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ABSTRACT 

 

This study develops a novel eulerian polynomial function for fractionally-

differentiated Linear Volterra-Fredholm Integro-differential equations 

(LVFIDEs). The procedure is developed and evaluated against the current 

set of Lagrange polynomials (LPs); In order to achieve the best results and 

implementation of these kinds, a general algorithm is recommended and 

examples are provided. Additionally, using MATLAB 2009 software, a 

special case fractional differential equation is used to assess the viability of 

the suggested approach. In order to assess how well the suggested strategy 

solves difficulties, comparisons between it and current approaches are 

finally provided. 

 

 

 

 

1. Introduction  

In order to solve Linear Volterra-Fredholm Integro-Differential Equations (LVFIDEs) with 

fractional derivatives of the following sort, a novel class of Eulerian polynomial functions is 

examined in this paper: 

𝐷𝑎𝑢(𝑥) = 𝑞(𝑥)𝑢(𝑥) + 𝑓(𝑥) + ∫ 𝑘1(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
 + ∫ 𝑘2(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡  

𝑥

𝑎
;  0 < 𝑎 < 1          (1) 

with initial condition 

    𝑢(𝑎) = 𝑢0                (2) 

where 𝐷𝑎𝑢(𝑥) denote the ‘Caputo fractional derivative’ 𝑢(𝑥); 𝑞(𝑥), 𝑘1(𝑥, 𝑡) and 𝑘2(𝑥, 𝑡) are 

continuous functions, x and t are real variables in [a, b] and 𝑢(𝑥) is the indefinite function to be 

determined using Eulerian polynomial functions. 
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Numerous applications in the sciences, engineering, and even finance include this [1]. In order to 

help in problem resolution, it is often necessary to find an approximate answer using numerical 

methods when an analytical solution cannot be found [2]. Numerous academics have examined 

and assessed the numerical solution of LVFIDEs, including [1], who found the numerical solution 

to FIDEs of the Volterra type with the Caputo fractional derivative by using the Adomian 

decomposition approach. In a similar vein, [3] solved a class of linear fractional integro-differential 

equations using Taylor expansion series. [2] also looked into the least squares method of 

numerically solving LFIDEs with the help of shifted Chebyshev polynomial base functions. [4] 

provided a numerical method for solving fractional integro-differential equations that was based 

on cubic B-spline wavelets. presented the Haplace Analytical Method (HATM), an analytical 

technique that combines the Laplace decomposition method with HAM. Fractional integro-

differential equations, both linear and nonlinear, can be solved using this method. [6] studied the 

use of shifted Laguerre polynomials in the least squares approach for the numerical solution of 

linear fractional integro-differential equations. [7] presented two numerical techniques for 

resolving FIDEs; the least squares approach uses Bernstein polynomials as its foundation. [8] 

created a model using the perturbation-iteration approach to get various FIDEs' approximate 

solutions.   Studied the fractionally-order Volterra-Fredholm integro-differential equation solution 

method using sinc-collocation [9]. By integrating the generalized fractional Taylor series with the 

residual functions, [10] adjusted the fractional power series approach to derive an approximate 

solution to the model. To determine the approximate solution of a nonlinear FVFIDE, [11] used 

the Adomian decomposition and the modified Laplace Adomian decomposition techniques. The 

uniqueness and existence theorems for FVFIDEs were examined by [12]. Volterra-Fredholm 

integral equations were solved by [13] using the Lagrange collocation method, which uses 

Lagrange collocation points to convert the system of linear integral equations into matrix form.  

[14] presented a numerical technique for resolving first-order linear Volterra-Fredholm integro-

differential equations utilizing three different kinds of Lagrange polynomials: Original, Modified, 

and Barycentric forms. Applied Lagrange polynomials (Original Lagrange Polynomial, Modified 

Lagrange Polynomial, and Barycentric Lagrange Polynomial) to solve linear Volterra-Fredholm 

integral equations [15]. By incorporating the meshless barycentric Lagrange quadrature formula, 

[16] was able to solve the two-dimensional linear Fredholm integral equations of the second sort. 

[17] introduced a method for solving two-dimensional integral equations using modified 

barycentric rational interpolation.   Employed the barycentric rational interpolation collocation 

approach [18] to address boundary value issues of a higher level. [19] used the Barycentric 

interpolation collocation method to numerically solve a class of nonlinear partial differential 

equations. [20] further provided a Lagrange polynomial-based numerical solution of the fractional 

Volterra-Fredholm Integro-Differential Equation. 

Furthermore, the constant coefficient fractional Fredholm Integro-Differential Equations of the 

type  

 


=

+=
0 0

,;)(),()()(
i

x

i btxadttutxHtgtuDP       (3) 

under the initial boundary condition 

 
)()0(

)0()(
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=
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where a is constant and 1 <  α ≤  2 and Dα is the fractional derivative in the Caputo sense. 

 

Preliminaries 
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Definition 2.1: A real function f(x),  x > 0 is said to be in space Cµ; µ ϵ R, if there exists a real 

number p > µ, such that f(x) = x2 f1(x) where f1(x) ϵ C(0, ∞), and it is said to be in the space 

., NnRfifC nn    

Definition 2.2[21]: The Riemann–Liouville fractional integral operator of order α ≥ 0 of a 

function f 1, − Cf  is defined as: 

 −


= −

x

tdttftx
x

xfJ
0

1 0,0;)()(
)(

1
)( 

    (4) 

in particular J0f(x)= f(x), 

Some properties of the operator Jα, for β ≥ 0 and γ ≥ -1,   

i.  JαJβf(x)  = Jα+βf(x) 

ii. JαJβf(x)  =  JβJαf(x) 

iii. 




 +

++

+
= xxJ

)1(

)1(
 

Definition 2.3[21]: The Caputo fractional derivative of NmCf m  − ,1  is defined as: 

      −−
−

= −−

x

nnm mmdttftx
m

xfD
0

1 1;)()(
)(

1
)( 




 

Lemma 2.4: if 1,,;1 −−  
mCfNmmm  then the following two properties hold 

i.    )()( xfxfJD =  

ii.   
−

=

−=
1

1 !
)0()()(

m

i

i
i

i

x
fxfxfDJ    

 

Methodology 
The equation (1) is said to be convergence, if it satisfies this theorem [22] 

Consider the system 

    


=

+=
0 0

,;)(),()()(
i

x

i btxadttutxHtgtuDP 
    

x(0) = x0 ; t ϵ I = [t0, t1] with the same conditions on the equation parameters as in equation (1), 

then  

i. Equation 1 is convergence on the interval I = [t0, t1]. 

ii. The W(t, t0) of equation 1 is non-singular 

iii. Equation 1 is stable on the interval I = [t0, t1]. 

Proof: 

Recall that the non-singular nature of W(t, t0) in equation (1) is equivalent to stating that W(t, t0) 

is positive definite. This, in turn, implies that CT times the convergence of equation (1) is almost 

always equal to zero on the interval [t0, t1], suggesting that C = 0, T stands for matrix transpose.  

0),(*)()(
)(

1

0

0

1 =







−−− 

−

−

t

t h

nT sudstHst
n

C 


  

which implies C = 0;  C ϵ En given that the integral is positive, equation (1) is correct.  

This demonstrates that (i) and (ii) are comparable. Then to demonstrate the equivalency of (ii) & 

(iii). 

By the definition, 
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It follows that equation (3) is orthogonal. 
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Assuming that equation (1) will now converge, we get R(t, t0) = Rn, which leads to C = 0. This 

indicates that (iii) implies (ii) or that (i) is equal to (ii) and that (ii) is identical to (iii) and vice 

versa.  

In the event if, on the other hand, equation (1) is not convergent and R(t, t0) ≠ Rn for t > t0, then 

C ≠ 0, C ϵ Rn, such that CTR(t, t0) = 0 exists.  
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By definition, it implies that the system is assume to be convergence 

 

Eulerian description:  
Euler introduces the alternating ξ- function 

 +−+−=
sss

s
4

1
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1

2

1
1)(         (6) 

Whenever Re(s) > 0, this series converges. It is possible to holomorphically extend the function 

φ(s) to the entire s-plane, which is connected to the ν-function:  

 )()21()( 1 ss s  −−=           (7) 

Introduce the Eulerian polynomials Pn(t) for this purpose by 
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This is how the Euclerian polynomial was produced. 
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Naturally, the series only converges when | t | <1, but in the case of Euler  
12)1()( −−−=− n

nPn  

which contrasts φ(-n) with φ(n+1); φ(-n) = 0 for n > 0 even and n – odd [23] 

Theorem: Given (λ-positive, g-ample) With degree n + 1-λ, the polynomial H(t) satisfies 

  )(
11 tH
t

Ht n =
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



−+   

Proof: For the Hilbert series [23] 
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T represents the entire Todd class. It is necessary to assess this statement on X's basic cycle. 

Likewise 
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Thus, 
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By utilizing a different summation index of –k instead of k and ))(()1()( gkXkgX n  −−=−  
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this gives: 
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Work out the equations' solutions. (1-2) first substitute equation with the Eulerian Polynomial 

function. (9) in the formula. (1) to possess  
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Consequently, according to the definition of the Caputo derivative, we have 
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replacing the Eulerian Polynomial function's produced recurrence relation to have 
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Substitute x = xi in eq.(16) for (i= 0, 1, 2 , . . . n) 
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Equation (17) can be solved by substituting the recurrence relation of the Eulerian polynomial 

basis function with different values of N. This leads to an equation system, which is then solved 

using MATLAB, the Gaussian elimination method, and the LU decomposition method with partial 

pivoting through the algorithm. 

 

General Algorithm for Methods  

The following procedures are presented in order to assess numerical solutions of LFVFIDE using 

the Eulerian polynomial function:  

Step 1: assume ℎ =
𝑏−𝑎

𝑛
, 𝑛𝜖ℤ, 𝑢(𝑎) = 𝑢0 (the initial condition is given).  

Step 2: put 𝑥𝑖 = 𝑎 + 𝑖ℎ, with 𝑥0 = 𝑎 and  𝑥𝑛 = 𝑏, 𝑖 = 0,1, … , 𝑛. 

Step 3: In steps (1) and (2), the values of a linear system DU = C, where instances are handled by 

Eulerian polynomials, are found: Select Equation (17). 

 (Keep in mind that we utilize the precise value calculated in MATLAB for the Caputo fractional 

derivative and integral in all equations).  

Step 4: Utilizing step 3 and the partial pivoting Gauss elimination approach, solve the problem 

(DU = C). Similarly, using Gaussian elimination, or LU, to calculate a solution has the same 

processing cost.  

Error Estimate 
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An error estimate for the approximate solution to equation (17) is obtained in this section. We 

define as the error function of the approximate solution to, where is the approximate solution 

computed for different values of N, and is the precise solution. 

Numerical Examples 
Numerical examples that demonstrate the ease of use and relevance of the method under discussion 

are provided below. The mathematical program MATLAB employed the general technique to 

solve issues, and the outcomes were displayed. 

 

Example 1: Consider the FLFIDE [20]:  

  ++++=

x x

dttutxdttutxfxuxqxuD
0 0

)()()(sin)()()()(
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with the initial condition 𝑢(0) = 0, where  
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with the true solution 𝑢(𝑥) = 𝑥 − 𝑥3. 

(Assume case 𝑘1(𝑥, 𝑡) = 0) 

Table 2 shows the maximum error with n=4,6,8,10, and Table 1 shows the absolute error with 

n=5.  

Table 1 shows the Example (1) Absolute Error for n = 5. 

X Lagrange 

Polynomial[20] 

Eulerian Polynomial 

(present result) 

 

0.2000 0 0  

0.4000 0 0  

0.6000 0 0  

0.8000 0 0  

1.0000 5.1000212345e-16 5.1000212e-16  

‖𝒆𝒓𝒓‖∞ 5.1000212345e-16 5.1000212e-16  

R.T. 16.9414 28.5123  

Table 2. Example (1)'s Maximum Error, for n = 4, 6, 8, 10. 

N Lagrange Polynomial[20] Eulerian Polynomial 

(present result) 

  

4 3.2477452607e-16 3.2477452607e-16   

6 5.1000212345e-16 5.1000212345e-16   

8 2.6172745328e-15 4.1440180104e-15   

10 6.7699476050e-14 3.5980141117e-14   

Table 4 shows the maximum error with n = 4, 5, 8, 10, and Table 3 shows the absolute error with 

n = 5. 

Table 3: Example (2)'s Absolute Error with n = 5. 

X Lagrange 

Polynomial[20] 

Eulerian Polynomial 

(present result) 

 

0.2000 0 0  

0.4000 0 0  

0.6000 0 0  
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0.8000 0 0  

1.0000 0 0  

‖𝒆𝒓𝒓‖∞ 0 0  

R.T. 20.6366 20.1257  

Table 4: Example (2)'s Maximum Error with n = 4, 6, 8, 10. 

N Lagrange 

Polynomial[20] 

Eulerian Polynomial 

(present result) 

 

4 0 0  

6 0 0  

8 5.566293953540e-16 6.42376362744e-16  

10 1.193253308662e-14 6.34368584141e-15  

Example 3: Consider the LFDE [20]  

 )()()()( xfxuxqxuD +=         (20)  

with the initial condition 𝑢(0) = 0 

where 5.01)(,
)2(

1

)3(

2
)( 212 ==−+

−
−

−
= −− 



 andxqxxxxxf  

with the exact solution 𝑢(𝑥) = 𝑥2 − 𝑥 

(Note that, in this case, 𝑘1(𝑥, 𝑡) = 0 and 𝑘2(𝑥, 𝑡) = 0 ). 

 

Table 5 uses the Eulerian polynomial with n=5 to show the absolute inaccuracy.  

The maximum inaccuracy using the Eulerian polynomial with n = 4, 6, 8, 10, is shown in Table 6, 

while the best results utilizing the Lagrange polynomial function are obtained in [20]. 

 

Table 5. The Eulerian polynomial with n=5 Absolute Error of Example (3). 

X Lagrange 

Polynomial[20] 

Eulerian Polynomial 

(present result) 

 

0.2000 0 0  

0.4000 0 0  

0.6000 0 0  

0.8000 0 0  

1.0000 2.1527833558 E-17 2.1527833558 E-17  

‖𝒆𝒓𝒓‖∞ 2.1527833558 E-17 2.1527833558 E-17  

R.T. 13.8447 30.1743  

Table 6: The Eulerian Polynomial Maximum Error of Example (3) for n = 4, 6, 8, and 10. 

N Lagrange Polynomial[20] Eulerian Polynomial 

(present result) 

  

4 0 0   

6 2.1527833558 E-17 2.1527833558 E-17   

8 1.6518263979e-17 3.3036527958e-17   

10 3.3777921562e-16 1.98693656252e-16   

Discussion 

The Eulerian polynomial was used in this study to solve the LVFIDEs. Based on the outcomes of 

the examples, we deduce that:  
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• The approach provides the introduced algorithms' acceptability and capacity.  

• The error term decreases with increasing n (the degree of polynomials) in all techniques 

except in cases where the exact answer is a low degree polynomial that we can fulfill.  

• Additionally, Tables (4 and 6) show that neither technique yields any results for n=4 due 

to the difficulties in locating the fractional derivatives, which are extremely difficult to 

compute either by hand or with MATLAB.  

• For the same reason, we recommend utilizing numerical integration rather than exact 

value to circumvent the challenge of locating the integration in Equation (17). 

• It is possible to extend and apply methods to nonlinear FVFIDE; in this scenario, the 

issue becomes a nonlinear system of equations that can be resolved through discretization 

or linearization. 

Conclusion  

When discussing the reasons why the Eulerian method has been chosen over the Lagrangian 

method, it is generally stated that the Eulerian method requires less computing power than the 

Lagrangian method and that it operates with particle concentration rather than particle positions, 

making it more suitable for engineering applications. But under what circumstances are the 

outcomes of the two approaches equal, and for which two unique geometries are the Lagrangian 

and Eulerian approaches different?  The drawback is that, for other studies and geometries, 

modeling and analyzing two particular situations on two special geometries will not yield an 

overarching rule for the disparity between the Lagrangian and Eulerian techniques' outcomes. 
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