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ABSTRACT 

 

In this study, we explore the uniform stability properties of Caputo 

fractional delay differential equations using vector Lyapunov functions. By 

applying the Caputo fractional Dini derivative of Lyapunov-like functions, 

along with a new comparison theorem and differential inequalities, we offer 

novel insights into the uniform stability of these complex systems. An 

illustrative example is provided to demonstrate the method’s applicability. 

Our results improve, extends and generalizes many existing results in the 

literature. 

 

 

 

 

 

1. Introduction  

Fractional calculus, which involves the theory of derivatives and integrals of arbitrary real or 

complex orders, plays a significant role in various fields of mathematical, physical, and 

engineering sciences. It extends the concepts of integer-order differentiation and n-fold integration. 

Fractional derivatives provide a powerful tool for describing the general properties of various 

materials and processes. This is the primary advantage of fractional derivatives over classical 

integer-order models, where such effects are often overlooked. The benefits of fractional 

derivatives are particularly evident in modeling the mechanical and electrical properties of real 

materials, as well as in describing the properties of gases, liquids, rocks, and many other areas [1, 

2]. 
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The class of fractional differential equations of various types plays a crucial role as a tool not 

only in mathematics but also in fields like physics, control systems, dynamical systems, and 

engineering for modeling many physical phenomena. Naturally, these equations need to be 

solved. Over the past three decades, numerous studies on fractional calculus and fractional 

differential equations, involving various operators such as Riemann-Liouville, Erdelyi-Kober, 

Weyl-Riesz, Caputo, and Grunwald-Letnikov, have been published [3, 4, 5, 6]. 

Fractional differential equations with delay have gained popularity due to their enhanced accuracy 

in modeling memory and hereditary behaviors. For example, fractional derivatives are used to 

describe the mechanical and electrical properties of real materials, as well as the characteristics of 

gases, liquids, and minerals across various disciplines (see [7, 8] and related references). The 

existence and uniform stability of solutions for fractional differential systems, both with and 

without delays, have been thoroughly investigated in [9, 10, 11, 12]. 

It is well known that there are two primary methods for analyzing the stability of ordinary 

differential equations (ODEs). The first method, known as the Lyapunov indirect method, focuses 

on studying local stability by linearizing the system around its steady state (equilibrium point). The 

second method, known as the Lyapunov direct method, involves finding or constructing an 

appropriate auxiliary function, called a Lyapunov candidate function. Additionally, the Lyapunov 

direct method is a powerful tool for stability analysis of nonlinear systems, enabling the 

determination of global dynamical behaviors without the need to explicitly solve the ODEs [13]. 

The stability of fractional differential equations (FDEs) has garnered significant attention from 

researchers. In 2010, Li et al. [14] investigated the stability of nonlinear systems of FDEs that 

involve the Caputo fractional derivative with a singular kernel [5]. They extended the Lyapunov 

direct method to apply to FDEs. In the same year, Sadati et al. [15] expanded the Mittag-Leffler 

stability theorem to fractional nonlinear systems of FDEs with delay. The stability of a class of 

nonlinear systems of FDEs involving the Hadamard fractional derivative [16] was studied in [13] 

using a fractional comparison principle. 

When Lyapunov functions have been used to investigate the stability and uniform stability of 

fractional differential equations involving delay, it is important to note that scalar Lyapunov 

functions were employed. These may not fully capture the interactions between different 

dimensions. In contrast, vector Lyapunov functions offer greater flexibility in constructing 

Lyapunov functions for complex systems, providing more precise and tailored stability criteria that 

scalar functions may miss. Vector Lyapunov functions allow for the analysis of subsystems and 

their interactions, leading to a deeper understanding of the stability properties of individual 

components within a larger system. They are especially useful for examining nonlinear systems, 

where variable interactions are complex and nonlinear relationships are common (see [17, 18, 19, 

20]). 

Let [0, )+ =   and assume that 0 0 .t +   Let 0 [ ,0], [ , ), 0J J  = − = −   and 0[ , ]I t T=  be 

the intervals in .  Let 0( , )N ND C J=  be the space of all continuous maps on 0 ,J where N  is 

the N-dimensional Euclidean vector space endowed with norm . .For any ,ND   we define the 

norm of   by  

  
0

0
sup ( ) .
s J

s 


=  

In this paper, we consider the retarded Caputo fractional differential equation of the form 
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0

0

0

( ) ( , ( ), ), ,

,

C

t

t

D x t f t x t x t t

x





 = 


=

                                                                      (1.1) 

Where CD denotes the Caputo fractional derivative of order 0, , ,N Nt J x D    , and 

( ), .N Nf C B D    Here, N

tx D represents the history of the state from time t − to the 

present time t , defined by 0( ) ( ), .tx s x t s s J= +   

We assume that the following conditions hold: 

(1) The function f  guarantees that for any initial condition ( )0 0, Nt D +  , then the system 

(1.1) possesses a solution  ( )0 0 0( , )( ) , , .Nx t t C t T   

(2) ( ,0,0) 0f t = for 0t t . 

We will utilize comparison results for the Caputo fractional differential equation with delay of the 

form 

           

0

0

0

( ) ( , , ), ,

,

C

t

t

D u t G t u u t t

u





 = 


=

                                                                           (1.2) 

where , , ,n n n nu G C E+
       and ( ,0,0) 0G t  . The function G ensures that for any 

initial values 0 0( , ) ,nt E +   the system (1.2) with the given initial condition has a solution 

 ( )0 0 0( , )( ) , , .nu t t C t T    

The main objective of this paper is to analyze the uniform stability properties of Caputo fractional 

differential equations with delays (1.1) using vector Lyapunov function. This study employs the 

Caputo fractional Dini derivative definition for Lyapunov-like functions, as introduced in [21, 22], 

and applies the comparison theorem along with differential inequalities.  

2. PRELIMINARIES 

In this paper, we adopt the Caputo (C) definition for fractional derivative, which is expressed as 

follows: 

  
0

0

1

0

1
( ) ( ) ( ) , .

( )

t

C n

t t

t

D x t t s x s ds t t
n

 



− −= − 
 −   

It is worth highlighting that the Caputo derivative offers a significant benefit: the initial conditions 

for fractional differential equations using the Caputo derivatives are presented in the same way as 

those for integer-order derivatives, which are already well understood in terms of their physical 

significance. There are several definitions for fractional derivatives, with one of the most 

commonly used being the Grunwald-Letnikov (GL) fractional derivative, which is defined as 

follows: 

  

0

0
0

0

1
( ) lim ( 1) ( ), .

t t

h
GL l

lh
l

D x t x t lh t t
h




+

− 
 
 

→
=

 
= − −  

 
  

The Riemann-Liouville (RL) fractional derivative of the form: 

  

0

11
( ) ( )

( )

tn
RL n

n

t

d
D x t t s

n dt

 



− −= −
 −  . 
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In all the definitions given above, we have that 1 , 0n n −    , where n is a natural number 

and (.) represents the gamma function. In most applications, the order of  is often less than 1, 

so that (0,1).   For simplicity of notation, we will use CD  instead of 
0

C

t tD  so that the Caputo 

fractional derivative of order  of the function ( )x t  is given as 

 

0

1

0

1
( ) ( ) ( ) , .

( )

t

C n

t

D x t t s x s ds t t
n

 



− −= − 
 −                                                                 (2.1) 

Definition 2.1. In this paper, we define the following sets: 

  

 

 

 0

: , 0 ,

: , 0 ,

: , 0 .

N

n

N

B x x

S x x

C D







 

 

   

=   

=   

=   

 

Definition 2.2. A function ( , ) : N

tV t x J C + →  is considered a vector Lyapunov function for 

(1.1) if it is continuous on ,J C  satisfies ( ,0) 0V t = , and is locally Lipschitz continuous with 

respect to the second argument. 

Definition 2.3. [21,22] Let 0 0 0( , ) [ , ]t C J B +   represents the initial condition of the initial 

value problem (IVP) (1.1). The Caputo fractional Dini derivative of the Lyapunov function 

( , )tV t x is defined as  

 

0

0 1

0 0

0

1
( , (0), ) limsup ( , (0)) ( 1) ( , (0) ( , (0)))

( , (0))
,

( ) (1 )

t t

h
C l

l
h l

D V t V t V t lh h f t
h

V t

t t


 





    





+

− 
 
 

+
→ =

 
  

= + − − −  
  

 

−
−  −


(2.2) 

where it is understood that 0 0(0) ( , )( )x t t =  is the state of the system (1.1) at the current time t. 

0 (0)  is the initial condition of the system (1.1) at the beginning 0.t =  

Definition 2.4. A function ,n nG C      is considered quasi-monotone non-decreasing in x if 

whenever x y  and ,i ix y=  for 1 ,i n  it follows that ( ) ( )i iG x G y  for all i.  

Definition 2.5. [18] A function ( )a r  is considered to be in class K, if it is a  continuous function 

on [0, )  with values in , (0) 0,a+ =  and ( )a r  is strictly increasing in r.  

Definition 2.6. [23] The zero solution of (1.1) is considered uniformly stable, if for every initial 

time 0t +  and any 0,   there exists a ( ) 0,  =   such that for any initial function 0

ND   

with 
0 0

,   it follows that 
0 0( , )( )x t t   for 0.t t  

Lemma 2.7. [24] Assume  ( )0( ), ( ) , , Np t r t C t T  and suppose there exists * 0( , )t T   such that 

* *( ) ( )p r =  and ( ) ( )p t r t  for 0 *[ , ).t t   The inequality ( ) ( )* *

C CD p D r  + +  holds if the 

Caputo fractional Dini derivative of p and r exist at *t = . 
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Lemma 2.8. [24] Let 0, :[ , ] nw s t T− →  be continuous on 0[ , ]t T , and let 

 ( )0 , ,n n

qG C t T C    be quasi-monotone non-decreasing in tw  for each ( , ) .nt  

Additionally, for each t, we have 

(i) ( ) ( , , )C

tD w t G t w w

+  , 

(ii) 0( ) ( , , ), [ , ].C

tD s t G t s s t t T

+    

Then  

                                      
0 0

,t tw s                                                                                          (2.3) 

Implies  

                                    0( ) ( ), [ , ].w t s t t t T                                                                              (2.4) 

Lemma 2.9.[24] Let [ , ],n

cG C R  where n

c qR C+   such that 

0 0 0 0 0
: {( , , ) : , (0) , , , : { : , 0}n n

c qR t u t t t a u b b u C E q q      =   + −  −    =   

, 0 , , 0}nE a b    and ( , , )tG t u u H  on .cR Assume that ( , , )tG t u u  is quasi-monotone non-

decreasing in tu  for every ( , ) .nt u +   Then, the initial value problem (IVP) (1.2) has a 

maximal solution 0 0( , ( , ))h t t   defined on the interval  0 0, ,t t q+  where 

1

( 1)
min , .

2

b
q a

H b


 

 +  
=   

+   

 

Lemma 2.10. [24] Assume that  

(1) ( ), , ,NV C C +
  −     where ( , )tV t x  is locally Lipschitz continuous with respect to the 

second argument. 

(2) [ , ]n n

qG C D+    and ( , , )tG t u u  is quasi-monotone non decreasing with respect to tu . 

(3) ( )( , (0), ) , ( , (0)),C

tD V t G t V t V   +   for all ,t +  where ( ) 0, ( ) , .tV V t s s s J= +   

If 0 0( , )( )h t t  is the maximal solution of (1.2) and 0 0( , )( )x t t  is any solution of (1.1) defined in 

the future such that  

 
0

0 0 0sup ( , )( ) ,
s J

V t s 


                                                                                                      (2.5) 

then the inequality  

 0 0 0 0 0( , ( , )( ) ( , )( ), ,V t x t t h t t t t                                                                                 (2.6) 

3 MAIN RESULT 

Theorem 3.1.  Assume that  

(1) ( ), , ( , , )n n n

tG C E G t u u+    is quasi-monotone non decreasing in tu with 

( ,0,0) 0G t =  

(2) ( ), , , ( ,0) 0, ( , )N

tV C C V t V t x +
  −   =   is locally Lipschitzian in tx such that  

 ( , (0), ) ( , (0), )C

tD V t G t V   +                                                                                    (3.1)  

holds for all ( , ) .t x B+   
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(3) ( ) ( )0 0 0 0 0( , )( ) ( , ) ( , )( ) ,ta x t t V t x b x t t    where ,a b k  and ( )0

1

( , ) , .
N

t i t

i

V t x V t x
=

=  Then 

the uniform stability of the trivial solution 0u =  of the FrDE (1.2) implies the uniform stability 

of the trivial solution 0x =  of FrDDE (1.1). 

Proof. 

Let (0, ).   The uniform stability of the trivial solution of (1.2) implies that for any 

0( ) 0,a t +   and initial function 0

nE  , there exist a ( )  = (independent of 0t ) such that  

 0 0

1

n

i

i

  
=

=  implies 0 0 0

1

( , )( ) ( ), ,
n

i

i

u t t a t t 
=

                                                 (3.2) 

where 0 0( , )( )u t t  is any solution of (1.2), with initial function 0.  Since V is continuous (condition 

2) and V(t,0)=0, there exist a 1 0   such that  

 
0 1,  implies 0( , ) .V t                                                                                        (3.3) 

Let 0 0( , )( )x t t  is any solution of (1.1) with 
0 1.   

Claim: 
0 0( , )( ) ,x t t   for all 0.t t  

Assuming that this claim is not the case, then there exist a finite time *t , such that 
0 0 *( , )( )x t t =  

and 
0 0( , )( )x t t   for 0 *[ , )t t t . Let 0 0 0( , ),V t =  then from (3.2) we have that 

0 0( , ) .V t        Let 0 0 0 0

1

( , )( ) ( , )( )
n

m i

i

h t t h t t 
=

=  be the maximal solution of (1.2) with 

0 0 0( , )h t    such that  

 0 0 0 0 0( , )( ) ( , )( )mV t t h t t    .                                                                                         (3.4) 

At *,t t=
0 0 *( , )( )x t t =  and by condition (3) and (3.2), we have  

 0 0 0 0 *( ) ( , ) ( , )( ) ( )t ma V t x h t t a     .                                                                        (3.5) 

This is a contradiction. Therefore for arbitrary 0(0, ), t  +  there exist a ( ) 0    such that 

0   implies 
0 0( , )( )x t t  . 

4.  EXAMPLE 

Through this example, we exhibit the advantage of using the vector Lyapunov function over the 

scalar Lyapunov function. We Consider the system of Caputo Fractional differential equations 

 

2
2 2

2
2 2 2

2 2 2 2

( 1)
( ) ( 1)sin ( 1) 3 ( 1)

4

( 1)
( ) ( 1)cos ( 1) ( 1)

2

( ) ( 1)sin ( 1) 2 ( 1) ( 1)cos ( 1)

C

C

C

x t
D x t y t x t x t

z t
D y t x t z t y t

D z t x t y t y t z t x t







− −
= + − − + −

−
= − − − − − +

= − − + − − − −

                             (4.1) 

for 0 ,t t  with initial functions 

1 2 3( ) ( ), ( ) ( ), ( ) ( )x s s y s s z s s  = = = for [ 1,0],s −  where 1 2( ), ( )s s   and 3( )s  are the 

initial functions defined on 1 0.s−    
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We recall that the initial functions capture the state of the system at time .t s+  In this example, 

1 1( ) ( ) ( ),x s x t s s= + =  so that at 1s = −  we have 1( ) ( 1) ( 1).tx s x t w= − = −  Similarly, 

2( ) ( 1) ( 1)ty s y t w= − = − and 3( ) ( 1) ( 1).tz s z t w= − = −  With these, the system (4.1) can therefore 

be written as 

 

2
2 21
2 1 3

2
2 2 2 3
1 3 2

2 2 2 2

1 2 2 3 1

( 1)
( ) ( 1)sin ( 1) 3 ( 1),

4

( 1)
( ) ( 1)cos ( 1) ( 1) ,

2

( ) ( 1)sin ( 1) 2 ( 1) ( 1)cos ( 1).

C

C

C

D x t

D y t

D z t








  


  

    

− −
= + − − + −

−
= − − − − − +

= − − + − − − −

                                             (4.2)             

Now, we consider a scalar Lyapunov function given by  

           
2 2 2

1 2 3( 1) ( 1) ( 1)
( , )

2
V t
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

− + − + −
=                                                                               (4.3)               

According to equation (2.2), we obtain 
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2 2

( 1)1 1 1
limsup ( 1) ( ) limsup ( 1)

2 2

t t t t

h h
l l

l l
hl l

t t t t

h h
l l

l l
h hl l

h h

f f f
h h

 

 

 

 

 





+ +

+ +

− −   
   
   

→ →= =

− −   
   
   

→ →= =

− −   
− + −   

   

−   
+ − − + + −   

   

−

 

 

( )
( )

2 2 2

20 30( 1) ( 1) ( 1)
.

2 1t

 



− + − + −

 −

 

Applying equation (3.7) and (3.8) in [8], we obtain 

 
( )

22 2

31 2
1 2 3

2 2 2

10 20 30

22 2

31 2
1 2 3

( 1)( 1) ( 1) 1
( )

2 (1 ) 2 (1 ) 2 (1 ) 2

( 1) ( 1) ( 1)
,

2 (1 )

( 1)( 1) ( 1) 1
( ).

2 (1 ) 2 (1 ) 2 (1 ) 2

CD V f f f
t t t

t

f f f
t t t



  



  

 

  

  



 

  

+

−− −
= + + + + +

 −  −  −

− + − + −
−

 −

−− −
 + + + + +

 −  −  −
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As t → , the first three terms tend to zero and using (4.2), we obtain 

 



1 2 3

2
2 2 2 2 21
2 1 3 1 3 2

2
2 2 2 23
1 2 3 3 1

2 2 22 2

3 1 31 2 1

1
( ),

2

( 1)1
( 1)sin ( 1) 3 ( 1) ( 1)cos ( 1) ( 1)

2 4

( 1)
( 1)sin ( 1) 2 ( 1) ( 1)cos ( 1) ,

2

3 ( 1) ( 1) | cos ( 1) |( 1) ( 1) | sin ( 1) |

8 2 2

CD V f f f


     


    

    

+  + +

 −
= − + − − + − − − − − −



−
+ + − − + − − − −

− − −− − −
 − + + −

2

2

2 2 22
23 3 11 2
3

2 2 22 2

3 3 31 2

22 2

31 2

22 2

31 2

2 2 2

1 2 3

( 1)

2 8

( 1) ( 1) | cos ( 1) |( 1) | sin ( 1) |
( 1) ,

8 2 2

6 ( 1) ( 1) 2 ( 1)( 1) ( 1)
,

8 2 4

5 ( 1)( 1) ( 1)
,

8 2 4

7 ( 1)7 ( 1) 7 ( 1)
,

2 2 2

( 1) ( 1) (
7



   


   

 

 

  

−
−

− − −− −
+ + + − −

− + − − −− −
= − + +

−− −
= − + +

−− −
 + +

− + − + −
=

1)
,

2

7 ( , ).V t 

 
 
 

=

 

Therefore, we have 

 7 ( , ) ( , ( , )).CD V V t G t V t  +  =                                                                                 (4.4) 

Now consider the scalar comparison equation 

 
0

( , ( ), ( 1)) 7 ( 1)

( ) ( ) , [ 1,0],

CD u G t u t u t u t

u s s s



 

= − = −

= =  −
                                                                          (4.5) 

where 0 1 =  remains constant throughout the given interval. Solving (4.5) by Laplace transform 

method and noting that ( 1)u t −  is a Heaviside step function, we obtain the following  

  ( ) ( )7 ( 1) .CD u u t = −  

This implies that  

  
1

1

0

( ) (0) 7 ,
sn

k k

k

e
s U s s U

s

 
−−

− −

=

− =  

So that  
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1

1

1

7
( ) ,

( ) 7 ,

1
( ) 7 .

s

s

s

e
s U s s

s

e
s U s s

s

e
U s

s s

 

 



−
−

−
−

−

+

− =

= +

= +

 

Taking the inverse Laplace transform we obtain 

  
1 1 1

1

1
( ) 7 ,

se
U s

s s

−
− − −

+

  
= +   

   
 

So that 

  
1

1
( ) 1 7 .

se
u t

s

−
−

+

 
= +  

 
 

Utilizing the fact that ( ) 1

( 1)
,t

s






+

 +
= we have 

 

1

( )( ) 1 7( 1) ( 1),u t t u t= + − −                                                                                                (4.6) 

We observe that  

  

1

( )| ( ) | 1 7( 1) ( 1)u t t u t= + − −  with 0| | 1. =  

As t increases, the term 

1

( )7( 1)t − grows causing u(t) to be unbounded. This indicates that for any 

nonzero initial condition 0 , ( )u t will eventually grow without bound as t increases. Hence for any 

small 0  such that 
0 0

,  there exist some t>0 at which u(t) becomes unbounded. This means 

that no matter how small we chose ,  u(t) will eventually exceed any prescribed  . 

All conditions of Theorem 3.1 are satisfied, except that the trivial solution u=0 of (4.6) is not stable. 

Therefore, Theorem 3.1 cannot yield any information on uniform stability for the zero solution of 

(4.5). 

Now, we consider a vector Lyapunov function of the form 

 ( )
22 2

31 2
1 2 3

( 1)( 1) ( 1)
( , (0)) , , , ,

2 2 2

T

T
V t V V V

 


 −− −
= =  

 
                                                 (4.7) 

where 
2 2

1 2
1 2

( 1) ( 1)
,

2 2
V V

 − −
= =  and 

2

1
3

( 1)

2
V

 −
=  with 3

1 2 3( , , ) ,   =   so that the 

associated norm 2 2 2

1 2 3 .   = + +  

now, 

  
2 2 2 22 23
3 1 2 31 2

0

1

( 1) ( 1) ( 1) ( 1)( 1) ( 1)
,

2 2 2 2
i

i

V V
    

=

− − + − + −− −
= = + + =   

and so 0( ) ( , )ta V t x b    with ( )a r r= and ( ) 2b r r= , implying that ,a b K . We compute 

the Caputo fractional Dini derivative for 1V using (2.2) as follows 



Achuobi J.O. and Akpan E.P.- Journal of NAMP 68, 1 (2024) 37-50 

46 

 


0

0 0

22
2

101
1 1 1 1

0 1 0

2

1
1 1 1

0 1 1

( 1)( 1)1 1
limsup ( 1) ( 1) ( , ( 1))

2 2 2( ) (1 )

( 1)1
limsup 2 ( 1) ( , ( 1)) ( 1) ( 1)

2

t t

h
C l

l
h l

t t t t

h h
l l

l
h l l

D V h f t
h t t

h f t
h


 

 







 




 

+

+

− 
 
 

+
→ =

− − 
 
 

→ = =

 −−  
 = + − − − − −     −  − 

 −  
= − − − − + −  

 



 2

1 1

2

10

0

( , ( 1))

( 1)
,

2( ) (1 )

l
h f t

t t












 
 
 


 

−  
  



−
−

−  −


 

0 0

0

2

1
1 1 1

0 01 1

2

10
1 1

1 0

( 1) 1
limsup ( 1) 2 ( 1) ( , ( 1)) limsup ( 1)

2

( 1)
( 1) ( , ( 1)) .

2( ) (1 )

t t t t

h h
l l

l l
h hl l

t t

h
l

l
l

f t
h

h f t
t t

 









 






+ +

− −   
   
   

→ →= =

− 
 
 

=

−    
= − − − − −   

   

− 
 − − − 

−  − 

 



 

Applying equation (3.7) and (3.8) in [8], we obtain 
22

101
1 1 1

0 0

2 2

1 10

1 1

0

( 1)( 1)
2 ( , ( 1)) ,

2( ) (1 ) 2( ) (1 )

( 1) ( 1)
2 ( , ( 1))

2( ) (1 )

CD V f t
t t t t

f t
t t



 






 

 




+

−−
= + − −

−  − −  −

 − − − = + −
−  −

 

As t → , the first term tends to zero and using (4.2) we obtain 

 

2
2 21

1 2 1 3

2
2 21
2 1 3

22 2

31 2

1 2 3

( 1)
2 ( 1)sin ( 1) 3 ( 1) ,

4

( 1)
2 ( 1)sin ( 1) 6 ( 1),

2

( 1)( 1) ( 1)
4 12 ,

2 2 2

4 12 .

CD V

V V V

 
  


  

 

+

 − −
= + − − + − 

 

− −
= + − − + −

−− − − −
 + +

= − + +

 

Therefore,  

 1 1 2 34 12CD V V V V

+  − + +                                                                                              (4.8) 

Similarly, we compute the Caputo fractional derivative for 2V  using (2.3) as follows 

 


0

22
2

202
2 2 2 2

0 1 0

( 1)( 1)1 1
limsup ( 1) ( 1) ( , ( 1)) ,

2 2 2( ) (1 )

t t

h
C l

l
h l

D V h f t
h t t


 

 


 

+

− 
 
 

+
→ =

 −−  
 = + − − − − −     −  − 

  

Applying equation (3.7) and (3.8) in [8], we obtain 
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0 0

0

2
22

2 2 2 2 2
0 1 1

2

20

0

2

2

0 1

( 1)1
limsup 2 ( 1) ( , ( 1)) ( 1) ( 1) ( , ( 1))

2

( 1)
,

2( ) (1 )

( 1) 1
limsup ( 1) 2

2

t t t t

h h
l l

l l
h l l

t t

h
l

l
h l

h f t h f t
h

t t

h

 
 










  







+

+

− −   
   
   

→ = =

− 
 
 

→ =


 −    

= − − − − + − −    
    



−
−

−  −

−  
= − − 

 

 



0

0

2 2 2
0 1

2

20
2 2

1 0

( 1) ( , ( 1)) limsup ( 1)

( 1)
( 1) ( , ( 1)) .

2( ) (1 )

t t

h
l

l
h l

t t

h
l

l
l

f t

h f t
t t








 






+

− 
 
 

→ =

− 
 
 

=

 
− − −  

 

− 
 − − − 

−  − 





 

 

22

202
2 2 2

0 0

2 2

2 20

2 2

0

( 1)( 1)
2 ( , ( 1)) ,

2( ) (1 ) 2( ) (1 )

( 1) ( 1)
2 ( , ( 1))

2( ) (1 )

CD V f t
t t t t

f t
t t



 






 

 




+

−−
= + − −

−  − −  −

 − − − = + −
−  −

 

As t → , the first term tends to infinity and using (4.2) we obtain 

  

2
2 2 3

2 1 3 2

2 2 2

1 3 2 3

22 2

31 2

1 2 3

( 1)
2 ( 1)cos ( 1) ( 1) ,

2

2 ( 1)cos ( 1) 2 ( 1) ( 1),

( 1)4 ( 1) ( 1)
4 2 ,

2 2 2

4 4 2 .

CD V

V V V

 
  

   

 

+

 −
= − − − − − + 

 

= − − − − − + −

−− − −
 − +

= − − +

 

Therefore 

 2 1 2 34 2 .CD V V V V

+  − +                                                                                               (4.9) 

Similarly, we compute the Caputo fractional Dini derivative for 3V derivative using (2.2) as follows 

 
0

2 2
2

3 30
3 3 3 3

0 1 0

( 1) ( 1)1 1
limsup ( 1) ( 1) ( , ( 1)) ,

2 2 2( ) (1 )

t t

h
C l

l
h l

D V h f t
h t t


 

 

 
 

+

− 
 
 

+
→ =

 − − 
 = + − − − − −     −  − 

  

Applying equation (3.7) and (3.8) in [8], we obtain 
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3 3 3 3 3
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0 1
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,
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2
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l
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








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





+

+

− −   
   
   

→ = =

− 
 
 

→ =


 −    

= − − − − + − −    
    



−
−

−  −

−  
= − − 

 

 



0

0

3 3 3
0 1

2

30
3 3

1 0

( 1) ( , ( 1)) limsup ( 1)

( 1)
( 1) ( , ( 1)) .

2( ) (1 )

t t

h
l

l
h l

t t

h
l

l
l

f t

h f t
t t








 






+

− 
 
 

→ =

− 
 
 

=

 
− − −  

 

− 
 − − − 

−  − 





 

 

2 2

3 30
3 3 3

0 0

2 2

3 30

3 3

0

( 1) ( 1)
2 ( , ( 1)) ,

2( ) (1 ) 2( ) (1 )

( 1) ( 1)
2 ( , ( 1))

2( ) (1 )

CD V f t
t t t t

f t
t t



 



 


 

 




+

− −
= + − −

−  − −  −

 − − − = + −
−  −

 

As t → , the first term tends to zero and using (4.2), we obtain 

  

2 2 2

3 1 2 2 3

2 2 2

1 2 2 3 1

22 2

31 2

1 2 3

2 ( 1)sin ( 1) 2 ( 1) ( 1) ,

2 ( 1)sin ( 1) 4 ( 1) 2 ( 1)cos ( 1),

( 1)4 ( 1) ( 1)
8 4 ,

2 2 2

4 .

CD V

V V V

    

    

 

+
 = − − − − − − − 

= − − − − − − − −

−− − −
 − −

= + −

 

Therefore  

 3 1 2 34 .CD V V V V

+  + −                                                                                                     (4.10) 

Combining (4.8), (4.9) and (4.10) we obtain 

 
1

2

3

1 4 12

1 4 2 ( , ).

1 1 4

C

V

D V V G t V

V


+

−  
  

 − =  
  −  

                                                                         (4.11) 

Now consider the comparison system 

 ( , ( 1)) ( 1),CD u G t u t Au t = − = −  

where 
0

1 4 12

1 4 2 , ( ) ,

1 1 4

A u s 

− 
 

= − = 
 − 

 for  1,0s − where ( )0 1,1,1
T

 =  is a constant function 

defined on the given interval.  
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The vectorial inequality (4.11) and all other conditions of Theorem 3.1 are satisfied by (4.7). 

Therefore, we conclude that the zero solution x=0 of the system (4.1) is uniformly stable according 

to Theorem 3.1. 

CONCLUSION 

With the growing academic focus on fractional differential equations with delays, which are 

recognized for their enhanced precision in modeling hereditary and memory-related behaviors, this 

paper explores the uniform stability of Caputo fractional differential equations with delays through 

the use of vector Lyapunov function. By utilizing the Caputo fractional Dini derivative, we have 

derived strong conditions for the uniform stability for these systems using vector Lyapunov 

functions. Our approach surpasses traditional methods that rely on scalar Lyapunov functions, 

offering a significant improvement in stability analysis. The included example demonstrates the 

practical advantages and increased accuracy of our method, marking a noteworthy contribution to 

the field  
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