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ABSTRACT 

 

This paper investigates the uniform stability of the trivial solution for 

nonlinear Caputo fractional differential equations (FrDEs). Unlike 

traditional approaches that rely on scalar Lyapunov functions (SLFs), 

this study employs vector Lyapunov functions (VLFs) to analyze the 

stability properties of these equations. By utilizing comparison results 

specific to vector FrDEs, the paper establishes sufficient conditions 

under which uniform stability can be guaranteed. The theoretical 

findings are further substantiated through two illustrative examples, 

demonstrating the practical applicability of the derived stability criteria. 

The results contribute to a deeper understanding of stability in the 

context of FrDEs and provide a novel methodological framework for 

addressing complex nonlinear systems in this domain. 

 

 

1. Introduction  

The study of the qualitative properties of FrDEs has garnered significant attention in recent years 

(see [1], [4], [5], [11], and [15]). Recently, fractional order systems which are founded on the idea 

of non-integer derivatives have seen significant advancements in modern control theory. A 

noteworthy feature of fractional order systems is their capacity to simulate the behaviour of real 

systems that are not amenable to typical integer-order models, such as those with long memory 

and hereditary features. Due to these capabilities, fractional order systems are widely used in many 

different scientific and engineering domains.  
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The employment of non-integer derivatives and integrals has proven to be effective, leading in 

important breakthroughs in control theory [3]. 

For a long time, the qualitative properties of differential equations have been studied using 

Lyapunov’s second method. This approach involves employing a system of comparison equations, 

whose solutions are then used to deduce the properties of the original system. This method has 

been shown to be effective in a wide range of problems and has provided a unified framework for 

investigating the properties of differential equations. When examining the characteristics of 

differential equations, the comparison principle employed in this approach has shown to be an 

effective tool [2]. 
 

Agarwal et al. [1] provided sufficient conditions for the uniform stability of the trivial solutions of 

systems of comparison equations. In their investigation, they considered the uniform stability of 

the comparison system using the method of SLFs. 
 

Consider the system of FrDE with the derivative in the sense of Caputo for 0 < q < 1 

 CDqχ =  f(t, χ),                   χ(t0) = χ0,   t ≥  t0 (1.1) 

where χ ∈ ℝn, f ∈ C[ℝ+ × ℝN, ℝN], f(t, 0) ≡ 0. Let the function f be such that for any initial data 

(t0, χ0) ∈ ℝ+ × ℝN, the system (1.1) has a solution χ(t; t0, χ0) ∈ Cq([t0, ∞), ℝN) for initial 

condition χ(t0) = χ0 . Sufficient conditions for the existence of solutions of (1.1) can be found in 

[3],[5] and [10]. 
 

In this paper, we examine the uniform stability of the zero solution of nonlinear FrDE (1.1). The 

stability of FrDEs using SLFs was previously investigated by Lakshmikantham and Vatsala [9]. 

Their paper was one of the first to address this topic and its findings laid the foundation for further 

research in this area. Due to some difficulties encountered in the application of this definition, as 

highlighted in [6], a new definition was proposed in [1], and sufficient conditions for the stability 

of nonlinear systems using a scalar Lyapunov-like function were obtained. In [4], qualitative 

results for scalar FrDEs were derived using the Lyapunov functional and matrix inequality. 

However, other methods for achieving the stability of fractional order systems using Lyapunov-

like functions exist, though they often come with several challenges and limitations (see [5]). 

This paper is organized into six sections. In the next section (Section 2), we present some important 

definitions and lemmas that assist in introducing the main result. Section 3 provides the comparison 

results, where we compare the solution of the comparison system with the LF along the solution 

path of (1.1). In Section 4, we present the main results. Section 5 includes two examples 

demonstrating the application of our VLF method in determining the stability of the system. 

Finally, Section 6 offers the conclusion. 

Preliminary Notes and Definitions 

This section highlights the significance of fractional calculus, which is a powerful tool for 

describing the behavior of materials and processes. The main advantage of fractional calculus over 

classical calculus is its ability to handle systems with non-integer orders. This makes it a valuable 

tool for modeling systems with complex or irregular behavior. The applications of fractional 

calculus are diverse, ranging from mathematical analysis to engineering and physical sciences [7]. 

There is no single definition of fractional derivatives and integrals that is universally applicable to 

all situations. Instead, there are multiple approaches, each of which has its own advantages and 

disadvantages. The choice of which definition to use in a particular application depends on the 

specific requirements and constraints of the problem. Some of the most common definitions 
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include the Riemann-Liouville (R-L), Caputo, and Grunwald-Letnikov (G-L) definitions (see [11], 

[12], [13], and [14]). 

General case. Let the number n − 1 < q < n,  q > 0 be given, where n ∈ ℕ and Γ(. ) is the 

gamma function. 

According to [13], the R-L fractional derivative of χ(t) of order q is: 

Dt
q

χ(t) =
1

Γ(n−q)

dn

dtn ∫ (t − s)n−q−1χ(s)ds
t

t0
,        t ≥ t0t0

RL , 

and Caputo fractional derivative (CFrDe) of χ(t) of order q is defined by: 

Dt
q

χ(t) =
1

Γ(n − q)
∫ (t − s)n−q−1χn(s)ds

t

t0

,        t ≥ t0.t0

C  

Due to their numerous shared characteristics with standard derivatives, the CFrDe are simpler to 

comprehend and utilize. The CFrDe is frequently employed in applications of FrDEs because it 

makes the initial conditions of FrDEs easier to understand in a practical setting. 

In [1], the G-L fractional derivative of χ(t) of order q is: 

GLD0
q

χ(t) = lim
k→0+

1

kq
∑ (−1)r(αCr)χ(t − rκ),

[
(t−t0)

κ
]

r=0      t ≥ t0, 

and the G-L fractional Dini derivative of χ(t) of order q is: 

GLD0
q

χ(t) = lim sup
k→0+

1

kq
∑ (−1)r(αCr)χ(t − rκ),

[
(t−t0)

κ
]

r=0      t ≥ t0, 

where C.
α

r =
α(α−1)…(α−r+1)

r!
 and [

(t−t0)

k
]  is the integer part of  

(t−t0)

k
. 

Particular case. In most applications, the order of q is often less than 1, so that q ∈ (0,1). For 

simplicity of notation, we will use CDq instead of Dt0

C
t
q
 and the CFrDe of χ(t) is: 

CDqχ(t) =
1

Γ(1−q)
∫ (t − s)n−q−1χ′ds,

t

t0
      t ≥ t0.   

 (2.1) 

Definition 2.1. Let [t0, ∞) ∈ ℝ+ and ξ ∈ ℝN We say that the functionV(t, χ) ∈ C([t0, ∞) × ξ, ℝ+
N) 

belongs to class Ω([t0, ∞), ξ) if it is locally Lipschitz in χ and V(t, 0) ≡ 0. 

Now, for any function V(t, χ)) we define the Caputo fractional Dini derivative (CFrDiDe) as: 

CD+
q

V(t, ) = lim sup
k→0+

1

kq {V(t, χ) − V(t0χ0) − ∑ (−1)r+1(αCr)[V(t − rκ, χ − κqΨ(t, χ)) −
[

(t−t0)

κ
]

r=0

V(t0χ0)]  },    (2.2)   

t ≥ t0, where t ∈ [t0, ∞), χ, χ0 ∈ ξ,  and ∃ κ > 0 :  t − rκ ∈ [t0, T). 

Definition 2.2. A function g ∈ C[ℝn, ℝn] is said to be quasi-monotone non-decreasing in x, if  x ≤
y and xi = yi for 1 ≤  i ≤  n implies gi(x) ≤ gi(y), ∀i. 

Definition 2.3. The steady state, χ = 0 of (1.1) is said to be uniformly stable if for every ϵ > 0 

and t0 ∈ ℝ+, ∃ δ = δ(ϵ) > 0 : for any χ0 ∈ ℝN, the inequality ‖χ0‖ < δ ⟹ ‖χ(t; t0, χ0)‖ < ϵ for 

t ≥ t0. 

Definition 2.4. If a function a(r) is strictly monotone increasing in r whenever a ∈ C([0, ρ), ℝ+] 
and a(0)  =  0, then a(r) is said to be a class K function.  
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In this work, we define the sets listed below: 

Sρ
̅̅ ̅ = {χ ∈ ℝN: ‖χ‖ ≤ ρ} 

Sρ = {χ ∈ ℝN: ‖χ‖ < ρ} 

  

It suffices to indicate that the inequalities between vectors are considered to be component-wise 

inequalities. 

We will use the comparison results for the FrDE of the type 

 CDqu(t) = ⊕ (t, u),u(t0) =  u0,    t0 ∈ ℝ+ (2.3) 

existing for t ≥ t0, t, t0 ∈ ℝ+ =  [t0, ∞) and  u ∈ ℝn,  ⊕∶ ℝ+ × ℝn → ℝn, ⊕ (t, 0) ≡ 0. 

With respect to any initial data (t0, u0) ∈ ℝ+ × ℝn, the function ⊕ (t, u) is such that the system 

(2.3) with initial condition u(t0) = u0 is assumed to have a solution u(t; t0, u0) ∈ Cq([t0, ∞), ℝn). 

 

Lemma 2.5. [15] Assume Ψ ∈ C[ℝ+ × Sρ, ℝN]. If χ(t) is a solution of (1.1) on [t0, T), then 

(t, x(t)) can be extended over a maximal interval of existence [t0, ∞). 

Lemma 2.6. Assume m ∈ C([t0, T]  ×  S̅ψ, ℝN) and suppose there exists t∗ ∈  (t0, T] such that for 

α1  <  α2,  m(t∗, α1)  =  m(t∗, α2) and m(t, α1) < m(t, α2)  for t0 ≤ t <  t∗. Then if the CFrDiDe 

of m exists at t∗, then the inequality  holds. 

Proof. Applying (2.2), we have 

 

 
When m(t∗, α1) = m(t∗, α2), we have 

. 

Applying equation 3.8 in [1], we have 
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. 

By the lemma, we have 

m(t, α1) − m(t, α2)  <  0, for t0 ≤ t < t∗  

 And so it follows that 

. 

Fractional Differential Inequalities and Comparison results for vector FrDEs 

In this section, we assume that 0 < q < 1. 

Theorem 3.1.  

 Assume the following conditions: 

(i) ⊕ ∈ C[ℝ+ × ℝn, ℝn] and ⊕ (t, u) is quasi-monotone non-decreasing with respect to 

u. 

(ii)  V ∈ C[ℝ+ × ℝN, ℝ+
N] is locally Lipschitz continuous in χ such that 

. 

(iii) r(t) = r(t; t0, u0) is the maximal solution of the system (2.3) 

   Then,  

 V(t, χ(t)) ≤ r(t), t ≥  t0, 

where χ(t) = χ(t; t0, χ0) is any solution of (1.1) that exists on [𝑡0, ∞), provided that 

(3.1) 

V (t0, χ0) ≤ u0. (3.2) 

Proof. Let η ∈ S̅ζ = {η ∈ ℝn ∶ ∥ η ∥ ≤ ζ} be a small enough arbitrary vector and consider the 

following system of FrDE 

 CDu = ⊕ (t, u) + η, u(t0) = u0 + η, (3.3) 

for t ∈  [t0, ∞). 

If the Volterra Integral equation 

uη(t, α) = u0 + η +
1

Γ(q)
∫ (t − s)q−1(⊕ (s, uη(s, α)) + η)

t

t0
ds,            t ∈ [t0, ∞) (3.4) 

 is satisfied, then the function u(t, α) is a solution of (2.3).  

, 

and using (3.3) we arrive at 

. 

Therefore, 

 . (3.6) 

For t ∈  [t0, T], we have 
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. 

Since V (t, χ) is locally Lipschitz in the second variable, then 

, 

where L > 0 is a Lipschitz constant. 

. 

As κ →  0, ‖χ∗(t − rκ) − (χ∗(t) − κqΩ(t, χ∗(t)))‖  →  0, so that 

 . (3.7) 

Now (3.7) with t = t1 contradicts (3.6), hence (3.5) is true. 

For t ∈ [t0, T], we now show that whenever η1 < η2, then 

□ 

uη1
(t, α)  <  uη2

(t, α). (3.8) 

It is obvious that (3.8) holds for t = t0. If the inequality (3.8) is false, then there would exists a 

point t1 where uη1
(t1, α) = uη2

(t1, α) and uη1
(t, α) < uη2

(t, α) for t ∈  [t0, t1). 

By lemma (2.6), we have that 

. 

However, 

, 

which is a contradiction and so the family of solutions {uηi
(t, α)}  is uniformly bounded with bound 

L on [t0, T]. We now show that {uηi
(t, α)}  is equicontinuous on [t0, T]. Assume K =
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sup{⊕ (t, χ): (t, χ) ∈ [t0, T] × [−L, L]}. Also, fix a decreasing sequence {ηi}i=1
∞ ), such that 

lim
i⟶∞

ηi = 0 and consider a sequence of functions uηi
(t, α). Again let t1, t2 ∈ [t0, T] with t1 <  t2, 

then we have the following estimate 

, 

, 

provided |t2 − t1| < δ = (
ϵΓ(q+1)

2M
)

1

q
. This shows that the family of solutions {uηi

(t, α)} is 

equicontinuous. By the 

Arzela-Ascoli theorem, {uηi
(t, α)}  has a subsequence {uηij

(t, α)}  which converges uniformly to 

a function r(t) on [t0, T]. We then show that r(t) is a solution of (2.3). Equation (3.4) becomes 

uηij
(t, α) = u0ij

+ ηij
+

1

Γ(q)
∫ (t − s)q−1 (⊕ηij

(s, uij
(s, ηij

)) + ηij
)

t

t0
ds   (3.9) 

Taking the limit as i𝑗 → ∞ in (3.9), yields 

r(t) = u0 +
1

Γ(q)
∫ (t − s)q−1(⊕ (s, r(t)))ds

t

t0
  (3.10) 

Thus, r(t) is a solution of (2.3) on [t0, T]. We claim that r(t) is the maximal solution of (2.3). To 

prove this, assume that p(t) is another solution of (2.3), then from (3.5), we have that p(t) <
u(t, α) ≤ r(t) on [t0, T]. 

1. Main Results 

In this section, we will obtain sufficient conditions for the uniform stability of the system (1.1) 

Theorem 4.1 (Uniform Stability). Consider the following assumptions: 

(1) Let ⊕ ∈ C[ℝ+ × ℝn, ℝn] be a function such that ⊕ (t, u) is quasi-monotone non-

decreasing in u and satisfies ⊕ (t, u) ≡ 0. 

(2) Let V ∈ C[ℝ+ × ℝN, ℝ+
N] be a function with the following properties: 

(i) V is locally Lipschitz continuous in x and V (t, 0) ≡ 0. 
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(ii) ∃ functions ϕ(‖χ‖) and β(‖χ‖) such that β(‖χ‖) ≤ V0(t, χ) ≤ ϕ(‖χ‖), where 

V0(t, χ) = ∑ Vi(t, χ)N
i=1 , and ϕ, β ∈ K 

(iii) For any t, t0 ≥ 0 and χ, χ0 ∈ ℝN, the inequality 

CD+
q

≤⊕ (t, V(t, χ))      (4.1) 

holds for all (t, χ) ∈ ℝ+ × ℝN. 

(3) The steady state of the FrDE (2.3) is uniformly stable. 

Then, under these assumptions, the steady state of the FrDE (1.1) is also uniformly stable. 

Proof. Given ϵ ∈ (0, ρ) and t0 ∈ ℝ+. Assume that the steady state χ =  0 of (2.3) is uniformly 

stable. Then given β(ϵ) > 0 and t0 ∈ ℝ+, ∃ a δ = δ(ϵ) > 0 (independent of t0): 

χ0 = ∑ χi0
< δn

i=1      ⟹      ∑ χi(t; t0, χ0) ≤ β(ϵ),    t ≥ t0  n
i=1   

 (4.2) 

where χ(t; t0, χ0) is any solution of (2.3). 

Let δ1 ∈ (0, δ) be a number : ϕ(δ1) < δ, then since V (t, 0) = 0 and by the continuity of V, ∃ a 

δ1 = δ1(δ(ϵ))  >  0 (independent of t0) : 

 ‖χ‖  <  δ1 ⟹ V0(t, 0) < δ. (4.3) 

Let χ(t) = χ(t; t0, χ0) be any solution of (1.1), with ‖χ0 ‖ < δ1. Then it follows from condition 

(ii) that V0(t0, χ0) ≤ ϕ(‖χ0‖) ≤ ϕ(δ1) < δ.  

Claim: 

 ‖χ(t)‖  <  ϵ,      t ≥ t0. (4.4) 

Considering (4.4) to be untrue, then ∃ a t1 ≥ t0, : ∥ χ(t1) ∥= ϵ and ∥ χ(t) ∥ < ϵ, ∀ t ∈ [t0, t1). 

Let χ0 = V0(t0, χ0) then it follows from (4.2) that χ0 < δ and ∑ χi(t; t0, χ0) ≤ β(ϵ) n
i=1 , ∀ t ≥ t0. 

Let  r0 = ∑ ri(t; t0, χ0)n
i=0  be the maximal solution of (2.3) : 

 V0(t, χ) ≤  r0(t). (4.5) 

Then at t = t1, ∥χ(t1)∥ = ϵ and from condition (ii), (4.2) and (4.5) we have that 

β(∥ χ(t1) ∥) ≤ V0(t1, χ(t1)) ≤ r0(t1) < β(ϵ). 

So that, 

 β(ϵ) ≤ V0(t1, χ(t1)) ≤ r0(t1) < β(ϵ). 

This contradiction proves that (4.4) is true. i.e for arbitrary ϵ ∈(0,ρ), 𝑡0 ∈ ℝ+, ∃ δ1(ϵ) (independent 

of 𝑡0) : ∥ χ0 ∥ < δ1 ⟹ ∥ χ(t) ∥ < ϵ, ∀ t ≥ t0. Thus, we draw the conclusion that the steady state 

χ = 0 of 

 (1.1) is uniformly stable.  

2. Application 

Example 1.: Consider the system of FrDEs 

                             (5.1) 

. 

for t ≥ t0, with initial conditions 
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 χ1(t0)  =  χ10 and χ2(t0)  =  χ20. 

Consider the functions of the form V = (V1, V2)T, where V1(t, χ1, χ2) = χ1
2 and 

V2(t, χ1, χ2) = χ2
2,  χ = (χ1, χ2) ∈ ℝ2, with the associated norm ‖χ‖ = √χ1

2 + χ2
2. 

Now, the Lyapunov function 

V0(t, χ) = ∑ Vi(t, χ1, χ2)

2

i=1

= χ1
2 + χ2

2 

and so b(‖χ‖) ≤ V0(t, χ) ≤ a(‖χ‖) with b(r) = r and a(r) = 2r2, implying that a, b ∈ K. 

From (2.2), we compute the CFrDiDe for V1(t, χ1, χ2) = χ1
2 as follows 

CD+
q

V(t, ) = lim sup
k→0+

1

kq {V(t, χ) − V(t0χ0) + ∑ (−1)r (
q
r

) [V(t − rκ, χ − κqΨ(t, χ)) − V(t0χ0)]  
[

(t−t0)

κ
]

r=0 } 

 

 

Applying equation (3.7) and (3.8) in [1], we have 

CD+
q

V1(t; χ1, χ2) =
χ1

2

tqΓ(1−q)
−

χ10
2

tqΓ(1−q)
+ 2χ1Ψ1(t; χ1, χ2). 

As t → ∞,   
χ1

2

tqΓ(1−q)
→ 0, and 

χ10
2

tqΓ(1−q)
→ 0, so that we have 

 CD+
q

V1(t; χ1, χ2) = 2χ1Ψ1(t; χ1, χ2). 

Substituting for Ψ1(t, χ1, χ2) we have 



Ineh et al.- Journal of NAMP 68, 1 (2024) 51-64 

60 

, 

Therefore 

 CD+
q

V1(t, χ1, χ2) ≤ −6V1 + 2V2. (5.2) 

Similarly, using (2.2), we compute the CFrDiDe for V2(t, χ1, χ2) = χ2
2 as follows 

 

, 

, 

 

Applying equation (3.7) and (3.8) in [1], we have 

CD+
q

V2(t; χ1, χ2) =
χ2

2

tqΓ(1−q)
−

χ20
2

tqΓ(1−q)
+ 2χ2Ψ2(t; χ1, χ2). 

As t → ∞,   
χ2

2

tqΓ(1−q)
→ 0, and 

χ20
2

tqΓ(1−q)
→ 0, so that we have 

CD+
q

V2(t; χ1, χ2) = 2χ2Ψ2(t; χ1, χ2). 

Substituting for Ψ2(t, χ1, χ2) we have 

, 

Therefore 
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 CD+
q

V2(t; χ1, χ2) ≤ 2V1 − 2V2. (5.3) 

Combining (5.7) and (5.8), we have  

 CD+
q

V ≤ (
−6 2
2 −2

) (
V1

V2
) =⊕ (t, V). (5.4) 

Now consider the comparison system   

CDq ⊕ (t, u) = Au          

(5.5) 

where A = (
−6 2
2 −2

). 

The vector inequality (5.2) and all other conditions of theorem (4.1) are fulfilled if the matrix A is 

Metzler. Therefore, the steady state u = 0 of the system (5.5) is uniformly stable. Consequently, 

we can therefore draw the conclusion that the steady state 𝑥 = 0 of the system (5.1) is also 

uniformly stable. 

Example 2.: Consider the system of FrDEs 

, 

                           (5.6) 

for t ≥ t0, with initial conditions 

 χ1(t0)  =  χ10 and χ2(t0)  =  χ20. 

Consider the functions of the form V = (V1, V2)T, where V1(t, χ1, χ2) = χ1
2 and 

V2(t, χ1, χ2) = χ2
2,  χ = (χ1, χ2) ∈ ℝ2, with the associated norm ‖χ‖ = √χ1

2 + χ2
2. 

Now, the Lyapunov function 

V0(t, χ) = ∑ Vi(t, χ1, χ2)

2

i=1

= χ1
2 + χ2

2 

and so b(‖χ‖) ≤ V0(t, χ) ≤ a(‖χ‖) with b(r) = r and a(r) = 2r2, implying that a, b ∈ K. 

From (2.2), we compute the CFrDiDe for V1(t, χ1, χ2) = χ1
2 as follows CD+

q
V(t, ) =

lim sup
k→0+

1

kq {V(t, χ) − V(t0χ0) − ∑ (−1)r+1 (
q
r

) [V(t − rκ, χ − κqΨ(t, χ)) − V(t0χ0)]  
[

(t−t0)

κ
]

r=0 }, 
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, 

 

Applying equation (3.7) and (3.8) in [1], we have 

CD+
q

V1(t; χ1, χ2) =
χ1

2

tqΓ(1−q)
−

χ10
2

tqΓ(1−q)
+ 2χ1Ψ1(t; χ1, χ2). 

As t → ∞,   
χ1

2

tqΓ(1−q)
→ 0, and 

χ10
2

tqΓ(1−q)
→ 0, so that we have 

 CD+
q

V1(t; χ1, χ2) = 2χ1Ψ1(t; χ1, χ2). 

Substituting for Ψ1(t, χ1, χ2) we have 

, 

, 

Therefore 

 CD+
q

V1(t; χ1, χ2) ≤ −2V1 + 2V2. (5.7) 

Similarly, using (2.2), we compute the CFrDiDe for V2(t, χ1, χ2) = χ2
2 as follows 

, 
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, 

Applying equation (3.7) and (3.8) in [1], we have 

CD+
q

V2(t; χ1, χ2) =
χ2

2

tqΓ(1−q)
−

χ20
2

tqΓ(1−q)
+ 2χ2Ψ2(t; χ1, χ2). 

As t → ∞,   
χ2

2

tqΓ(1−q)
→ 0, and 

χ20
2

tqΓ(1−q)
→ 0, so that we have 

CD+
q

V2(t; χ1, χ2) ≤ 2χ2Ψ2(t; χ1, χ2). 

Substituting for Ψ2(t, χ1, χ2) we have 

, 

. 

Therefore  

 CD+
q

V2(t; χ1, χ2) ≤ −4V2.   

Combining (5.7) and (5.8), we have 

                                 (5.8) 

                                C D+V ≤ (
−2 2
0 −4

) (
V1

V2
) =⊕ (t, V).                                   (5.9) 

Now consider the comparison system    

 CDq ⊕ (t, u) = Au                                                          (5.10) 
 

Where A = (
−2 2
0 −4

). 

The vector inequality (5.7) and all other conditions of theorem (4.1) are met if the matrix A has 

eigenvalues with negative real parts. Consequently, the steady-state solution u = 0 of the system 

(5.10) is uniformly stable. Therefore, it follows that the steady-state solution 𝑥 = 0 of the system 

(5.6) is uniformly stable as well. 
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CONCLUSION 

In conclusion, the investigation into the uniform stability of Caputo FrDEs using VLFs has yielded 

significant insights. This study successfully demonstrates that VLFs offer a robust framework for 

analyzing the stability of nonlinear FrDEs expanding beyond the limitations of traditional scalar 

approaches. The derived sufficient conditions for uniform stability not only enhance our theoretical 

understanding but also provide practical tools for addressing complex stability challenges in 

fractional systems. The illustrative examples further validate the applicability of the proposed 

methodology, reinforcing its potential for broader use in the study of nonlinear dynamics within 

the fractional calculus domain. Overall, this work contributes to the ongoing development of 

FrDEs by offering a novel and effective approach to stability analysis. 
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