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ABSTRACT 
In this paper, the asymptotic eventual stability of nonlinear 
impulsive differential equations with fixed moments of impulse 
is examined using the vector Lyapunov functions, which is 
generalized by a class of piecewise continuous Lyapunov 
functions. The novelty in the use of the vector Lypunov 
functions lies in the fact that the "restrictions" encountered by 
the scalar Lyapunov function is safely handled especially for 
large scale dynamical systems, since the method involves 
splitting the Lyapunov functions into components so that each 
of the components can easily describe the behavior of the 
solution state. Together with comparison results, sufficient 
conditions for the asymptotic eventual stability are presented 
 
 
 

1. Introduction  

A key property of interest in the qualitative theory of differential equations is the stability of 
solutions, since it allows us to compare the behavior of solutions that begin at different points [1]. 
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Now, the stability of differential equation of solutions using the Lyapunov method has been 
extensively studied in the past. In many practical cases, it is essential to examine the stability of 
sets that are invariant under a given system of differential equations. This, however, excludes 
stability in the Lyapunov sense [23]. To address the issue that will arise later, [14] introduced a 
new concept known as eventual stability, arguing that the set in question, while not invariant in 
the traditional sense, remains invariant in an asymptotic sense (See also [25]).  
The theory of impulsive differential equations (IDE) is more extensive and sophisticated than the 
theory of regular differential equations [11], as they provide crucial models for accurately 
representing the actual state of various real-world processes and phenomena. 
Of course, many evolutionary processes are marked by sudden, abrupt changes in state at specific 
points in time. These processes experience short-term disturbances that last for a negligible amount 
of time compared to the overall duration of the process. As a result, it is reasonable to assume that 
these disturbances act instantaneously, in the form of impulses. For instance, impulsive effects are 
observed in various fields, including biological phenomena with thresholds, bursting rhythm 
models in medicine and biology, optimal control models in economics, pharmacokinetics, and 
frequency-modulated systems [11]. 
Now, the effective use of impulsive differential systems now requires identifying criteria to 
determine the stability of their solutions [21], and one of the most widely used methods for 
studying the stability properties of impulsive systems is the Lyapunov function method. 
There are various approaches in the literature for studying the stability of solutions, one of which 
is Lyapunov's second method. What sets this method apart from other stability analysis techniques, 
such as the Razumikhin method, the use of matrix inequalities, variational methods, Banach fixed-
point theory, and monotone iteration methods is that, it allows stability to be analyzed without the 
need to first solve the differential system. This method involves finding an appropriate 
continuously differentiable Lyapunov function that is positive definite, with a time derivative 
along the solution path that is negative semidefinite. The stability of the trivial solution for 
impulsive differential equations has been thoroughly studied using this approach (see [3, 6, 20]).  
In this paper, the asymptotic eventual stability of the system of nonlinear impulsive differential 
equation is examined. By employing the vector Lyapunov functions which is generalized by a 
class of piecewise continuous Lyapunov functions, and together with the comparison results, 
sufficient conditions for the asymptotic eventual stability of the solution set is established with 
illustrative example. 
2.    Preliminary notes and Definitions 
Let nR  be the n-dimensional Euclidean space with norm ..  Let Ω  be a domain in nR  
containing the origin; ),,0[ ∞=+R  ),,( ∞−∞=R .0,0 >∈ + tRt  
Let .+⊂ RJ  Define the following class of functions )(,.:],[ tJJPC αα Ω→=Ω   as a piecewise 
continuous function with points of discontinuity Jtk ∈  at which )( +

ktα  exists. 
Consider the impulsive differential system  
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under the following assumptions: 
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...,...0)( 210 <<<<< ktttiA and ∞→kt ;∞→k   
nn RRRfii →×+:)(  is continuous in N

kk Rtt ×− ]( ,1  and for each ,...,2,1, =∈ kRx n
 

 ),(),(lim
),(),(

xtfytf k
xtyt k

+

→
=

+
 exists; 

nn
k RRIiii →:)(  

In this paper, we assume that the function f  is Lipschitz continuous with respect to its second 
argument, and 0)0(,0)0,( ≡≡ kItf  for all ,k so that we have the trivial solution for (2.1), and the 
points ,...2,1, =ktk  are fixed such that .lim...0 21 ∞=<<<

∞→ kk
tandtt  The system (2.1) with initial 

condition 00 )( xtx =  is assumed to have a solution ).),,([),;( 000
NRtPCxttx ∞∈  Note that some 

sufficient conditions for the existence and uniqueness of the global solutions to  (2.1) are 
considered in [9, 15, 16, 18, 26]. 
 
Remark 2.1. 
 
The second equation in (2.1) is called the impulsive condition, and the function ))(( kk txI  gives 
the amount of jump of the solution at the point .kt  
 
Definition 2.1. 
Let NN RRRV ++ →×:  be a continuous mapping of NRR ×+    into .NR+  Then V  is said to belong 
to class L  if, 
(i) V  is continuous in N

kk Rtt ×− ]( ,1  and for each ,...,2,1, =∈ kRx N and

),(),(lim
),(),(

xtVytV k
xtyt k

+

→
=

+
 exists; 

(ii)    V is locally Lipschitz with respect to its second argument .x For ,]( ,1
N

kk Rtt ×−  we define the 

upper right Dini derivative of V  with respect to (2.1) as, 
 )],()),(,([suplim),( 1

0
xtVxthfxhtVxtVD h

h
−++=

+→

+      (2.2) 

Note that in (2.1), ),( xtVD+  is a functional whereas V  is a function. 
 
Definition 2.2. 
A function ),( utg  is said to be quasimonotone non-decreasing in u , if  vu ≤  and ii vu =  for 

Ni ≤≤1  implies ),(),( vtgutg ii ≤  for all .i  
Definition 2.3. 
The trivial solution 0=x  of (2.1) is said to be 
(ES1) eventually stable if for every +∈> Rtand 00ε  there exist 0),( 0 >= tεδδ  such that for 

any nRx ∈0  the inequality δ≤0x  implies ;),,( 000 ttforxttx ≥< ε  

(ES2) uniformly eventually stable if for every +∈> Rtand 00ε  there exist 0)( >= εδδ  such 

that for any nRx ∈0 , the inequality δ≤0x  implies ;),,( 000 ttforxttx ≥< ε  
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(ES3) asymptotically eventually stable if it is stable and if for each +∈> Rtand 00ε  there exist 

positive numbers 0)( 000 >= tδδ  and ),( 0 εtTT =  such that for Ttt +≥ 0   and δ≤0x  

we have .),,( 00 ε<xttx  

(ES4) uniformly asymptotically eventually stable if it is uniformly stable and )(00 εδδ =  and 

)(εTT =  such that for Ttt +≥ 0 , the inequality δ≤0x  implies ε<),,( 00 xttx . 

Definition 2.4. 
A function )(ra  is said to belong to the class K  if )(,0)0(],),,0[[ raandaRCa =∈ +ρ is strictly 
monotone increasing in .r   
In this paper, we define the following sets: 
  { }ψψ ≤∈= xRxS N :  

  { }ψψ <∈= xRxS N :   

Remark 2.2. 
The inequalities between vectors are understood to be component-wise inequalities. 
Definition 2.5. 
A function )(rb is said to belong to a class L  if )(],,[ tbRJCb +∈  is monotone decreasing in 

.0)( ∞→→ tastbandt  
Definition 2.6. 
A function ),( rta  is said to belong to the class KK  if KaRCa ∈∈ + ],),,0[[ ρ for each ,Jt∈  and 
a  is monotone increasing in t  for each 0>r  and ∞→∞→ tasrta ),(  for each .0>r  
Definition 2.7. 
A function ),( xtV  with 0)0,( =tV  is said to be positive definite if there exists a function Ka∈

such that the relation ( )xaxtV ≥),(  is satisfied for .),( ρSJxt ×∈  

Definition 2.8. 
A function ),( xtV  with 0)0,( =tV  is said to be negative definite if there exists a function Ka∈

such that the relation ( )xaxtV −≤),(  is satisfied for .),( ρSJxt ×∈  

Definition 2.9. 
A function 0),( ≥xtV  is said to be decrescent if there exists a function Ka∈ such that the relation 

( )xaxtV ≤),(  is satisfied for .),( ρSJxt ×∈  

Alongside (2.1), we shall consider a comparison system of the form 

    

00

0

)(
,)),((
,...2,1,,),,(

utu
tttuu

kttttutgu

kkk

k

=

==∆
=≥≠=′

+

ψ       (2.3)   

existing for ,0tt ≥  where ,nRu∈  elation ( )xaxtV ≤),(  is satisfied for .),( ρSJxt ×∈  existing 

for 0tt ≥ , ,0)0,(,:),,[, 0 ≡→×∞=∈ +++ tgRRRgtRRu nnn  where g  is the continuous mapping 
of nRR ++ ×  into nR .  The function ],[ nn RRRPCg ++ ×∈  is such that for any initial data 

,),( 00
nRRut ×∈ +  the system (2.3) with initial condition 00 )( utu =  is assumed to have a solution 
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).),,([),,( 000
nRtPCuttu ∞∈  Note that some sufficient conditions for the existence of solution of 

(2.3) has been examined in [9,18, 24, 26]. 
Lemma 2.1. Assume that the hypotheses )(),(),(0 iiiiiiA  hold, and that 0)0,( ≡tf  and that 

.0)0( ≡kI  Then the interval J    can be extended to the maximal interval of existence ).,[ 0 ∞t  
Proof.   
Since the conditions )(),(),(0 iiiiiiA  hold, and that 0)0,( ≡tf  and that ,0)0( ≡kI then from the 
existence theorem for the equation ))(,( txtfx =′  [18] with impulses, it follows that the solution 

),,()( 00 xttxtx =  of the IVP (2.1) is defined on each of the intervals ,...2,1],( ,1 =− ktt kk Again, 
since ,lim...0 21 ∞=<<<

∞→ kk
tandtt then we conclude that the interval J  can be continued to 

),[ 0 ∞t  for .0t  
  
3.   Main Results 
In this section we begin by proving the comparison results, then proceed to establish the necessary 
conditions for the eventual stability of the set 0)( =tx  of the impulsive differential systems with 
fixed moments of impulse. 
 
Using (2.3), Definition 2.2 can be analogously defined as follows: 
Definition 3.1. 
The trivial solution 0=u  of (2.3) is said to be 
(ES1*) eventually stable if for every +∈> Rtand 00ε  there exist 0),( 0 >= tεδδ  such that for 

any nRx ∈0  the inequality δ<0u  implies ;),,( 000 ttforuttu ≥< ε  

(ES2*) uniformly eventually stable if the δ  in (S1*) above is independent of 0t  i.e. for every 

+∈> Rtand 00ε  there exist 0)( >= εδδ  such that the inequality δ<0u  implies 

;),,( 000 ttforuttu ≥< ε  

(ES3*) asymptotically eventually stable if S1* is satisfied and given +∈> Rtand 00ε  there exist 

positive numbers 0)( 000 >= tδδ  and 0),( 0 >= εtTT  such that for Ttt +≥ 0   and δ≤0u  we 

have .,),,( 000 Tttuttu +≥< ε  

(ES4*) uniformly asymptotically eventually stable if (ES2*) is satisfied (ES3*) is independent of 
.0t  

THEOREM 3.1. (Comparison results) Assume that 
),(,0)0,(],,[)( utgandtgRRJCgi nn ≡×∈ + is quasimonotone non-decreasing in 

u  for each nRu∈  and ),(),(lim
),(),(

utgutg kutyt k

+

→
=

+
 exists; 

)),,([),,()()( 000
nRTtPCuttrtrii ∈=  is the maximal solution of (2.3) existing for 

.0tt ≥  

LVRSJCViii N ∈×∈ + ],,[)( ψ  such that for ψSJxt ×∈),(  

kttxtVtgxtVD ≠≤+ )),,(,(),(  
        and 
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ψρ SxttxtVtxIxtV kkkk ∈=≤+ ,)),,(())((,( and the function NN
k RR ++ →:ρ  is non-

decreasing for ,...2,1=k     

)],,([),,()()( 000
NRTtPCxttxtxiv ∈=  is a solution of (2.1) such that, 

000 ),( uxtV ≤          (3.1) 
 existing for .0tt ≥  Then  
  )())(,( trtxtV ≤         (3.2) 
Proof. 
Let ),,()( 00 xttxtx =  be any solution of (2.1) existing for ,0tt ≥  such that .),( 000 uxtV ≤  

 Set ))(,()( txtVtm =  for ktt ≠  so that for small ,0>h using (2.2) we have 

),())(,()(,())(,()(,())(,()()( xtVtxthftxhtVtxthftxhtVhtxhtVtmhtm −+++++−++=−+  

Since ),( xtV is locally Lipschitzian in x  for ),[ ,0 ∞∈ tt we have 

),())(,()(,()))(,()(()()()( xtVtxthftxhtVtxthftxhtxktmhtm −++++−+≤−+  

Dividing through by ,0>h  and taking the suplim  as +→ 0h  we have 

[ ]
)],())(,(

)(,([suplim)(,()()(suplim)]()([suplim 1

00

1

0

xtVtxthf

txhtVetxthftxhtxktmhtm h
h

h
i

h
h

h

−

+++−−+≤−+
+++ →→→

where k is the local Lipschitz constant and Te )1,...,1,1(=  

It follows that 
  ))(,())(,()( tmtgtxtVDtmD ≤= ++    
and using condition (ii) of Theorem 3.1 we arrive at 
  )())(,( trtxtV ≤  
provided 

000 ),( uxtV ≤   
Also,  

))(())(()(,()( ++++ ≤+= kkkkkkk tmtxItxtVtm ψ   
Hence, by Cor. 1.7.1 in [13], we obtain the desired estimate of (3.1). 
Corollary 3.2. Assume that 

),(,0)0,(],,[)( utgandtgRRJCgi nn ≡×∈ + is quasimonotone non-decreasing in 
u  for each nRu∈  and ),(),(lim

),(),(
utgutg kutyt k

+

→
=

+
 exists; 

)),,([),,()()( 000
nRTtPCuttptpii ∈=  is the minimal solution of (2.3) existing for 

.0tt ≥  

LVRSJCViii N ∈×∈ + ],,[)( ψ  such that for ψSJxt ×∈),(  

kttxtVtgxtVD ≠≥+ )),,(,(),(  
        and 
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ψρ SxttxtVtxIxtV kkkk ∈=≥+ ,)),,(())((,( and the function NN
k RR ++ →:ρ  is non-

decreasing for ,...2,1=k     

)],,([),,()()( 000
NRTtPCxttxtxiv ∈=  is a solution of (2.1) such that, 

000 ),( uxtV ≥          (3.3) 
 existing for .0tt ≥  Then  
  )())(,( tptxtV ≥         (3.4) 
Proof. 
Let ),,()( 00 xttxtx =  be any solution of (2.1) existing for ,0tt ≥  such that .),( 000 uxtV ≥  

 Set ))(,()( txtVtm =  for ktt ≠  so that for small ,0>h using (2.2) we have 

),())(,()(,())(,()(,())(,()()( xtVtxthftxhtVtxthftxhtVhtxhtVtmhtm −+++++−++=−+  

Since ),( xtV is locally Lipschitzian in x  for ),[ ,0 ∞∈ tt we have 

),())(,()(,()))(,()(()()()( xtVtxthftxhtVtxthftxhtxktmhtm −++++−+≥−+  

Dividing through by ,0>h  and taking the suplim  as +→ 0h  we have 

[ ]
)],())(,(

)(,([suplim)(,()()(suplim)]()([suplim 1

00

1

0

xtVtxthf

txhtVetxthftxhtxktmhtm h
h

h
i

h
h

h

−

+++−−+≥−+
+++ →→→

where k is the local Lipschitz constant and Te )1,...,1,1(=  

It follows from condition (ii) of Cor 3.2 we arrive at the estimate 
  00 )(,)),(,())(,()( utmtttmtgtxtVDtmD k ≥≠≥= +++      (3.5) 
Also,  

))(())(()(,()( ++++ ≥+= kkkkkkk tmtxItxtVtm ψ      (3.6) 
Hence, by Cor. 1.7.1 in [13], we obtain the desired estimate of (3.5). 
In what follows, we shall obtain sufficient conditions for the eventual stability of the system (2.3). 
THEOREM 3.2.     Assume that: 

),(,0)0,(],,[)( utgandtgRRJCgi nn ≡×∈ + is quasimonotone non-decreasing in u  
for fixed .Jt∈  

),(],,[)( xtVRSJCVii n
+×∈ ρ  is locally Lipschitzian in x and 

00),(
1

→→∑
=

xasxtV
N

i
i  for each t  and ,),( ρSJxt ×∈  

)),(,(),( xtVtgxtVD ≤+       (3.7) 
,),()( ρSJxtforiii ×∈  

( ) ∑
=

≤
N

i
i xtVtxb

1
),()(        (3.8) 

 where ,Kb∈  whence ],[ +×∈ RSJCb ρ  
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Then the eventual stability of the set of trivial solution 0=u  of the system (2.3) implies the 
eventual stability of the set of trivial solution 0=x  of the system (2.1). 
Proof. Let ρε <<0  and +∈Rt0  be given. 

Assume that the solution (2.3) is eventually stable. Then given 0)( >εb  and +∈Rt0 , there exists 

a positive function 0),( >= εδδ ot  which is continuous in 0t  for each ε  such that  

  ∑
=

≤
N

i
iu

1
0 δ  implies ∑

=

≥<
N

i
i ttbuttu

1
000 ),(),,( ε     (3.9) 

Since ),( xtV  is continuous and mildly unbounded i.e. ,00)0,( →→ xastV  then by the property 

of continuity, given 0>ε  there exists a positive function 0),(11 >= εδδ ot  that is continuous in 

ot  for each ∈  such that the inequalities 

  δδ << ),( 0010 xtVandx        (3.10) 

are satisfied simultaneously. 
We claim that if 10 δ<x  then ε<),,( 00 xttx  by the stability of )(tx . 

Now suppose this claim is false, there would exists a point ),[ 01 ttt ∈  and the solution ),,( 00 xttx  

with 10 δ<x  such that 

  εε <= )()( 1 txandtx  for  ),[ 10 ttt∈      (3.11) 

So that using equation (3.11); (3.8) reduces to the form 

  ( ) ∑
=

≤
N

i
i txtVtxb

1
111 ))(,()( , implying 

  ∑
=

≤
N

i
i txtVb

1
11 ))(,()(ε         (3.12) 

This implies that ψStx ∈)(  for ),[ 10 ttt∈  and from Theorem 3.1, 

  ),,,())(,( 00 uttrtxtV ≤         (3.13) 

where ),,( 00 uttr  is the maximal solution of (2.3). 
Then using equations (3.8), (3.9), (3.12) and (3.13) we arrive at the estimate 

)(),,()(,()(
1

00110 εε buttrtxtVb
N

i
i <≤≤ ∑

=        
 

which leads to a contradiction. 
Hence, the eventual stability of the set of trivial solution 0=u  of (2.3) implies the eventual 
stability of the set of trivial solution 0=x  of (2.1). 
In what follows, we shall establish sufficient conditions for the asymptotic eventual stability of the 
main system (2.1). 
THEOREM 3.3.     Assume that: 

),(,0)0,(],,[)( utgandtgRRJCgi nn ≡×∈ + is quasimonotone non-decreasing in u  
for fixed .Jt∈  
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),(],,[)( xtVRSJCVii n
+×∈ ρ  is locally Lipschitzian in x and 

00),(
1

→→∑
=

xasxtV
N

i
i  for each t  and ,),( ρSJxt ×∈  

)),(,(),( xtVtgxtVD ≤+       (3.7) 
,),()( ρSJxtforiii ×∈  

( ) ( )∑
=

≤≤
N

i
i xtaxtVtxb

1
,),()(      (3.8) 

 where KtaKb ∈∈ ,.)(,  whence ],[ +×∈ RSJCa ρ  

Then the asymptotic eventual stability of the set of trivial solution 0=u  of the system (2.3) implies 
the asymptotic  eventual stability of the set of trivial solution 0=x  of the system (2.1). 
Proof. Let ρε <<0  and +∈Rt0  be given. 

Assume that the solution (2.3) is eventually stable. Then given 0)( >εb  and +∈Rt0 , there exists 

a positive function 0),( >= εδδ ot  which is continuous in 0t  for each ε  such that  

  ∑
=

≤
N

i
iu

1
0 δ  implies ∑

=

≥<
N

i
i ttbuttu

1
000 ),(),,( ε     (3.9) 

Since ),( xtV  is continuous and ,00)0,( →→ xastV  then by the property of continuity, given 

0>ε  there exists a positive function 0),(11 >= εδδ ot  that is continuous in ot  for each ε  such 
that the inequalities 
  δδ << ),( 0010 xtVandx        (3.10) 

are satisfied simultaneously. 
We claim that if 10 δ<x  then .),,( 00 ε<xttx   

Now suppose this claim is false, there would exist a point ),[ 01 ttt ∈  and the solution ),,( 00 xttx  

with 10 δ<x  such that 

  εε <= )()( 1 txandtx  for  ),[ 10 ttt∈      (3.11) 

So that using equation (3.11); (3.8) reduces to the form 

  ( ) ∑
=

≤
N

i
i txtVtxb

1
111 ))(,()( , implying 

  ∑
=

≤
N

i
i txtVb

1
11 ))(,()(ε         (3.12) 

This implies that ψStx ∈)(  for ),[ 10 ttt∈  and from Theorem 3.1, 

  ),,,())(,( 00 uttrtxtV ≤         (3.13) 

where ),,( 00 uttr  is the maximal solution of (2.3). 
Then using (3.8), (3.9), (3.12) and (3.13) we arrive at the estimate 

)(),,()(,()(
1

00110 εε buttrtxtVb
N

i
i <≤≤ ∑

=        
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which leads to an absurdity. 
Hence, the asymptotic eventual stability of the set of trivial solution 0=u  of (2.3) implies the 
asymptotic eventual stability of the set of trivial solution 0=x  of (2.1). 
4     Application 
 
Consider the system of fractional differential equations 

,...2,1,)),((
)),((

,cossecsin45)(
,secsincos15)(

2

1

21221212

12211211

===∆
==∆

≠−−−=′
≠++−−=′

ktttxx
tttxx

ttxxxxxxxtx
ttxxxxxxxtx

kkk

kkk

k

k

ζ
ϖ    (4.1) 

for ,0tt ≥  with initial conditions, 

   20021001 )()( γγ == ++ txandtx  
where NRxx ∈21,  are arbitrary functions. 
Equation (4.1) is equivalent to (2.3) and ),( 21 fff =  where 

122112111 secsincos15),( xxxxxxxxtf ++−−=  and  
.cossecsin45),( 212212122 xxxxxxxxtf −−−=  

Consider a vector Lyapunov function of the form ,),( 21
TVVV =  where 1211 ),,( xxxtV = and 

.),,( 2212 xxxtV =  So that TVVV ),( 21= with ,),( 2
21 Rxxx ∈=  so its associated norm defined by 

.21 xxx +=  Now,   

21

2

1
21 ),,( xxxxtV

i
i +=∑

=

 

So that, the assumption, 

  ( ) ( )∑
=

≤≤
n

i
i xtayxVxb

1
,),(  reduces to, 

2
2

2
2

1
2

2
2

1
2

2
2

1 2 




 +≤+≤+ xxxxxx  

with the proviso that  22)(,)( rraandrrb == . 
Furthermore, we deduce that using equation (3.4) and   1211 ),,( xxxtV =  
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                                            ),( 11 xtf≤      (4.2)     

    
 

 
122112111 secsincos15),( xxxxxxxxtVD ++−−=+

  
)sec(cos)sin15(),( 1122111 xxxxxxtVD +++−=+  
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)
cos

1(cos)sin15(
1

1221 x
xxxx +++−=  

)
cos

1)cos()sin15(
1

1221 x
xxxx +++−≤  

)11()115( 21 +++−≤ xx  
         2111 214),( VVxtVD +−≤∴ +        (4.3) 
 
Also for ,...2,1,,0 ==∈ kttforSx kψ  we have 

))(,()())(,( txtVtxtxtV kk ≤+=+ ϖϖ  
  

Again for 2212 ),,( xxxtV = and deducing from (4.2) we have  
 

),(),( 2212 xtfxtVD ≤+  
 
    212212122 cossecsin45),( xxxxxxxxtVD −−−=+

  
   

)secsin4()cos5( 21221 xxxxx −−+−=  
)

cos
1sin4()cos5(

1
1221 x

xxxx −−+−≤  

)14()15( 21 −−+−≤ xx  
 
            2112 54),( VVxtVD −≤∴ +        (4.4) 

Also for ,...2,1,,0 ==∈ kttforSx kψ  we have 

))(,()())(,( txtVtxtxtV kk ≤+=+ ζζ  
Combining (4.3) and (4.4) gives 
   

),(
54
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2

1 Vtg
V
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
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


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
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
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   Auutgu ==′ ),(  

where .
54
214








−

−
=A  

Thus, the vectorial inequality (4.5) and all other conditions of Theorem 3.2 are satisfied since the 
eigenvalues of A are all negative real parts. Hence, the system (4.1) is asymptotically eventually 
stable. Therefore, the set 0)( =tx  is asymptotically eventually stable. 
 
Conclusion 
 
This study investigated the asymptotic eventual stability of nonlinear impulsive differential 
equations by using auxiliary Lyapunov functions, which serve as analogues to vector Lyapunov 
functions. By decomposing the Lyapunov function into components, each state or solution vector 
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can be inserted into a corresponding component of the Lyapunov function, rather than being 
inserted into the entire function. This approach makes it easier for the Lyapunov function to 
accurately predict the behavior of the solution vectors, addressing the "restrictions and challenges" 
typically encountered when using a scalar Lyapunov function. In conjunction with comparison 
results, the paper presents sufficient conditions for the asymptotic eventual stability of impulsive 
differential systems.  
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