜕𝑦2 ≈
𝑓(𝑥,𝑦+Δ𝑦)−2𝑓(𝑥,𝑦)+𝑓(𝑥,𝑦−Δ𝑦)

(Δ𝑦)2
 

For the Laplace Operator, we take 1 as the step size for both 𝑥 and 𝑦, which signifies the smallest 

change or the spacing between adjacent grid points in both the 𝑥 and 𝑦 directions. We have: 

 
𝜕2𝑓

𝜕𝑥2 ≈
𝑓(𝑥+1,𝑦)−2𝑓(𝑥,𝑦)+𝑓(𝑥−1,𝑦)

(1)2
 

 
𝜕2𝑓

𝜕𝑦2 ≈
𝑓(𝑥,𝑦+1)−2𝑓(𝑥,𝑦)+𝑓(𝑥,𝑦−1)

(1)2
 

Now, we can sum these two approximations to obtain the discrete Laplacian operator 

 ∇2𝑓(𝑥, 𝑦) = 𝑓(𝑥 + 1, 𝑦) + 𝑓(𝑥 − 1, 𝑦) + 𝑓(𝑥, 𝑦 + 1) + 𝑓(𝑥, 𝑦 − 1) − 4𝑓(𝑥, 𝑦) 

This expression represents the discretized Laplacian operator, where 𝑓(𝑥, 𝑦) is evaluated at 

neighbouring grid points in both the 𝑥 and 𝑦 directions. 

2.5  The Laplacian Filter 

The Laplacian filter is a commonly used image processing filter for edge detection and image 

enhancement. It is based on the Laplacian operator, which measures the second derivative of an 

image. 

Recall, in a 2D grid, the discrete Laplacian ∇2𝑓(𝑥, 𝑦) at a point (𝑥, 𝑦) can be approximated using 

differences along the horizontal and vertical directions and is given as:  

 ∇2𝑓(𝑥, 𝑦) = 𝑓(𝑥 + 1, 𝑦) + 𝑓(𝑥 − 1, 𝑦) + 𝑓(𝑥, 𝑦 + 1) + 𝑓(𝑥, 𝑦 − 1) − 4𝑓(𝑥, 𝑦) 
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The discretized Laplacian operator can be represented as a convolution kernel, which is a small 

matrix of weights that represent the coefficients at each point. A common approach is to use a 3x3 

grid. 

 [

𝑓(𝑥 − 1, 𝑦 + 1) 𝑓(𝑥 − 1, 𝑦) 𝑓(𝑥 − 1, 𝑦 − 1)
𝑓(𝑥, 𝑦 + 1) 𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦 − 1)
𝑓(𝑥 + 1, 𝑦 + 1) 𝑓(𝑥 + 1, 𝑦) 𝑓(𝑥 + 1, 𝑦 − 1)

] 

Taking the coefficients of each expression, the Laplacian filter kernel is expressed as: 

 𝐿1 = [
0 1 0
1 −4 1
0 1 0

] (1) 

This kernel represents the weights to be applied to the neighbouring pixels of the image during 

convolution. The central pixel is assigned a negative weight (-4), while the surrounding pixels are 

assigned positive weights (1). This reflects the change in intensity from the center to the 

surrounding pixels. 

 Larger Kernel for Better Edge Detection 

A larger Laplacian kernel is used to get a better result in highlighting the edges in an image. This 

is achieved by considering more neighbouring pixels. In Equation 1, the diagonal neighbouring 

pixels are ignored, but when equal weights are assigned to every neighbouring pixel, we obtain a 

better Laplacian Kernel. 

However, it is important to note that the weight of the center pixel should be the negative of the 

sum of the neighbouring pixels’ equal weight, to maintain the balance of the Laplacian operator. 

The sum of the integers in the kernel should be zero so that it responds strongly to edges but not 

to uniform areas. 

An extension of Equation 1 that considers every neighbouring pixel would be: 

 𝐿2 = [
1 1 1
1 −8 1
1 1 1

] (2) 

The larger Laplacian kernel improves edge detection because it considers a larger neighbourhood 

around each pixel. This reduces the sensitivity to small intensity fluctuations (noise) and focuses 

on larger intensity changes (edges). 

Other variations of the Laplacian operator as pointed out in [3] are: 

  

0 -1 0 

-1 4 -1 

0 -1 0 

 

-1 -1 -1 



Charles E.C. and Chuwkwuebuka C.C.- Journal of NAMP 68, 1 (2024) 7-22 

13 

-1 8 -1 

-1 -1 -1 

 

These are Negative variants of the matrixes in 1 and 2 respectively, with a positive weight at the 

center. 

 

3  Application of Laplacian Matrix for Image Sharpening 

In this section, we explore the practical application of the Laplacian matrix, derived in section 2, 

for image sharpening. We discuss how the Laplacian matrix, as a discrete representation of the 

Laplacian operator, can be effectively employed in image sharpening. The convolution of the 

Laplacian matrix for image sharpening is examined, along with experimental results demonstrating 

its effectiveness. 

 

3.1  Laplacian Filter and Convolution 

The Laplacian filter is also referred to as the Laplacian Matrix or Laplacian Kernel. In this section, 

we explore the convolution operation between the Laplacian filter and the input image, which 

serves as the foundation for Laplacian-based image sharpening techniques. 

 

3.1.1  Convolution with Laplacian Kernel 

When convoluting the Laplacian filter with an input image, each pixel undergoes a transformation 

based on its surrounding neighbourhood. The process is as follows: 

1.  Kernel Centering: The Laplacian kernel is centered on each pixel in the input image. 

2.  Pixel Neighborhood: The Kernel’s weights are applied to the neighbourhood of the current 

pixel in consideration. This neighbourhood comprises the center pixel and the pixels directly 

adjacent to it, horizontally, vertically and diagonally, in both directions. 

3.  Weighted Sum Calculation: The weights of the Laplacian kernel on each pixel in the 

neighbourhood determine the contribution of each pixel to the final filtered value. The kernel is 

convolved with the pixel neighbourhood by performing element-wise multiplication between the 

kernel and the corresponding pixel values in the neighbourhood, then summing up the results. 

 4.  Resulting Pixel Value: The sum of the element-wise products yields the new pixel value for 

the center pixel (pixel under consideration) in the filtered image. This value represents the intensity 

change or gradient magnitude at that pixel location. A high positive or negative value indicates a 

strong intensity change, such as an edge, while values close to zero suggest smoother regions. 

 5.  Iterative Convolution: The convolution process is repeated in a loop for each pixel in the 

input image, covering the entire image.  

By convolving the Laplacian kernel with the input image, we obtain a Laplacian-filtered image 

that highlights edges. 

 

3.1.2  Mathematical Formulation 

The convolution operation between the input image 𝑓(𝑥, 𝑦) and the Laplacian kernel ℎ can be 

expressed as: 1  
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 𝑔(𝑥, 𝑦) = ∑𝑘
𝑠=−𝑘 ∑𝑘

𝑡=−𝑘 ℎ(𝑠, 𝑡) ⋅ 𝑓(𝑥 − 𝑠, 𝑦 − 𝑡) 

where:   

    • 𝑔(𝑥, 𝑦) is the filtered image,  

    • ℎ(𝑠, 𝑡) represents the Laplacian kernel,  

    • 𝑓(𝑥 − 𝑠, 𝑦 − 𝑡) denotes the pixel values in the neighborhood of pixel (𝑥, 𝑦),  

    • 𝑘 is the step size.  

Example:  To provide a practical example, let’s consider a simple 3x3 grayscale image and apply 

the Laplacian filter to it. We’ll use the Laplacian kernel derived in section 3: 

 [

0 1 0
1 −4 1
0 1 0

] 

Let’s suppose we have the following 3x3 grayscale image: 

 [

10 20 30
40 50 60
70 80 90

] 

Convolution Calculation: 

Step 1: Zero Padding the Image 

Add a border of zeros around the original image: 

 OriginalImage = [
10 20 30
40 50 60
70 80 90

] 

 PaddedImage =

[
 
 
 
 
 
0 0 0 0 0
0 10 20 30 0
0 40 50 60 0
0 70 80 90 0
0 0 0 0 0

]
 
 
 
 
 

 

 Step 2: Apply the Kernel 

              For each element in the original image (3x3 part), we will center the kernel on that                  

              element in the padded image, multiply corresponding elements, and sum the results. 

 Element-wise Calculation g(1,1): 
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 [

0 0 0
0 10 20
0 40 50

] 

Sum = (0 ⋅ 0) + (1 ⋅ 0) + (0 ⋅ 0) + (1 ⋅ 0) + (−4 ⋅ 10) + (1 ⋅ 20) + (0 ⋅ 0) + 

(1 ⋅ 40) + (0 ⋅ 50) 

 = 0 + 0 + 0 + 0 − 40 + 20 + 0 + 40 + 0 

 = 20 

g(1,2): 

 [

0 0 0
10 20 30
40 50 60

] 

Sum = (0 ⋅ 0) + (1 ⋅ 0) + (0 ⋅ 0) + (1 ⋅ 10) + (−4 ⋅ 20) + (1 ⋅ 30) 

+(0 ⋅ 40) + (1 ⋅ 50) + (0 ⋅ 60) 

 = 0 + 0 + 0 + 10 − 80 + 30 + 0 + 50 + 0 

 = 10 

g(1,3): 

 [

0 0 0
20 30 0
50 60 0

] 

Sum = (0 ⋅ 0) + (1 ⋅ 0) + (0 ⋅ 0) + (1 ⋅ 20) + (−4 ⋅ 30) + (1 ⋅ 0) + (0 ⋅ 50) 

+(1 ⋅ 60) + (0 ⋅ 0) 

 = 0 + 0 + 0 + 20 − 120 + 0 + 0 + 60 + 0 

 = −40 

g(2,1): 

 [

0 10 20
0 40 50
0 70 80

] 

Sum = (0 ⋅ 0) + (1 ⋅ 10) + (0 ⋅ 20) + (1 ⋅ 0) + (−4 ⋅ 40) + (1 ⋅ 50) 

+(0 ⋅ 0) + (1 ⋅ 70) + (0 ⋅ 80) 

 = 0 + 10 + 0 + 0 − 160 + 50 + 0 + 70 + 0 
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 = −30 

g(2,2): 

 [

10 20 30
40 50 60
70 80 90

] 

Sum = (0 ⋅ 10) + (1 ⋅ 20) + (0 ⋅ 30) + (1 ⋅ 40) + (−4 ⋅ 50) 

+(1 ⋅ 60) + (0 ⋅ 70) + (1 ⋅ 80) + (0 ⋅ 90) 

 = 0 + 20 + 0 + 40 − 200 + 60 + 0 + 80 + 0 

 = 0 

g(2,3): 

 [

20 30 0
50 60 0
80 90 0

] 

Sum = (0 ⋅ 20) + (1 ⋅ 30) + (0 ⋅ 0) + (1 ⋅ 50) + (−4 ⋅ 60) + (1 ⋅ 0) 

+(0 ⋅ 80) + (1 ⋅ 90) + (0 ⋅ 0) 

 = 0 + 30 + 0 + 50 − 240 + 0 + 0 + 90 + 0 

 = −70 

g(3,1): 

 [

0 40 50
0 70 80
0 0 0

] 

Sum = (0 ⋅ 0) + (1 ⋅ 40) + (0 ⋅ 50) + (1 ⋅ 0) + (−4 ⋅ 70) + (1 ⋅ 80) 

+(0 ⋅ 0) + (1 ⋅ 0) + (0 ⋅ 0) 

 = 0 + 40 + 0 + 0 − 280 + 80 + 0 + 0 + 0 

 = −160 

g(3,2): 

 [

40 50 60
70 80 90
0 0 0

] 

Sum = (0 ⋅ 40) + (1 ⋅ 50) + (0 ⋅ 60) + (1 ⋅ 70) + (−4 ⋅ 80) + (1 ⋅ 90 
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) + (0 ⋅ 0) + (1 ⋅ 0) + (0 ⋅ 0) 

 = 0 + 50 + 0 + 70 − 320 + 90 + 0 + 0 + 0 

 = −110 

g(3,3): 

 [

50 60 0
80 90 0
0 0 0

] 

Sum = (0 ⋅ 50) + (1 ⋅ 60) + (0 ⋅ 0) + (1 ⋅ 80) + (−4 ⋅ 90) + (1 ⋅ 0 

) + (0 ⋅ 0) + (1 ⋅ 0) + (0 ⋅ 0) 

 = 0 + 60 + 0 + 80 − 360 + 0 + 0 + 0 + 0 

 = −220 

 Final Result 

The resulting matrix after applying the discrete convolution with zero padding is: 

 

 Result = [
20 10 −40
−30 0 −70
−160 −110 −220

] 

3.2  Implementation for Image Sharpening: 

After the convolution of the Laplacian kernel and the input image is completed, the output is a 

Laplacian-filtered image that highlights edges. This Laplacian-filtered image is multiplied to a 

negative constant or positive constant depending on the Laplacian kernel used. 

If a Laplacian kernel with a negative center weight was used during convolution, the Laplacian-

filtered image is multiplied with a negative constant, if it had a positive center weight, then a 

positive constant [3]. 

Then the result of the multiplication is added back to the input image to produced a sharpened 

output image. 

This process can be mathematically expressed: 

 𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑐 ∗ [∇2𝑓(𝑥, 𝑦)] 

where 𝑔(𝑥, 𝑦) is the sharpened image, 𝑓(𝑥, 𝑦) is the input image, 𝑐 is the constant that represents 

the scaling factor for the intensity to be applied to the Laplacian-filtered image. ∇2𝑓(𝑥, 𝑦) is the 

laplacian-filtered image. 

4  Results: 

 



Charles E.C. and Chuwkwuebuka C.C.- Journal of NAMP 68, 1 (2024) 7-22 

18 

    

Figure  1: Using the Laplacian kernel in Eqn. 1 on Digital Image 

   

 

Figure  2: Using the Laplacian kernel in Eqn. 2 on Digital Image 

   

 
Figure  3: Using the Laplacian kernel in Eqn. 1 on Space Image 
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Figure  4: Using the Laplacian kernel in Eqn. 2 on Space Image 

 

Figure 1 and 2 are the input image, sharp image and their Laplacian kernels for digital photograph. 

Similarly, figure 3 and 4 are for satellite image. It can be seen from figure 1 - 4 that large kernel 

produces a sharper image. However, care has to be taken as too larger kernel can result to too sharp 

image and may result to increase in noise; this is based on our observation. 

 

5  Discussion 

5.1  Why Do we multiply by a negative constant if the Laplacian kernel has a negative center 

weight, before adding back to the input image? 

 

In image sharpening, the Laplacian-filtered image highlights edges and details from the original 

image. However, directly adding it to the input image might subtract edges instead of enhancing 

them due to negative values. By multiplying the Laplacian image by a negative constant, edges 

are inverted, enhancing them when added back to the original image. Image sharpening is achieved 

through this process. 

 

5.2  Comparative Analysis of Laplacian Kernel and Unsharp Masking for Image Sharpening 

 

Unsharp Masking for Image Sharpening: 

Unsharp masking is a method that enhances the sharpness of an image by subtracting a blurred 

version of the image from the original image, creating a mask that is used to highlight the edges 

and fine details. The steps involved in unsharp masking are:   

 1.  Blurring the Image: Convolve the image with a Gaussian kernel to create a blurred version 

of the image.  

2.  Creating the Mask: Subtract the blurred image from the original image to generate the mask 

containing high-frequency components.  

 3.  Combining the Images: Add the mask back to the original image, often with a scaling factor, 

to enhance sharpness.  

Mathematically, the unsharp masking process is represented as [15] [3]:  
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 𝐼sharpened = 𝐼 + 𝛼(𝐼 − 𝐺𝜎 ∗ 𝐼) 

where 𝐼 is the original image, 𝐺𝜎 is the Gaussian blur operator with standard deviation 𝜎, ∗ denotes 

convolution, and 𝛼 is a scaling factor controlling the sharpening intensity. 

While unsharp masking is effective for sharpening images, the Laplacian kernel offers several 

advantages: 

1.  Sensitivity to edges: The Laplacian kernel is highly sensitive to edges and corners, making it 

more effective at enhancing fine details and sharp features compared to unsharp masking, which 

can sometimes produce halos or ringing artifacts around edges [16].  

2.  Isotropy: The Laplacian kernel is isotropic, which means it responds equally to edges in all 

directions. This property ensures consistent sharpening across the entire image, regardless of the 

orientation of the edges [3].  

 3.  Computational efficiency: Applying the Laplacian kernel involves a simple convolution 

operation, which can be computationally more efficient than the blurring step required for unsharp 

masking, especially for large images or real-time applications [10].  

 4.  Flexibility: The Laplacian kernel can be modified or combined with other kernels to achieve 

different sharpening effects or target specific image characteristics, offering greater flexibility in 

image enhancement [17].  

 However, it is important to note that the Laplacian kernel can also amplify noise present in the 

image, especially when the scaling factor is set too high. Therefore, proper noise reduction 

techniques or adaptive scaling may be necessary to achieve optimal sharpening results while 

minimizing noise amplification [18] [19]. 

    
Figure  5: Images from convolution method using Laplacian kernel and Unsharp Masking method 
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Figure 5 shows that both methods produces sharpened image so one can choose preferred method 

based on the limitations and advantages stated above of which convolution method with Laplacian 

kernel will be preferred when computational cost is of interest. 

Conclusion 

Convolution is a very useful mathematical tool for image sharpening. The direct derivation of its 

kernels and its algebraic properties like commutativity and associativity makes it simple and 

flexible to use in application. 

Both the Laplacian kernel and unsharp masking are effective methods for image sharpening, each 

with its strengths and applications. The Laplacian kernel offers a fast, simple, and direct approach 

to edge enhancement, making it ideal for applications requiring quick and efficient edge detection. 

With its balanced approach to noise reduction and edge enhancement, Unsharp masking may 

produce more visually pleasing results, especially for general-purpose image sharpening. 

Understanding the advantages and limitations of each method allows practitioners to choose the 

appropriate technique based on the specific requirements of their application. For real-time edge 

enhancement tasks, the Laplacian kernel is better. Unsharp masking may be the preferred choice 

when requiring high-quality image sharpening with reduced noise levels. 
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