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ABSTRACT 

 

In this article, we employed gravitational time dilation and length 

contraction within Schwarzschild spacetime to formulate a generalized 

gravitational field equation. This dynamic field equation was then used for 

static, homogeneous spherical massive bodies to derive the generalized 

exterior gravitational scalar potential. The results indicate that the 

generalized dynamic gravitational scalar potential includes an additional 

correction term proportional to 𝑐−2, which is absent in both Newton's 

equations of motion and Einstein's geometrical equations of motion. 

 

 

 

 

 

1. Introduction  

In 1686, Newton introduced his dynamical theory of gravitation. According to Newton's universal 

law of gravitation, every particle exerts a force on every other particle along the line connecting 

their centers. The space or region where this force exists is referred to as the gravitational field [1, 

4]. It was found that this force controls the motion of moons, planets, and galaxies in their 

respective orbits. 
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The importance of the laws of motion and gravity lies in their ability to explain the observed facts 

about the solar system's existence. The theory of universal gravitation within Earth's atmosphere 

assumes that Earth is a perfect sphere [2, 3]. Similarly, within the solar system, the motion of 

bodies such as planets and stars is also regarded as that of perfect spheres. Consistently, the general 

theory of relativity posits that planets and photons are perfect spheres. In Einstein's theory of 

gravitation, the movement of bodies and particles is analyzed under the assumption that 

Schwarzschild spacetime forms a perfect sphere [3]. In reality, all celestial bodies, including 

planets, stars, black holes, and galaxies, are perfect spheres. The spherical geometry of celestial 

bodies clearly has corresponding effects on the motion of particles within their gravitational fields. 

These effects are present in both Newton's dynamical gravitational theory and Einstein's 

geometrical gravitational theory. Consequently, the groundwork is laid for understanding the 

gravitational fields of static, homogeneous spherical bodies. It is evident that the more massive the 

spherical body, the greater the curvature it imposes on spacetime. A stronger curvature of 

spacetime results in a stronger gravitational field created by the spherical body. In a paper titled 

"Generalization of Newton’s Dynamical Gravitational Scalar Potential for Static Homogeneous 

Spherical Distribution of Mass," the author utilized the Golden Laplacian operator method. The 

results revealed a generalized gravitational scalar potential, including additional correction terms 

absent in Newton’s earlier work. 

There are two main gravitational theories in physics: Newton’s dynamical gravitational theory and 

Einstein’s geometrical gravitational theory. Newton’s theory observed that all interactions in 

nature involve forces. Hence, for a body to move from one point to another, a force must act upon 

it. Newton’s theory was successful in explaining gravitational phenomena on Earth and the 

observational facts of the solar system [6]. However, it failed to account for the anomalous orbital 

precession of planets and the gravitational redshift caused by the Sun. 

In 1915, Albert Einstein introduced his geometric theory of gravitation, known as the general 

theory of relativity. Einstein’s theory posits that gravitation is not the result of a force but rather a 

manifestation of the curvature of space and time [4, 5]. He used geometrical constructs (tensors) 

to describe gravitation, instead of the dynamical quantities like force and potential. Notably, 

general relativity unified special relativity with Newton’s law of universal gravitation by providing 

the insight that gravity arises from the curvature of spacetime, shaped by the mass-energy and 

momentum within it [7]. In 1908, Hermann Minkowski gave a mathematical framework for special 

relativity, which applied in the absence of gravity. He extended the three-dimensional Euclidean 

spacetime by taking the three spatial dimensions given as ),,,( zyxt and 

),,,( dzzdyydxxdtt ++++ .  He transformed the dimensions into the Minkowski flat spacetime 

given by the square of the infinitesimal interval between the points which is the line element with 

Cartesian coordinates [8] given as: 

222222 dzdydxdtcds −−−=                                                                     1.1 

The Minkowski flat spacetime in equation (1.1) can be converted to flat four-dimensional pseudo 

Euclidean spacetime of the spherical coordinate given by the line element as 

222222222 sin  drdrdrdtcds −−−=                                                   1.2 

However, in searching for a geometric theory of gravity, Einstein had to generalized the 

Minkowski spacetime of special relativity in equation (1.2) as 
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In Einstein general theory of relativity, it follows that mass curves the one time dimension and 

three space dimensions of spacetime. Therefore, the spacetime curvature is greatest near the mass 

and vanishes at a distance [9]. In general theory of relativity, Einstein relates the metric tensor 

components which describe the curvature of spacetime to the distribution of matter throughout 

spacetime. Therefore, he described spacetime as a curved four-dimensional pseudo-Riemannian 

manifold. In general relativity, spacetime can be represented using non-Cartesian coordinate 

systems, such as spherical coordinates. [10]. 


 dxdxgds =2

                                                                                           1.4 

Where g  is the fundamental or metric tensor. Schwarzschild metric is a solution of Einstein 

gravitational field equations. This metric describes the spacetime curvature around static massive 

objects. This metric represents the gravitational field around a non-rotating symmetrically 

spherical object. The gravitational field described by Schwarzschild metric is known as the 

Schwarzschild geometry as described in equation (1.5) below 
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2. Methods 

In this study, we apply the generalized dynamic gravitational field equation to static, homogeneous 

spherical massive bodies by finding the general solution to the exterior field equation. The line 

element of Schwarzschild metric is given by  
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Recall that in a weak static field, the equation of motion for a particle in a gravitational field 

according to Newtonian mechanics is retrieved. [8]. Taylor series expansion derived by Mungan 

was applied to the Schwarzschild spacetime metric given by equation (2.1) above. The application 

of Taylor series expansion using first few terms can make difficult problems possible with the 

approximation of few terms. The Taylor series expansion is truncated to the third order given by 

[11] below. 
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3. Theoretical Analysis 

Herein, the research was to construct gravitational time dilation in the Schwarzschild spacetime. 

The generalized gravitational scalar potential outside the body, influencing a particle in spherical 

polar coordinates    ,  ,r  where the differential coordinates are zero. Let's examine a clock that 

remains stationary at a specific location within the Schwarzschild gravitational field surrounding 
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a spherical body. Furthermore, since the two events occur at the same place then they are separated 

by a differential in coordinate given by 

0 ===  dddr             3.1 

We substituted equation (3.1) into the Schwarzschild metric line element given in equation (2.1). 

The new line element formed is given by 
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2
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1 dt
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−−=               3.2 

Let us relate proper time between two events for time like intervals. Then the proper time between 

the events measured by a clock at rest at the location of the events given by 

222 dcds −=           3.3 

Substituting equation (3.3) into equation (3.2) gives a line element. The proper time between the 

events, as would be measured by clock at rest at the location of the events is given in equation 

(3.3). The comparison of equation (3.2) and equation (3.3) for a distant observer at rest shows that 

the proper time is given by 
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Taking the square root of equation (3.4) gives 
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In equation (3.5), we divided through with the coefficient of the time coordinate to obtain 
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The Taylor series expansion was applied on equation 3.6, which is the reduced Schwarzschild line 

element. The new line element for Schawrzschild spacetime is given by 
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It follows that 
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The construction of gravitational length contraction in Schwarzschild spacetime was obtained by 

applying the Taylor series expansion approach to static homogeneous spherical massive bodies as 
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given in equation (2.1). In order to determine the radial distance within the Schwarzschild 

spacetime, let ),,( t  be constants, then their derivatives are given by 

0 ===  dddt                    3.9 

We substitute equation (3.9) into equation (2.1) which represents the Schwarzschild line element 

for determining an interval of radial distance given by 

2

1

2

2 2
1 d

rc

GM
ds

−









−=                           3.10 

Taking the square root of equation (3.10) which is the reduced line element in equation (2.1) to 

obtain the equation given below 
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The Taylor series expansion in equation (2.2) was applied to equation (3.11) given by 

d
cr

MG

rc

GM
ds 








++

42

22

2 2

3
1              3.12 

In the Schwarzschild field, within the neighborhood of a massive body, two points with the same 

angle θ and ϕ 

nowhaveaseparationwhichisdifferentfromthecorrespondingseparationinemptyspaceis represented 

by 
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Discussion of Results 

Newton's dynamical gravitational potential lacks extra correction terms of all orders of, which are 

added to the generalized dynamical and geometrical gravitational scalar potentials outside the body 

in equations (3.8) and (3.13). Similarly, in a weak gravitational field, the proper distance and the 

coordinate distance are equivalent, and their result follows the Equivalents principle in physics, 

and the proper term of an observer will coincide with the coordinate time and its consequence 

predicts the weak gravitational field that follows it. The outcome of equation (3.8) suggests that 

the observer's proper time is less than the coordinate time since the dilated coordinate time is higher 

than the function of the proper time. 

Conclusion 

An observer is seen as being at a fixed place around the huge body in gravitational time dilation. 

The spacetime, or reduced Schwarzschild line element, was subjected to the Taylor series 

expansion. The results of this study suggest that post-Newtonian and post-Einstein correction 

terms of all orders 𝑐−2 can be predicted for the gravitational field of static, homogeneous, spherical 

heavy masses by generalizing Newton's dynamical gravitational theory. We showed how to create 
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generalized dynamical equations of motion for these bodies by deriving extra correction terms 𝑐−2 

that are absent from both Einstein's and Newton's equations of motion through the use of 

gravitational time dilation and length contraction. It was mentioned that post-Newtonian and post-

Einstein corrective terms of order 𝑐−2 are included in all of the study's outcomes. 
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