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ABSTRACT 

This paper investigates the combinatorial and algebraic properties of 

nilpotent and idempotent conjugacy classes in partial one-to-one 

transformation semigroups 𝐼𝑛. By analyzing the total number of conjugacy 

classes and the cardinalities of path (chain) decompositions, we establish 

explicit formulas and sequences that highlight the intricate relationships 

within these structures. Specifically, we derive the expressions for 𝑃𝑛,  

representing the total number of nilpotent conjugacy classes, 𝑄𝑛, the total 

number of idempotent conjugacy classes, and also 𝑋𝑛 and 𝑌𝑛, that captures 

the cardinality of chains in the chain decomposition of nilpotent and 

idempotent conjugacy classes and we also  present a detailed table 

showcasing these values of sequences for different 𝑛. The obtained results 

provide a deeper understanding of the interplay between combinatorial 

and algebraic aspects in the context of transformation semigroups, 

offering a solid foundation for further investigations in this area of 

mathematics. 

1. Introduction  

The study of semigroups, particularly transformation semigroups, has been a significant area of 

interest in algebra due to its profound implications and applications in various branches of 

mathematics and theoretical computer science. This paper delves into the combinatorial properties 

of nilpotent and idempotent conjugacy classes within the partial one-to-one transformation 

semigroup.  
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The exploration of these properties not only enhances our understanding of the algebraic structure 

and behavior of semigroups but also provides valuable insights into their combinatorial and 

computational aspects. Nilpotent transformations, characterized by the property that some power 

of the transformation is the zero transformation, and idempotent transformations, where a 

transformation squared equals itself, play crucial roles in the structural analysis of semigroups. 

The conjugacy classes of these transformations offer a unique perspective on the internal 

symmetries and invariant structures within the semigroup. By investigating these classes, we aim 

to uncover patterns and properties that contribute to the broader theory of semigroups. 

The foundational work in [1] on the algebraic theory of semigroups laid the groundwork for 

understanding the algebraic properties and classifications of semigroups. Their comprehensive 

survey has been instrumental in guiding subsequent research in this field. The author of [2] further 

explored the centers of semigroup rings and conjugacy classes, providing a deeper understanding 

of the algebraic structures and their centers. In [4], the authors investigated the ranks of certain 

finite semigroups of transformations, highlighting the importance of transformation semigroups in 

algebraic research. This work was complemented by the second author in [5]. He provided a 

thorough exposition of semigroup theory, emphasizing the fundamental concepts and theories that 

underpin the study of semigroups.  In [6], the authors presented three distinct approaches to 

conjugacy in semigroups, each offering a unique perspective and methodology for analyzing 

conjugacy classes. Their work underscores the complexity and richness of conjugacy theory in 

semigroups. In his work, the author of [7] focused on symmetric inverse semigroups, contributing 

to the understanding of inverse semigroups and their combinatorial properties. The characters of 

the symmetric inverse semigroup were studied in [9] and the author provided insights into the 

representation theory of these semigroups. In [7], the author explored the combinatorial 

applications of semigroups, demonstrating their relevance in combinatorial mathematics and 

theoretical computer science. 

The author of [10] examined semigroups generated by nilpotent transformations, offering a 

detailed analysis of their structure and properties. This work is particularly relevant to our study 

of nilpotent conjugacy classes. In [11], the authors investigated the number of conjugacy classes 

in the injective order-preserving transformation semigroup, providing valuable combinatorial 

insights. In his Ph.D. thesis, the author of [12] focused on semigroups of order-decreasing 

transformations, and later, in 2010, the same author addressed various combinatorial problems in 

the theory of symmetric inverse semigroups, further enriching the combinatorial understanding of 

these algebraic structures. 

This paper aims to build on the extensive body of work by these scholars, focusing specifically on 

the combinatorial properties of nilpotent and idempotent conjugacy classes in partial one-to-one 

transformation semigroups. By leveraging the foundational theories and methodologies 

established in the literature, we seek to uncover new insights and contribute to the ongoing 

discourse in semigroup theory. 

Preliminaries 

A partial transformation on a set  𝑋  is a function that maps a subset of 𝑋 to 𝑋. Specifically, a 

partial one-to-one transformation is a partial function  𝛼 ∶  𝐴 → 𝑋  where 𝐴 ⊆ 𝑋 and 𝛼 is 

injective. This means that for every pair of distinct elements  𝑎1,𝑎2  ϵ A, 𝛼(𝑎1)  ≠  𝛼(𝑎2). The set 

of all partial one-to-one transformations on 𝑋 forms a semigroup under the operation of 

composition, denoted by  𝐼𝑛. This semigroup is known as the symmetric inverse semigroup. The 

order of a partial one-to-one transformation is determined by the size of the subset 𝐴 on which it 

is defined. 
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An element 𝛼 in a semigroup is called nilpotent if there exists some positive integer 𝑘 such that 

𝛼𝑘 = 0. In the context of partial one-to-one transformations, a transformation 𝛼 is nilpotent if 

repeated application eventually maps all elements to an empty set, i.e., there exists an 𝑚 such that 

𝛼𝑚 =  ø.  A fundamental property of nilpotent elements is that any nilpotent transformation will 

have a smallest integer 𝑚 for which 𝛼𝑚+1 =  ø. Two elements 𝛼 and 𝛽 are conjugate if there exists 

an invertible element  𝛾  such that: 

𝛼 = 𝛾𝛽𝛾−1  
For nilpotent elements, this means that if 𝛼 is nilpotent, any element conjugate to 𝛼 will also be 

nilpotent. This is because conjugation preserves the property of being nilpotent. Consider the 

partial transformation 𝛼 on  𝑋 =  {1, 2, 3} : 

𝛼 =  (
1 2 3
2 3 −

) 

Applying 𝛼 twice:  

𝛼2 = (
1 2 3
2 3 −

) (
1 2 3
2 3 −

) =  (
1 2 3
3 − −

) 

Applying 𝛼 three times: 

𝛼3 = (
1 2 3
2 3 −

) (
1 2 3
2 3 −

) (
1 2 3
2 3 −

) =  (
1 2 3
− − −

) 

Applying 𝛼 four times: 

𝛼4 = (
1 2 3
2 3 −

) (
1 2 3
2 3 −

) (
1 2 3
2 3 −

) (
1 2 3
2 3 −

) =  (
1 2 3
− − −

) 

𝛼4 =  ø 

Thus, 𝛼 is nilpotent with  𝑘 =  3 . Any transformation conjugate to 𝛼 will also be nilpotent with 

the same  𝑘 .   

An element 𝛼 in a semigroup is idempotent if: 

𝛼2 = 𝛼 

This means that applying the transformation  𝛼  twice yields the same result as applying it once. 

Idempotent elements represent stable transformations that reach a steady state after one 

application. For example; 

𝛼 =  (
1 2 3
1 2 −

) 

Applying 𝛼 twice:  

𝛼2 = (
1 2 3
1 2 −

) (
1 2 3
1 2 −

) =  (
1 2 3
1 2 −

) 

Nilpotent and Idempotent elements also preserve their idempotency under conjugation. If 𝛼 and 𝛽 

are conjugate, then: 

𝛼 = 𝛾𝛽𝛾−1 

If 𝛽 is idempotent (𝛽2 = 𝛽) then 𝛼 will also be idempotent. This is because: 

𝛼2 = (𝛾𝛽𝛾−1)2 = 𝛾𝛽𝛾−1 ∗ 𝛾𝛽𝛾−1 = 𝛾2𝛽2(𝛾−1)2 = 𝛾𝛽𝛾−1 = 𝛼 

In this paper, we adopt the path notations introduced by Lipscomb (1996) to describe the behavior 

of partial one-to-one transformations. Path notations are defined as follows: 

Let 𝛼 and 𝛽 be partial one-to-one transformations with domains 𝐴 and  𝐵, respectively. If for all 

𝑥 𝜖 𝐴, 𝛼(𝑥) 𝜖 𝐵, and for all 𝑦 𝜖 𝐵, 𝛽(𝑦) 𝜖 𝐶, then the composition 𝛽𝛼 is defined, and 𝛽𝛼 has 

domain 𝐴. Whether this composition forms a circuit or a proper path depends on the mappings: 

1.  If 𝛼(𝑥) 𝜖 𝐴, then 𝛼 forms a circuit. 

2.  If (𝑥) ∉ 𝐴 , then 𝛼 forms a proper path. 
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Various texts or papers have slightly different path notations. For instance, [9] used the notations 

"links" and "cycles" for proper paths and circuits, respectively. He would write 𝛼 as (123)[456], 

where (123) is the cycle and [456] is the link. In [4], the authors denoted a primitive nilpotent as 

||1, 2, . . . , 𝑚||, while [10], in his study of semigroups generated by nilpotent transformations, 

denoted a proper path of length  𝑚 + 1  as  𝑚 −chains [1, 2, . . . , 𝑚 + 1] and a circuit of length 𝑚 

as 𝑚 − 𝑐𝑦𝑐𝑙𝑒𝑠 (1, 2, . . . , 𝑚). 

Lemma 1. 

Let  𝛼 , 𝛽 ϵ 𝐼𝑛. Then the following holds: 

i. 𝛼 is conjugate to 𝛽 if and only if they have the same path structure. 

ii. 𝛼 is said to be nilpotent if and only if all the paths in its path structure are proper, i.e they do not 

contain any repeated elements or vertices. 

iii. 𝛼 is considered idempotent if and only if every path in its path structure consists of a single 

element or vertex. 

Proof: 

i.   Suppose 𝛼 is conjugate to 𝛽. By definition, there exists an invertible element 𝛾 such that: 

𝛼 = 𝛾𝛽𝛾−1 

  Conjugation by 𝛾 essentially re-labels the nodes while preserving the structure of the paths. 

Hence, the path structure (sequence of nodes connected by the transformation) of 𝛼 and 𝛽 would 

remain the same. Thus, 𝛼 is conjugate to 𝛽 if and only if they have the same path structure. 

ii.  Suppose 𝛼 is nilpotent. By definition, there exists an integer  𝑘  such that: 

𝛼𝑘 = 0 

  This means that applying 𝛼 repeatedly eventually maps all elements to an empty set. For this to 

happen, all paths in the path structure must be proper paths (ending without forming a cycle). If 

any cycle existed, 𝛼 would not be nilpotent. Thus, 𝛼 is nilpotent if and only if its path structure 

consists solely of proper paths. 

iii.  Suppose 𝛼 is idempotent. By definition: 

𝛼2 = 𝛼 

  This means applying 𝛼 twice is the same as applying it once. For this to hold, every element must 

map to itself or to a single other element, forming paths of length one. If any path were longer, 

applying 𝛼 twice would traverse more nodes, contradicting idempotency. Thus, 𝛼 is idempotent if 

and only if all the paths in its path structure are of length one. 

The definition of conjugacy in arbitrary semigroups is not unique, as observed [6]. The authors 

even compared three approaches to conjugacy in semigroups. In [2], the author provided a 

definition for monoids, and in [7] a definition for free semigroups was provided. By adopting and 

extending these definitions, this paper aims to contribute to the understanding of nilpotent and 

idempotent conjugacy classes in partial one-to-one transformation semigroups, utilizing the 

combinatorial and algebraic frameworks established in the literature. 

Methodology 

Let 𝑆  be a semigroup and let 𝑎 𝜖 𝑆. The monogenic subsemigroup  𝑎   consists of all elements 

of 𝑆 that can be expressed as positive integral powers of 𝑎. Essentially,  𝑎   includes all elements 
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of the form (𝑎1, 𝑎2, 𝑎3, … ). In this context, 𝑎 is referred to as the generating element of the 

semigroup. For the purposes of this discussion, we focus on finite monogenic subsemigroups. If 

the sequence of positive powers of 𝑎 eventually repeats, then there exist integers 𝑚 and 𝑟 such 

that: 

𝑎𝑚 = 𝑎𝑚+𝑟 

Here, 𝑚 is known as the index, 𝑟 as the period, and they satisfy 𝑚 ≥ 0  and  𝑟 >  0 . The elements 

𝑎 , 𝑎2, … 𝑎𝑚,  are distinct, with 𝑎𝑚+1 , 𝑎𝑚+2, … , 𝑎𝑚+𝑟 cycling through the same values as 𝑎𝑚+1 

, 𝑎𝑚+2, … , 𝑎𝑚+𝑟.  Consider the element 𝑎 in a semigroup 𝑆 where: 

𝑎 =  (
1 2 3
2 3 1

) 

The monogenic subsemigroup generated by 𝑎 is: 

                                                                                𝑎  = {𝑎 , 𝑎2 , 𝑎3}    

where 𝑎3 = 𝑎0, demonstrating a period of 3. 

The term "monogenic" was introduced [5] as an alternative to the term "cyclic," which was used 

[1] and [8]. In [5], the author argued that "monogenic" is a more accurate term since the structure 

generated by a single element is not always cyclic in the traditional sense. 

Lemma 2 

Let  𝑎   be a monogenic subsemigroup generated by 𝑎. The following properties hold: 

a. The index of  𝑎    is the maximum length of all proper paths within it. If no proper path exists, 

the index is one. 

b. The period of  𝑎   is the least common multiple (LCM) of all the lengths of the circuits within 

it. If no circuit exists, the period is one. 

Proof: 

Refer to [8], pp. 13 for a detailed proof. 

To analyze the conjugacy classes of the semigroup of partial transformation 𝐼𝑛 , we arrange them 

according to the fixed points of each transformation (number of images), denoted as 𝐷(𝑎), and 

defined by:  𝑑(𝑎): |𝐷(𝑎)| = {𝑦  ϵ 𝑌𝑛: 𝑦𝑎 = 𝑦} for any element 𝑎 in the semigroup.  Nilpotent 

conjugacy classes are marked with an asterisk (*), while idempotent conjugacy classes are marked 

with an at symbol (@). Additionally, the index and period of each conjugacy class are determined. 

Below are some illustrative tables: 

Table 1 :  Conjugacy classes in 𝑰𝟏 

𝑑(𝑎)      Conjugacy classes               Period                Index 

                    0                   (𝟏]∗@                    1                     1 

                    1                   (𝟏)@                    1                     1 
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Table 2 :  Conjugacy classes in 𝑰𝟐 

𝑑(𝑎)      Conjugacy classes               Period                Index 

                    0                   (𝟏](𝟐]∗@                    1                     1 

                    1                     (𝟏𝟐]∗                    1                     2 

                    1                   (𝟏)(𝟐]@                    1                     1 

                    2                    (𝟏)(𝟐)@                    1                     1 

                    2                       (𝟏𝟐)                    2                     1 

Table 3 :  Conjugacy classes in 𝑰𝟑 

𝑑(𝑎)      Conjugacy classes               Period                Index 

                    0     (𝟏](𝟐](𝟑]∗@                    1                     1 

                    1            (𝟏𝟐](𝟑]∗                    1                     2 

                    1       (𝟏)(𝟐](𝟑]@                    1                     1 

                    2                     (𝟏𝟐𝟑]∗                    1                     3 

                    2                   (𝟏)(𝟐𝟑]                    1                     2 

                    2                (𝟏)(𝟐)(𝟑]@                    1                     1 

                    2                   (𝟏𝟐)(𝟑]                    2                     1 

                    3                 (𝟏)(𝟐)(𝟑)                    1                     1 

                    3                   (𝟏)(𝟐𝟑)                    2                     1 

                    3                     (𝟏𝟐𝟑)                    3                     1 

Table 4 :  Conjugacy classes in 𝑰𝟒 

𝑑(𝑎)      Conjugacy classes           Period             Index 

                    0                   (𝟏](𝟐](𝟑](𝟒]∗@                 1                  1 

                    1                     (𝟏𝟐](𝟑](𝟒]∗                 1                  2 

                    1                   (𝟏)(𝟐](𝟑](𝟒]@                 1                  1 

                    2                     (𝟏𝟐](𝟑𝟒]∗                 1                  2 

                    2 (𝟏𝟐𝟑](𝟒]∗                 1                  3 

                    2                (𝟏𝟐](𝟑)(𝟒]                 1                  2 
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                    2                  (𝟏)(𝟐)(𝟑](𝟒]@                 1                  1 

                    3                 (𝟏𝟐)(𝟑](𝟒]                 2                  1 

                    3                   (𝟏𝟐𝟑𝟒]∗                 1                  4 

                    3                     (𝟏𝟐𝟑](𝟒)                 1                  3 

                    3                   (𝟏)(𝟐)(𝟑𝟒]                 1                  2 

                    3                     (𝟏𝟐)(𝟑𝟒]                 2                  2 

                    3                   (𝟏)(𝟐)(𝟑)(𝟒]@                 1                  1 

                    3                     (𝟏𝟐)(𝟑](𝟒)                 2                  1 

                    3                     (𝟏](𝟐𝟑𝟒)                 3                  1 

                    4                   (𝟏)(𝟐)(𝟑)(𝟒)@                 1                  1 

                    4                   (𝟏)(𝟐)(𝟑𝟒)                 2                  1 

                    4                    (𝟏𝟐𝟑)(𝟒)                 3                  1 

                    4                     (𝟏𝟐)(𝟑𝟒)                 2                  1 

                    4                     (𝟏𝟐𝟑𝟒)                 4                  1 

Table 5 :  Conjugacy classes in 𝑰𝟓 

𝑑(𝑎)      Conjugacy classes           Period             Index 

                    0                   (𝟏](𝟐](𝟑](𝟒](𝟓]∗@                 1                  1 

                    1                     (𝟏𝟐](𝟑](𝟒](𝟓]∗                 1                  2 

                    1                   (𝟏)(𝟐](𝟑](𝟒](𝟓]@                 1                  1 

                    2                        (𝟏𝟐](𝟑𝟒](𝟓]∗                 1                  2 

                    2 (𝟏𝟐𝟑](𝟒](𝟓]∗                 1                  3 

                    2                       (𝟏𝟐](𝟑)(𝟒](𝟓]                 1                  2 

                    2                     (𝟏)(𝟐)(𝟑](𝟒](𝟓]@                 1                  1 

                    2                     (𝟏𝟐)(𝟑](𝟒](𝟓]                 2                  1 

                    3                        (𝟏𝟐𝟑](𝟒𝟓]∗                 1                  3 

                    3                     (𝟏𝟐](𝟑𝟒](𝟓]                 1                  2 

                    3                       (𝟏𝟐𝟑𝟒](𝟓]∗                 1                  4 
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                    3                     (𝟏𝟐𝟑](𝟒)(𝟓]                 1                  3 

                    3                     (𝟏𝟐](𝟑)(𝟒)(𝟓]                 1                  2 

                    3                       (𝟏𝟐)(𝟑](𝟒𝟓]                 2                  2 

                    3                     (𝟏)(𝟐)(𝟑)(𝟒](𝟓]@                 1                  1 

                    3                       (𝟏𝟐)(𝟑)(𝟒](𝟓]                 2                  1 

                    3                       (𝟏𝟐𝟑)(𝟒](𝟓]                 3                  1 

                    4                          (𝟏𝟐𝟑𝟒𝟓]∗                 1                  5 

                    4                       (𝟏𝟐𝟑𝟒](𝟓)                 1                  4 

                    4                     (𝟏)(𝟐)(𝟑𝟒𝟓]                 1                  3 

                    4                     (𝟏𝟐)(𝟑𝟒𝟓]                 2                  3 

                    4                   (𝟏)(𝟐)(𝟑)(𝟒𝟓]                 1                  2 

                    4                   (𝟏𝟐)(𝟑)(𝟒𝟓]                 2                  2 

                    4                     (𝟏𝟐𝟑)(𝟒𝟓]                 3                  2 

                    4                   (𝟏)(𝟐)(𝟑)(𝟒)(𝟓]@                 1                  1 

                    4                     (𝟏𝟐)(𝟑𝟒)(𝟓]                 2                  1 

                    4                     (𝟏𝟐𝟑)(𝟒)(𝟓]                 3                  1 

                    4                     (𝟏𝟐)(𝟑𝟒)(𝟓]                 2                  1 

                    4                     (𝟏𝟐𝟑𝟒)(𝟓]                 4                  1 

                    5                     (𝟏)(𝟐)(𝟑)(𝟒)(𝟓)@                 1                  1 

                    5                     (𝟏)(𝟐)(𝟑)(𝟒𝟓)                 2                  1 

                    5                     (𝟏)(𝟐)(𝟑𝟒𝟓)                 3                  1 

                    5                     (𝟏𝟐)(𝟑)(𝟒𝟓)                 2                  1 

                    5                     (𝟏𝟐𝟑)(𝟒𝟓)                 3                  1 

                    5                     (𝟏𝟐𝟑𝟒)(𝟓)                 4                  1 

                    5                      (𝟏𝟐𝟑𝟒𝟓)                 5                  1 
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Result 

Some combinatorial relations between numbers associated with the nilpotent and idempotent 

conjugacy classes in 𝐼𝑛 was noticed. Specifically, we define four different counts: 

𝑃𝑛 = The total number of nilpotent conjugacy classes in 𝐼𝑛 

𝑄𝑛 = The total number of idempotent conjugacy classes in 𝐼𝑛 

𝑋𝑛 = The cardinality of chains in the path (chain) decomposition of nilpotent conjugacy classes in 

𝐼𝑛 

𝑌𝑛 = The cardinality of chains in the path (chain) decomposition of idempotent conjugacy classes 

in 𝐼𝑛 

 Table 6: Combinatorial relations associated with nilpotent and idempotent conjugacy 

classes in 𝑰𝒏 

𝑛 𝑃𝑛 𝑄𝑛 𝑋𝑛 𝑌𝑛 

              1               1                2               1                2 

              2               2                3               3                4 

              3               3                4               5                6 

              4               5                5               7                8 

              5               7                6               9               10 

              6              11                7              11               12 

              7              15                8              13               14 

              8              22                9              15               16 

              9              30               10              17               18 

             10              42               11              19               20 

The following findings were deduced from the table above; 

Theorem 1: Let 𝛼   𝐼𝑛, then the conjugacy class of nilpotency in 𝐼𝑛 can be expressed as; 

|𝑷𝒏| =

{
 

 
𝑛4

192 
 −  

𝑛3

16
+
29𝑛2

48
 −   𝑛 + 2        𝑖𝑓  𝑛  𝑖𝑠  𝑒𝑣𝑒𝑛 

𝑛4

384 
 +  

19𝑛2

192
+  

𝑛

2
+
51

128
     𝑖𝑓  𝑛 𝑖𝑠 𝑜𝑑𝑑 

 

Proof: 

To prove the formula for the cardinality of nilpotent conjugacy classes in  𝐼𝑛 using induction, we 

will proceed as follows: 
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If n is odd then, n =  1, where n is even n =  2  : 

|𝑷𝟐| =

{
 

 
24

192 
 −  

23

16
+
29 ∗ 22

48
 −   2 + 2   𝑓𝑜𝑟 𝑛 = 2      

14

384 
 + 

19 ∗ 12

192
+  

1

2
+
51

128
   𝑓𝑜𝑟 𝑛 = 1

 

Thus, the cardinality of the nilpotent conjugacy class is: 

|𝑷𝟐| = {
   2   𝑓𝑜𝑟 𝑛 = 2     
1   𝑓𝑜𝑟 𝑛 =  1

 

If n is odd then, n =  1, where n is even n =  2 : 

|𝑷𝟒| =

{
 

 
44

192 
 −  

43

16
+
29 ∗ 42

48
 −   4 + 2   𝑓𝑜𝑟 𝑛 = 4     

34

384 
 + 

19 ∗ 32

192
+  

3

2
+
51

128
   𝑓𝑜𝑟 𝑛 = 3

 

Then, the cardinality of the nilpotent conjugacy class is: 

|𝑷𝟒| = {
   5   𝑓𝑜𝑟 𝑛 = 4    
3   𝑓𝑜𝑟 𝑛 =  3

 

Now, we need to show the formula holds for 𝑛 = 𝑘, for even and 𝑛 = 𝑘 −  1 for odd 

|𝑷𝒌| =

{
 

 
𝑘4

192 
 −  

𝑘3

16
+
29𝑘2

48
 −   𝑘 + 2        𝑖𝑓  𝑛  𝑖𝑠  𝑒𝑣𝑒𝑛 

(𝑘 −  1)4

384 
 +  

19(𝑘 −  1)2

192
+  

(𝑘 −  1)

2
+
51

128
     𝑖𝑓  𝑛 𝑖𝑠 𝑜𝑑𝑑 

 

Hence this also holds. 

If  𝑘 is odd,  𝑘 +  1  is even. We need to compute  |𝑷𝒌+𝟏| based on the properties of nilpotent 

elements in 𝐼𝑘+1. 

|𝑷𝒌+𝟏| =

{
 

 
(𝑘 +  1)4

192 
 − 

(𝑘 +  1)3

16
+
29(𝑘 +  1)2

48
 −  (𝑘 +  1) + 2        𝑖𝑓  𝑛  𝑖𝑠  𝑒𝑣𝑒𝑛 

𝑘4

384 
 +  

19𝑘2

192
+  

𝑘

2
+
51

128
     𝑖𝑓  𝑛 𝑖𝑠 𝑜𝑑𝑑 

| 

If  𝑘 + 1 is odd,  𝑘 +  2  is even. We need to compute  |𝑷𝒌+𝟐| based on the properties of nilpotent 

elements in 𝐼𝑘+2. 

|𝑷𝒌+𝟐| =

{
 

 
(𝑘 +  2)4

192 
 −  

(𝑘 +  2)3

16
+
29(𝑘 +  2)2

48
 −  (𝑘 +  2) + 2        𝑖𝑓  𝑛  𝑖𝑠  𝑒𝑣𝑒𝑛 

(𝑘 +  1)4

384 
 +  

19(𝑘 +  1)2

192
+  

(𝑘 +  1)

2
+
51

128
     𝑖𝑓  𝑛 𝑖𝑠 𝑜𝑑𝑑 

 

For even; 
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𝑷𝒌+𝟐 =
𝟏

𝟏𝟗𝟐
(𝒌𝟒 + 𝟖𝒌𝟑 + 𝟐𝟒𝒌𝟐 + 𝟑𝟐𝒌 + 𝟏𝟔) −

𝟏

𝟏𝟗𝟐
(𝒌𝟑 + 𝟔𝒌𝟐 + 𝟏𝟐𝒌 + 𝟖) + 

𝟐𝟗

𝟒𝟖
(𝒌𝟐 + 𝟒𝒌

+ 𝟒) − (𝒌 + 𝟐) + 𝟐 

Further simplification gives us 

𝑷𝒌+𝟐 = 
(𝑘 + 2)4

192 
 −  

(𝑘 + 2)3

16
+
29(𝑘 + 2)2

48
 −   (𝑘 +  2) + 2    

For odd; 

𝑷𝒌+𝟏 =
1

384 
(𝒌𝟒 + 𝟒𝒌𝟑 + 𝟔𝒌𝟐 + 4𝑘 + 1)  + 

19

192
(𝟐𝒌𝟐 + 𝑘 + 1) +  

1

2
(𝑘 +  1) +

51

128
 

Simplifying this gives; 

𝑷𝒌+𝟏 =
(𝑘 +  1)4

384 
 +  

19(𝑘 +  1)2

192
+  

(𝑘 +  1)

2
+
51

128
 

This completes the proof. 

Theorem 2: Let 𝜶 𝑰𝒏, the Idempotent Conjugacy Classes of 𝑰𝒏, denoted by 𝑄𝑛 is such that; 

𝑸𝒏 = 𝒏 + 𝟏 

Proof: Let 𝑰𝒏 be the partial one to one transformation semigroup on 𝑛 elements. The idempotent 

elements in 𝑰𝒏 correspond to the partitions of 𝒏 into distinct parts. This is because an idempotent 

transformation in 𝑰𝒏 can be represented as a direct sum of 1-cycles, and the number of 1-cycles is 

equal to the number of distinct parts in the partition of 𝑛.  Now, the conjugacy classes of 

idempotent elements in 𝑰𝒏 are in bijection with the partitions of 𝑛 into distinct parts. This is because 

two idempotent elements are conjugate if and only if they have the same cycle structure.  

Therefore, the number of idempotent conjugacy classes in 𝑰𝒏 is equal to the number of partitions 

of 𝑛 into distinct parts.  

Theorem 2: Let 𝛼 𝐼𝑛, where  𝐼𝑛, is a semigroup of partial one to one transformation , the total 

number of chains in the nilpotent conjugacy class chain decomposition of 𝐼𝑛, can be expressed as 

: 

𝑿𝒏 = 𝟐𝒏  −   𝟏 

Proof: Let 𝛼 be a nilpotent transformation in 𝐼𝑛 with domain 𝐷(𝛼). The number of images of 𝛼 is 

equal to the dimension of 𝐷(𝛼) , which is the rank of 𝛼. The number of chains in the conjugacy 

class chain decomposition of 𝛼 is equal to the number of distinct images of 𝛼 , which is the rank 

of 𝛼. Therefore, the total number of chains in the nilpotent conjugacy class chain decomposition 

of 𝐼𝑛 is the sum of the ranks of all nilpotent transformations in 𝐼𝑛. 

Theorem 3: Let 𝛼 be an idempotent transformation in 𝐼𝑛 , the total number of chains in the 

Idempotent conjugacy class chain decomposition of 𝐼𝑛, is given as: 

𝑌𝑛 = 2𝑛 

Proof: From Lemma 2, we know that an element 𝛼 in 𝐼𝑛  is idempotent if and only if all the paths 

in its path structure have length 1. This means that  𝛼 is either a circuit of length 1 or a proper 1-
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path of 𝑛. The number of circuits of length 1 in 𝐼𝑛  is 𝑛, and the number of proper 1-paths of 𝑛 is 

also 𝑛. Therefore, the total number of chains in the idempotent conjugacy class chain 

decomposition of 𝐼𝑛  is 2𝑛. 

Conclusion 

In conclusion, we have successfully explored the combinatorial and algebraic properties of 

nilpotent and idempotent conjugacy classes in partial one-to-one transformation semigroups 𝐼𝑛. 

The defined counts, such as the total number of conjugacy classes and the cardinality of chains in 

their decomposition, have revealed interesting relationships and patterns. The presented results, 

along with the derived sequences and table of values, provide a comprehensive understanding of 

the interplay between combinatorial structures and algebraic properties in the context of 

transformation semigroups. This work opens up avenues for further research and deepened the 

investigation into the intricate connections within these mathematical structures. 
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