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ABSTRACT 

In the present study, an analysis is Carried out to study viscous dissipation 

effects on free convective temperature non-reacting viscous flows on a 

porous plate in a presence of constant magnetic field. The coupled non-

linear partial differential equations are simplified with the help of 

asymptotic expansion the simplified equations are solved numerically by 

using finite difference method. The effects of different parameters on the 

dimensionless velocity and temperature profiles are shown graphically. It is 

observed that increasing the suction velocity and Eckert number cause an 

increase in both order zero velocity and order zero temperature profiles 

respectively. 

 

1. Introduction  

Fluid convection at vertical plates resulting from buoyancy forces find application in several 

industrial and technological field such as nuclear reactors, heat exchanges, electronic cooling 

equipment and aeronautics among others. 

[1] studied the unsteady free convection flow near a moving infinite flat plate in a rotating mixture 

of an incompressible fluid. Both soret (thermal diffusion) Dufour (diffusion-thermo) and radiation 

effects were considered when there was no chemical reaction. They imposed a time dependent 

perturbation on the constant plate temperature and concentration and assuming a differential 

approximation for the radioactive flux, the coupled non-linear problem was solved for the 

temperature and the concentration. 
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Further, a critical value for the soret and radiation was determined as 0.1 and the effect of Dufour 

soret and radiation was shown while both Dufour and soret have no effect on the temperature field. 

They both affect the concentration field with Dufour causing an overwhelming increase and soret 

just a slight decrease further, while radiation decreases both the temperature and concentration 

fields. [2] discussed the effects of a transverse magnetic field on transient natural convection in a 

vertical channel due to asymmetric heating of channel walls and analytically investigated them. 

The solutions of the linear system of equations were derived by Laplace transform technique 

Results were presented for the velocity and temperature profiles and skin friction at hot and cold 

walls channel. He observed that damping force exerted by the Hartman number played a similar 

role as the flow resistance offered by the presence of solid matrix in the porous medium. [3] 

Presented analytical solution of free convective and mass transfer flow in a vertical channel by 

two vertical parallel plates. A fully developed laminar flow was considered with uniform 

temperature and concentration on the plates. The diffusion –thermo effect was taken into 

consideration. It was shown that Dufour effect on the flow results in an anomalous phenomenon 

in temperature and velocity distribution when D>>Pr.  [4] considered the effect of viscous 

dissipation on the natural convection flow of incompressible fluid along a uniformly heated sphere 

with heat generation. And their investigation revealed that increase in heat generation parameter 

and skin friction coefficient, decreases the rate of heat transfer in terms of nusselt number for any 

specific value of Prandtl number but an increase value of Pr affects negatively the skin friction 

coefficient and positively affects the rate of heat transfer in terms of nusselt number for any specific 

value of heat generation. 

Furthermore, [5] presented unsteady free convection flow through a porous vertical flat plate 

immersed in a porous medium in the presence of magnetic field with radiation, introducing a time 

dependent suction to the plate .A similarity procedure is adopted by taking a time dependent 

similarity parameter .In their analysis they considered Darcy-Forchemier model and the 

corresponding momentum and energy equations were solved numerically for cooling and heating 

of the plate by employing Nacchyshein-Swigert iteration technique along with the sixty order 

Runge-Kutta integration Scheme .Non –dimensional velocity and temperature profiles were 

presented graphically for different values of the parameter entering into the problem. [6] studied 

the effects of stratified viscous fluid on MHD free convection flow with heat and mass transfer in 

the presence of radiation and heat source. They showed that velocity increases with the increase 

in stratification parameter as well as the skin friction. [7] discussed unsteady natural convection 

flow of a viscous dissipative fluid along a semi-infinite vertical plate subjected to periodic surface 

temperature oscillation. An electrical network model based on the network simulation method was 

developed to solve the governing equations. The accuracy and effectiveness of the method was 

demonstrated. The increasing of the viscous dissipation and the decreasing in the prandtl number 

lead to a decrease in Nusselt number and an increase in the local skin friction [8] investigated both 

impacts of electrical as well as magnetic strength with viscous dissipation for homogeneous 

chemical processing with higher order over a stretching porous sheet in the governing flow. The 

numerical results have been reported for the geometrical model under the physical significance of 

dimensionless numbers Hartmann, porous parameter, electric parameter, mixed convection, 

thermophoresis factor, random motion of Brownian, Prandtl, Schmidt, Eckert number, also 

chemical reaction parameter. The physical significance of these parameters are given numerically 

by using R-K-F method and presented graphically. [9] carried out an investigation to exhibit the 

duality in the solution for the MHD hybrid nano fluid flow due to the porous shrinking sheet with 

thermal radiation and viscous dissipation. The physical flow problem was modelled into system 

of partial differential equations. These governing equations were converted into nonlinear ODE 

and the dual solutions were obtained using the hypergeometric function. Recently, [10] 

https://www.sciencedirect.com/topics/physics-and-astronomy/partial-differential-equation
https://www.sciencedirect.com/topics/physics-and-astronomy/hypergeometric-functions
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investigated analytical study of steady incompressible viscous two-dimension, couple stress 

boundary layer flow for hybrid nanofluids with the influence of viscous dissipation and thermal 

radiation. The three types of nanoparticles were considered and engine oil was taken as base fluid. 

Proper transformations were used to change a set of PDEs into nonlinear ODEs. The authors solved 

this set of equations using the homotopy analysis approach (HAM). The results were planned with 

the aid of graphs involving the magnetic field, nanoparticle volume concentration, couple stress 

parameter, Eckert number, thermal radiation parameter, and Prandtl number. The influence of 

various temperature and velocity parameters was intended. The structures of flow features, such 

as temperature and velocity profiles, were simulated and evaluated using a physical description in 

response to changes in developing factors. 

  

Therefore, captivated and motivated by the usages of these researches above, the present study 

will be devoted to study Viscous dissipation effects on free convective temperature dependent 

non-reacting viscous flows on porous plate in a presence of constant magnetic field. Also, to best 

of my knowledge no one has carried out a study like this. Hence, there is need to undergo this 

study. The novelty of this work lying on the use of asymptotic technique in decoupling   the non-

linear PDEs before solving them numerically. Generally, in the literature when solving problem 

like this that involves infinite boundary condition an arbitrary number is always assigned for 

infinity values but in this work a transformation is used to transform infinite domain to a finite 

domain before proceeding to solve the problem. 

2. Mathematical Formulation. 

Considered an unsteady two – dimensional free convection flow, the coordinate origin at an 

arbitrary point on an infinite. Porous limiting vertical plate or wall. The x-axis is along the plate in 

the upward direction and the y-axis normal towards it. The fluid is viscous and incompressible. 

The flow is induced either by the motion of the plate or by heating it or by both. The plate initially 

at rest and with a constant temperature wT  is suddenly moved with the velocity '

0 ( )u f t  in its own 

plane along the x’-axis and its temperature is instantaneously increased (or decreased) by the 

quantity ( )' '

wT T−  g(t’) for 't >0;with 0u  along a constant velocity ( )wT T a constant temperature 

for the plate, f(t’) and g(t’) two arbitrary functions of non-dimensional time t. The flow geometry 

is shown in fig. 1 below  

Fig.1: Configuration of the problem 
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Also, an external magnetic field 0  Is applied in the positive y’-direction . By assuming a very 

small magnetic Reynolds number the induced magnetic field is neglected and assumed that the 

fluid is non-reacting one and there is heat generation due to viscous dissipation under this 

assumption the governing equations are: 

 The equation of continuity on integrating becomes 

   0' tan 'v cons t v= =                                                                              (2.1) 

Where 0 'v  is the normal velocity of suction or injection at the wall according as 0 'v <0 or 0 'v >0 

respectively 0 'v =0 represents the case of non-permeable wall .The remaining basic equations of 

motion and energy for these problems are : 

  ( )
'2

0
0 2

' ' '
' ' . '

' ' '

u u u
v g T T u

t y y


 




  
+ = + − −

  
                                      (2.2) 

  

2
' 22 '

' 0
0 2 '

'' ' '

' ' 'P P p

uT T k T u
v

t y c y c c y

 

  

    
+ = + +  

    
                                (2.3) 

Assuming that no slipping occurs between the plate and the fluid the initial and boundary 

conditions for equations (2.1) -(2.3) are 

' ' ' ' '( , ') 0 '( , ) wu y t and T y t T= =     ' 0 ' 0y and t                              (2.4) 

   ' ' '

0(0, ') ( '),0,0 '(0, ') ' ( ) ( ') , ' 0wu t u f t and T t T T T g t for t = = + −    (2.5) 

  
'( , ') 0 '( , ') , ' 0u t and T t T for t →  →                                                 (2.6) 

We now introduce the following non-dimensional quantities into equations (2.1) - (2.3) 

2 ' '

0 0 0

' '

0 0

' ' ''
, , , ,

w

y u t u v T Tu
y t u v

u u T T


 

− − − −




−
= = = = =

−
                                            (2.7) 

Now, substituting (2.7) into (2.2) - (2.6) simplify and neglecting the bar symbol for clarity, the 

dimensionless equations become 

       uHG
y

u

y

u
v

t

u
a

2

2

2

0 −+



=




+




                                                   (2.8)                                                 

2

22

2

2

0

1












++




=




+





y

u
EcuEcH

yPy
v

t
a


                         (2.9)                      

The corresponding initial and boundary conditions are  

        u(y,0)=0                       (y,0)=  0              for y 0                        

       u(0,t)  =  f(t)                  (0,t)=  g(t)           for t >0                                  (2.10)               
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        u(,t) → 0                    (,t) → 0            for t >0      

where the dimensionless parameters are defined in the nomenclature. 

We now consider the asymptotic expansions of temperature( )  and velocity (u)
 
    in Ha as 

                   

2

0 1 2

2

0 1 2

a a

a a

u u H u H u

H H   

= + + +

= + + +
…                                                                (2.11) 

Substituting (2.11) into equations (2.8) - (2.10) and simplify to have 

0

aH  

02

0

2

0

2

0 G
y

u

y

u
v

t

u
+




=




+




                                                                           (2.12) 

0u (y,0)=0  0u (0,t)=f(t)   0u ( ,t)=0                                                                        

1

2

1 1 1
0 12

aH

u u u
v G

t y y


  
+ = +

  

                                                                                (2.13) 

1u (y,0)=0     1u (0,t)=0       1u (∞ ,t)=0                                                                    

2

aH  

022

2

2

2
0

2 uG
y

u

y

u
v

t

u
−+




=




+




                                                                     (2.14) 

( ) ( ) ( )2 2 2,0 0, 0, 0, , 0u y u t u t= =  =                                                    (2.15) 

0

aH  

2

0

2

0

2

0

0

0













+




=




+





y

u
PEc

yy
Pv

t
P


                                                         (2.16) 

( ) ( ) ( ) ( )0 0 0,0 0, 0, , , 0y t g t t  = =  =                                                 

1

aH  

                                                           (2.17) 

 

( ) ( ) ( )1 1 1,0 0, 0, 0, , 0y t t  = =  =                                                     

2

aH  

22

1 1 1 1
0

u
P v P PEc

t y y y

       
+ = +  
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2

22

02

2

2

2
0

2













++




=




+





y

u
PEcpEcu

yy
pv

t
p


                                       (2.18) 

( ) ( ) ( )2 2 2,0 0, 0, 0, , 0y t t  = =  =                                                            

We carry out one more transformation from the infinite domain to finite domain using  

;yex −=                                                                                                                      (2.19) 

       ( ) 0

0

02

0

2

20 1 G
x

u
xv

x

u
x

t

u
+




++




=




                                                           (2.20) 

( ) ( ) ( ) )(,1,0,0,00, 000 tftutuxu ===                                                    

( ) 1
1

02

1

2
21 1 G

x

u
xv

x

u
x

t

u
+




++




=




                                                                      (2.21) 

( ) ( ) ( ) 0,1,0,0,00, 111 === tutuxu                                                                  

( ) 02
2

02

2

2
22 1 uG

x

u
xv

x

u
x

t

u
−+




++




=




                                                            (2.22) 

( ) ( ) ( ) 0,1,0,0,0,0, 222 === tutuxu                                                                  

( )
x

x
p

pv

xp

x

t 

+
+




=



 00

2

0

22
0 1 

                                                                          (2.23) 

0 (x,0)=0   0 (0,t)=0  0 (1,t)=g(t)                                                                             

( )
x

x
p

pv

xp

x

t 

+
+




=



 10

2

1

22

1 1 
                                                                            (2.24) 

1 (x,0)=0   1 (0,t)=0  1 (1,t)=0                                                                                        

( ) 2

0
20

2

2

22

2 1
Ecu

x
x

p

pv

xp

x

t
+



+
+




=



 
                                                          (2.25) 

2 (x,0)=0   2 (0,t)=0  2 (1,t)=0                                    

Numerical solution 

Getting a closed form solution for equations (2.20) - (2.25) with the boundary conditions are not 

possible. Consequently, we resolved the problems numerically by finite difference method. It is 

this method because it is very easy to apply to problem like this without any complication. The 

discretization of this method is shown in equation (2.26) 

Assume g(t) = f(t) = 1. 
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We define
0 , 1 00 i j ij

t k

  + −
=
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ijji
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0,100
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 +
 , 

2

,100,10

2

0

2 2
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0 , 1 00 i j iju uu
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   Substituting equation (2.26) into equations (2.20) - (2.25) and simplify, we have                      

        
ijij

jijiijjiijji kGuu
h

ihkv
uuu

h

kih
uu 00,10
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2

01,0 )(
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)()1(
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)(
+−

+
++−+= +−++    (2.27) 

           1),1(0),0(0)0,( 000 === jkujkuihu          
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                                0),1(0),0(0)0,( 222 === jkjkih              

Equations (2.27) -(2.30) are implemented using Pascal Programming Language the results are 

presented in figures (2) - (8).          

Results and Discussion 

Numerical solutions are obtained for the problem of viscous dissipation effects on free convective 

temperature dependent non-reacting viscous flow on a porous plate in a constant magnetic field. 

Five basic parameters governed the flow namely, the Prandtl number (P), Suction/Injection ( 0v ) 

,Grashof number and Eckert number. A numerical computation is carried out for various values of 
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the parameters that describe the flow characteristics and the results are display in graphs. Figure 1 

gives a vivid description of the flow configuration. Figures 2 – 4 show the order zero velocity 

profiles for different suction velocity.  It is observed that increasing the suction velocity cause an 

increase in order zero velocity profiles. An increase in Eckert number resulted in escalating the 

order zero temperature profiles shown in figure 5. In Figure 6, we observed that, the order zero 

velocity increases as Grashof number increases. Figures 7 and 8   illustrate the effect of Eckert 

number and Prandtl number on second order temperature profiles. It is observed that the 

temperature increases as both Eckert number and Prandtl number increase and maximum 

temperature exists within the fluid.          

Conclusion 

The main purpose of the present study is to show the nature and importance of free convection 

temperature dependent non reacting viscous flows on a porous plate in presence of constant 

magnetic field. This was accomplished by first formulating the general problem under reasonable 

assumptions. Finally, it is observed that increasing the suction velocity and Eckert number cause 

an increase in both order zero velocity and order zero temperature profiles respectively.            

 

Figure 2: The graph of unsteady velocity distribution u (x,t) against x of a non-reacting flow with 

viscous dissipation for equation 2.27 when G = 2.0,P = 0.71,Ec = 1.0,t = 0.2  for various Vo 
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Figure 3: The graph of unsteady temperature distribution q (x,t) against x of a non-reacting  flow 

with viscous dissipation  for equation 2.29 when P = 0.71,G = 2.0,Ec = 1.0,t = 0.2 for various Vo 

 

Figure 4: The graph of unsteady velocity distribution u (x,t) against x of a non-reacting flow with 

viscous dissipation for equation 2.26 when P = 0.71,G = 2.0,Vo = -1.0,t = 0.2 for various Ec 
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Figure 5: The graph of unsteay temperature distribution q (x,t) against x of a non-reacting flow 

with viscous dissipation for equation 2.29 when P = 0.71,Vo = -1.0,G = 2.0,t = 0.2 for various Ec 

 

Figure 6:The graph of unsteady velocity distribution u (x,t) against x of a non-reacting flow with 

viscous dissipation for equation 2.28 when  p = 0.71, Vo = -1.0,Ec = 1.0,t = 0.2 for various G  
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Figure 7: The graph of unsteady temperature distribution q (x,t) against x of  a non-reacting  

viscous flow with viscous dissipation for equation 2. 30 when P = 1.0,G = 1.0,Vo = -1.0,t = 0.06 

for various Ec  

 

Figure 8: The graph of unsteady temperature distribution q (x,t) against x of a non-reacting flow 

with viscous dissipation for equation 2.30when Vo = -1.0,G = 1.0,Ec = 1.0,t = 0.06 for various P 
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