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ABSTRACT 

Over the years, there has been a growing need to generalize both Newton’s 

dynamical theory of gravitation and Einstein’s geometrical theory of 

gravitation to achieve better consistency with all physical theories. In this 

article, a Taylor series expansion approach was utilized to extend Newton’s 

dynamical gravitational field, resulting in the construction of a generalized 

dynamical gravitational field equation. This generalized equation was then 

applied to static, homogeneous spherical massive bodies to derive 

generalized exterior gravitational scalar potentials. The generalized 

dynamical gravitational scalar potential was utilized to analyze the motion 

of planets within the solar system. The findings reveal that this potential is 

enhanced by additional correction terms of all orders of 𝑐−2 which are not 

present in Newton’s dynamical equation of motion. Additionally, the 

generalized dynamical gravitational scalar potential includes a 𝑐−4 post-

Newtonian correction term. These results were compared with those 

obtained using the Golden Riemannian dynamical gravitational scalar. 

 

1. Introduction  

The theory of gravitation was first postulated by Isaac Newton more than three hundred years ago. 

In his postulate, he stated that the force that keeps an object on the ground and the force that keeps 

the planets in their orbit around the sun are both the same [2]. Shortly after Newton discovered 

and developed gravitation, it was observed that it could not account for the anomalous orbital 

precession of the planets as well as the gravitational shift caused by the Sun, as a result of that, 

Einstein sought for appropriate geometrical quantities for the description of gravitation [1].  
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He chose the metric tensor as the fundamental quantity for the description of gravitation. In 

Newton’s dynamical theory, it is a well-known fact that all interactions in nature manifest through 

force [3]. This Newton’s dynamical theory was successful in explaining the gravitational 

phenomena on earth and the experimental fact of the solar system [4]. The limitation of this theory 

is that, it could not explain the anomalous orbital procession of the orbital of the planets as well as 

the gravitational shift by the sun [6]. At the end of 19th century, there were several attempts to 

generalize or extend Newton’s dynamical theory of gravitation in order to provide better agreement 

with the experimental data or better consistency to all physical theories [9]. In 1915, Albert 

Einstein published his geometrical theory of gravitation, which is known as general relativity 

theory. According to Einstein’s geometrical theory of gravitation, gravitation is not due to force, 

but a manifestation of geometrical curving of space and time [3]. Many physicists had continued 

to hold on to the view that Newton’s dynamical theory of gravitation can be extended in such a 

way as to account satisfactorily for the experimental data and phenomena [5]. In this article, the 

comparative study of Generalized Newton dynamical gravitational scalar potential with the Golden 

Riemanian dynamical gravitational scalar potential is evaluated by means of Taylor series 

expansion method. 

2. Theoretical Analysis 

The metric that characterizes the curvature of spacetime around a static massive object is 

represented by 
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Where 

M  is the mass of gravitating object  

G  is the universal gravitational constant 

c   is the speed of light  

  is the polar coordinate  

  is the azimuthal coordinate t is the coordinate of time  

r  is the radial coordinate ds is element of the proper distance  

dr is an element of the coordinate distance 

dt  is an element of the coordinate time  

The metric in equation (2.1) can be written in the exponential form as 
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Where dl  in equation (2.2) represent the whole spatial part of the metric. The relativistic 

gravitational potential is obtained by the comparison of time coefficients of equations (2.1) and 

(2.2) given by 
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Herein equation (2.3) i given as 
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Taking the natural logarithm of the equation (2.4) yields 
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By simplification of equation (2.5) above, the gravitational scalar potential ϕ is given by 
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The equation (2.6) represents the exact expression of the relativistic gravitational scalar potential 

equivalent to Schwarzchild curved spacetime. The logarithm function in equation (2.6) is 

expanded using Taylor series expansion approach. The expansion of the natural logarithm given 

by the Taylor series expansion approach [10]. The approximated natural logarithm in equation 

(2.6) is given by 
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Substituting 
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The gravitational potential in equation (2.8) 
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The equation (2.9) yields as 
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In this article, we derive the generalized dynamical gravitational scalar potential outside a spherical 

massive body using a novel dynamical approach. The generalized golden gravitational field 

equation for a static, homogeneous spherical massive body, as referenced in [7], [8], and [9], is 

given by 
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Where f   is differentiation once with respect to r  and f   is differentiation twice with respect to 

r . 

We want to seek the exterior solution of equation (2.11) as given below: 
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Where 
1A , 

2A  and 3A  are arbitrary constant. 

We differentiate equation (2.12) once and twice and substitute the solution to equation (2.11). The 

evaluation of all these equations, it follows that the generalized dynamical gravitational scalar 

potential outside the body is expressed as 
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In this comparative study of the generalized Newtonian dynamical gravitational scalar potential 

(GNDGSP) and the golden Riemannian dynamical gravitational scalar potential (GRDGSP), the 

validity of the research article is assessed through the application to planetary bodies in the scalar 

system. Table (1) below illustrates that the results obtained in the ratio are effective. 

Table 1: Comparative analysis of the Generalized Newtonian Dynamical Gravitational Scalar 

Potential (GNDGSP) with the Golden Riemannian Dynamical Gravitational Potential (GRDGSP) 

Body 

 

Mass (kg) Radius (m) Mean 
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(km) 
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Ratio  

of 

GRDGSP 

to 

GNDGSP 

 

MERCU

RY 

2310×3.30  610×2.44  610×57.9  380.16-  380.16-  1.0000  

VENUS 2410×4.87  610×6.05  610×108.2  3002.12-  3002.12-  1.0000  

EARTH 2410×5.97  610×6.378  610×149.6  2661.7599-  2661.76-  0.9999  

MARS 2310×6.42  610×3.397  610×227.9  187.90-  187.90-  1.0000  

JUPITE

R 

2710×1.90  610×271.49  610×778.6  162766.498-  162766.50-  1.0000  

SATUR

N 

2610×5.69  610×60.268  610×1427  26595.8698-  26595.87-  1.0000  

URANU

S 

2510×8.66  610×25.559  610×2871  2011.9199-  2011.92-  1.0000  

NEPTU

NE 

2610×1.03  610×24.746  610×4497  1527.7099-  1527.71-  1.0000  

PLUTO 2210×1.31  610×1.160  610×7376  0.1185-  0.1185-  1.0000  
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Remarks and Conclusion 

In this research, we successfully derived the generalized dynamical gravitational scalar potential 

outside static homogeneous spherical massive bodies using a Taylor series expansion approach, as 

presented in equation (2.10). The Golden Riemannian dynamical gravitational scalar potential for 

a static homogeneous spherical massive body is described in equation (2.13). In both equations 

(2.10) and (2.13), the leading term on the left-hand side corresponds to the well-known Newtonian 

dynamical gravitational scalar potential. As c approaches 0, these equations reduce to the 

corresponding pure Newtonian gravitational field equation, demonstrating consistency with the 

established equivalence principle in physics. The results for the generalized dynamical 

gravitational scalar potential include additional correction terms of all orders of 𝑐−4 which are 

absent in both Newton’s and the Golden Riemannian dynamical gravitational scalar potentials. 

This study indicates that the relationship between the Golden Riemannian dynamical gravitational 

scalar potential and that predicted by the generalized Newtonian dynamical gravitational scalar 

potential can be analyzed using the Taylor series expansion, as summarized in Table 1. The validity 

of this research is assessed through the comparison of equations (2.10) and (2.13) when applied to 

all the planetary bodies in the solar system. The comparison of the generalized Newtonian 

dynamical gravitational scalar potential with the Golden Riemannian dynamical gravitational 

scalar potential, presented in the accompanying table, demonstrates that the results obtained in the 

ratio are effective. 
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