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ABSTRACT 

 
The modeling stage of Response Surface Methodology (RSM) involves using regression models 

to estimate the functional relationship between the response variable and explanatory variables, 

relying on data generated through an appropriate experimental design. Traditionally, Ordinary 

Least Squares (OLS) is employed to model the data using user-specified low-order polynomials. 

However, OLS performance deteriorates when the homoscedasticity assumption is violated. In 

the literature, semiparametric regression models are preferred for RSM as they combine the 

strengths of parametric and nonparametric approaches, unlike purely nonparametric models, 

which are more sensitive to the idiosyncrasies of RSM data. This paper proposes a novel 

integration of an adaptive nonparametric regression model with a locally adaptive bandwidth 

selector derived from the explanatory variables to achieve adequate data smoothing. The 

adaptive nonparametric regression model incorporates local linear regression (LLR) and a 

product of the optimal mixing parameter and the LLR residuals, providing a second chance to 

fit portions of the data not captured by the LLR model. Meanwhile, the locally adaptive 

bandwidth selector addresses challenges such as dimensionality, sparsity in RSM data, and cost-

efficient design. In applying this approach to three types of RSM data, the novel integrated model 

demonstrated superior performance in terms of goodness-of-fit statistics, zero residual plots, 

optimization results, and simulations, when compared to OLS, Model Robust Regression 1 

(MRR1), and Model Robust Regression 2 (MRR2). 

1. Introduction  

[1, 2], described Response Surface Methodology (RSM) as a statistical technique employed by 

engineers and industrial statisticians for experimental model building, aimed at optimizing 

response variables influenced by multiple explanatory variables. 

RSM is appropriate for optimizing the response variable 𝒚 as a function of several explanatory 

variables (𝑥𝑖1,  𝑥𝑖2,  .  .  .  ,  𝑥𝑖𝑘) which is given as: 

 𝑦𝑖 = 𝑓(𝑥𝑖1,  𝑥𝑖2, … , 𝑥𝑖𝑘) + 𝜀𝑖,    𝑖 = 1,2, … , 𝑛                  (1) 
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where 𝜀𝑖 is the error term and assumed to be normally distributed with mean zero and variance 𝝈2. 

The surface as given in (1) characterized by  𝑓(𝑥𝑖1,  𝑥𝑖2,  .  .  .  ,  𝑥𝑖𝑘) is termed a response surface 

[3]. 

1.1  Ordinary Least Squares (OLS) 

The common method for estimating the parameter vector is usually based on the Method of 

Ordinary Least Squares (OLS). The parameter vector estimates �̂�  is given as: 

�̂�(𝑂𝐿𝑆) =  (𝑿′𝑿)−1𝑿′𝑦         (2) 

The estimated responses for the 𝑖𝑡ℎ location can be written as : 

�̂�𝑖
(𝑂𝐿𝑆)

= 𝒙𝒊
′�̂�(𝑂𝐿𝑆) = 𝒙𝒊

′(𝑿′𝑿)−1𝑿′𝑦 ,  𝑖 = 1,2, … , 𝑛     (3) 

where 𝒙𝒊
′ is the 𝑖𝑡ℎ row of matrix 𝑿,  𝑿 is a matrix with dimension  𝑛 × (𝑘 + 1). 

𝑯𝒊 =  𝒙𝒊
′(𝑿′𝑿)−1𝑿′ is the 𝑖𝑡ℎ row of the OLS  “HAT”  matrix of dimension 𝑛 × 𝑛, 𝑯(𝑂𝐿𝑆). The 

estimated response in the 𝑖𝑡ℎ location is given as:  

   �̂�(𝑂𝐿𝑆) = 𝑯𝑦 .          (4) 

where the matrix 𝑯 is given as: 

 𝑯 = [

𝑯𝟏

𝑯𝟐

⋮
𝑯𝒏

],           (5) 

[4, 5]. 

1.2     Model Robust Regression 1 (MRR1) 

An effective model that addresses the drawbacks inherent in both parametric and nonparametric 

regression models is the use of semiparametric regression model, Model Robust Regression 1 

(MRR1).  

The mathematical expression for the MRR1 as given in [6, 7] as: 

 �̂�(𝑀𝑅𝑅1) =  𝜆�̂�(𝐿𝐿𝑅) + (1 − 𝜆)�̂�(𝑂𝐿𝑆)         (6) 

where the parameter 𝜆 is the mixing parameter with an interval [0, 1].  

 

1.3    Model Robust Regression 2 (MRR2)  

Model Robust Regression 2 (MRR2)  combines estimates of parametric regression model to the 

raw data, while the nonparametric regression model portion, uses the LLR Hat matrix to fit the 

residuals from the estimates of parametric regression model through a mixing parameter, 𝜆.  

The MRR2 was developed by [8] and is expressed as:  

 

�̂�(𝑀𝑅𝑅2) =  �̂�(𝑂𝐿𝑆) +  𝜆�̂�(𝐿𝐿𝑅), �̂�(𝐿𝐿𝑅) = 𝑯𝒓
(𝐿𝐿𝑅)

𝑟        (7)  

 𝜆 ∈ [0, 1], 𝑟 = 𝑦 − 𝑦𝑂𝐿𝑆 is the vector of residuals that represents the structure in the data not 

captured by the user specified parametric regression model. 

 

1.4      Optimization Phase in RSM 

This process utilizes optimization tools, such as Genetic Algorithms, to identify the optimal 

settings of the explanatory variables that optimize the fitted regression model. In RSM, two types 

of optimization problems are commonly encountered: single-response optimization and multiple-

response optimization. The final step in optimization is to compute the overall desirability, which 

is determined as the geometric mean of the individual desirability values [9, 10, 11, 13]. 
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1.5    Adaptive Nonparametric Regression Model 

To enhance the utilization of the flexibility of MRR2, we designate the existing adaptive 

nonparametric regression model as PM2 for ease of reference.  

The mathematical expression of PM2 estimate, �̂�𝑖
(𝑃𝑀2)

 is defined by 

�̂�𝑖
(𝑃𝑀2)

 = �̂�𝑖
(𝐿𝐿𝑅)

 +  𝜆ℎ𝑖
(𝐿𝐿𝑅)

[(𝑦𝑖 − �̂�𝑖
(𝐿𝐿𝑅)

)], 𝑖 = 1,2,  … ,  𝑛.               

(8) 

The PM2 is applied in the estimation of the unknown function 𝑓 in Equation (1) see [12].   

1.6    Locally Adaptive Bandwidths Selector 

The locally adaptive bandwidth selector accounts for two key aspects of RSM data: the kkk-th 

number of explanatory variables in the study and the data's sparsity, as outlined in [13]. This can 

be expressed mathematically as:  

𝑏𝑖𝑗 = 𝑇1𝑗(
1

2
−

𝑥𝑖𝑗

𝑇2𝑗
)2, 𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑘.             

(9) 

where the locally adaptive optimal bandwidths from Equation (9) is obtained at an optimally 

selected values of 𝑇1𝑗, 𝑇2𝑗, the tuning parameters (hereafter referred to as 𝑇1𝑗
∗  and 𝑇2𝑗

∗ , 

respectively), 𝑗 = 1,2, … , 𝑘, based on the minimization of the 𝑃𝑅𝐸𝑆𝑆∗∗ criterion. 

 

2.0 Methodology 

Although the flexibility of nonparametric regression methods, their application in Response 

Surface Methodology (RSM) remains limited due to the unique challenges of RSM data, including 

the curse of dimensionality, data sparsity, and the need for cost-efficient designs. This paper 

introduces a novel integration of an existing adaptive nonparametric regression model with a 

locally adaptive bandwidth selector derived from the explanatory variables. The bandwidth 

selector is embedded within the kernel weight matrix of the adaptive regression model. 

The existing nonparametric regression model combines a portion of Local Linear Regression 

(LLR) estimates with the product of an optimal mixing parameter and the residuals, thereby 

providing a second opportunity to fit data not captured by the LLR component. The locally 

adaptive bandwidth selector further addresses challenges related to dimensionality, data sparsity, 

and small sample sizes, as discussed in [13]. 

 

2.1  Integrating the adaptive nonparametric regression model and locally adaptive 

bandwidths 

In order to address the scanty utilization of the flexibility of MRR2, we concatinate Equations (8) 

and (9) respectively, a novel blend or approach.  

The assumptions of PM2 and locally adaptive bandwidths are given below: 

1. 𝒙𝒊𝒋 ∈ [0, 1], 𝑖𝑠 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑘𝑡ℎ 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖, ∀ 𝑖 =

1, 2, … , 𝑛; 𝑗 = 1,2, … , 𝑘. 

2. The optimal chosen tuning parameters 𝑇1𝑗
∗  , 𝑇2𝑗

∗  > 0 in all k explanatory variables 

3. The optimal mixing parameter 𝜆 ∈ [0, 1] 
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4. The optimal chosen bandwidths 𝑏𝑖𝑗 ∈ (0, ], ∀ 𝑖 = 1, 2, … , 𝑛; 𝑗 = 1,2, … , 𝑘; for smoothing 

the data at location 𝑖 and k explanatory variables. 

The mathematical expression of PM2 estimate, �̂�𝑖
(𝑃𝑀2)

 is defined by 

�̂�𝑖
(𝑃𝑀2)

 = �̂�𝑖
(𝐿𝐿𝑅)

 +  𝜆ℎ𝑖
(𝐿𝐿𝑅)

[(𝑦𝑖 − �̂�𝑖
(𝐿𝐿𝑅)

)], 𝑖 = 1,2,  … ,  𝑛.              (8) 

𝑏𝑖𝑗 = 𝑇1𝑗(
1

2
−

𝑥𝑖𝑗

𝑇2𝑗
)2, 𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑘.            

(9) 

The PM2 is applied in the estimation of the unknown function 𝑓 in Equation (1).  As soon as the 

PM2 and 𝑏𝑖𝑗 are combined to fit the data, we have a novel blend or approach which is now referred 

to as ANPM2 for easy referencing.   

Hence, the ANPM2 estimate �̂�𝑖
(𝐴𝑁𝑃𝑀2)

 of the response is given as:  

�̂�𝒊
(𝐴𝑁𝑃𝑀2)

=  𝒙𝒊
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝒊𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)𝑾𝒊𝑦 +

𝜆 𝒙𝒊
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝒊
∗𝑿(𝐿𝐿𝑅))

−𝟏
𝑿′(𝑳𝑳𝑹)𝑾𝒊

∗ [𝑦 −   𝒙𝒊
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)�̀�𝒊𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)�̀�𝒊𝑦]   

    (10) 

where 𝑦 = (𝑦1, … 𝑦𝑛)′, 𝒙𝒊
′(𝐿𝐿𝑅)

= (1 𝑥𝑖1 …𝑥𝑖𝑘) is the 𝑖𝑡ℎ row of the local linear regression model 

matrix, 𝑿(𝐿𝐿𝑅) given as:   

𝑿(𝐿𝐿𝑅) =  [

1 𝑥11 𝑥12 ⋯ 𝑥1𝑘

1 𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘

]                       (11)      

where the kernel weight matrix is given by 

 𝑾𝒊 =  [

𝑤𝑖1 0 ⋯ 0
0 𝑤𝑖2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑤𝑖𝑛

], 𝑖 = 1,    2  ,    .    .    .   , 𝑛 .                    (12) 

[3, 12]. 

The kernel function 𝐾 (
𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
) is a simplified Gaussian kernel for one explanatory variable case, 

given as: 

𝑤𝑖1 =  𝐾 (
𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
) = 𝑒

−(
𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

2

            (13) 

Otherwise, the kernel function is a product kernel given as: 

𝑤𝑖1 = ∏𝑗=1
𝑘 𝐾 (

𝑥𝑖𝑗−𝑥1𝑗

𝑏𝑖𝑗
) ∑ ∏𝑗=1

𝑘 𝐾 (
𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑖𝑗
)𝑛

𝑝=1⁄ , 𝑝 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑘,           (14) 

For 𝑖 = 1 in Equations (10) and (12), and concantinating the existing bandwidths into the 

regression model to obtain a novel adaptive regression model . Thus, we have: 
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�̂�𝟏
(𝐴𝑁𝑃𝑀2)

=  𝒙𝟏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝟏𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)𝑾𝟏𝑦 +

𝜆 𝒙𝟏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝟏
∗𝑿(𝐿𝐿𝑅))

−𝟏
𝑿′(𝑳𝑳𝑹)𝑾𝟏

∗  [𝑦 −   𝒙𝟏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)�̀�𝟏𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)�̀�𝟏𝑦]     (15) 

𝑾𝟏 = [

𝑤11 0
0
⋮
0

𝑤12

⋮
0

⋯ 0
…
⋱
⋯

0
⋮

𝑤1𝑛

]

(𝑛×𝑛)

             (16) 

The entries from Equation (16) and the locally adaptive bandwidths of  [13] are translated to 

estimate �̂�1
𝐴𝑁𝑃𝑀2,  

     𝑤11 =
∏𝑗=1

𝑘 𝐾(
𝑥1𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.        (17) 

𝑤11 =

𝑒
−(

𝑥11−𝑥11
𝑏11

)2

𝑒
−(

𝑥12−𝑥12
𝑏12

)2

…𝑒
−(

𝑥1𝑘−𝑥1𝑘
𝑏1𝑘

)2

[𝑒
−(

𝑥11−𝑥11
𝑏11

)2
𝑒

−(
𝑥12−𝑥12

𝑏12
)2

…𝑒
−(

𝑥1𝑘−𝑥1𝑘
𝑏1𝑘

)2

+𝑒
−(

𝑥21−𝑥11
𝑏21

)
2

𝑒
−(

𝑥22−𝑥12
𝑏22

)
2

…𝑒
−(

𝑥2𝑘−𝑥1𝑘
𝑏2𝑘

)
2

+⋯+𝑒
−(

𝑥𝑛1−𝑥11
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥12
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥1𝑘
𝑏𝑛𝑘

)2

]

  

𝑤12 =
∏𝑗=1

𝑘 𝐾(
𝑥2𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.          (18) 

𝑤12 =

𝑒
−(

𝑥21−𝑥11
𝑏21

)2

𝑒
−(

𝑥22−𝑥12
𝑏22

)2

…𝑒
−(

𝑥2𝑘−𝑥1𝑘
𝑏2𝑘

)2

[𝑒
−(

𝑥11−𝑥11
𝑏11

)2
𝑒

−(
𝑥12−𝑥12

𝑏12
)2

…𝑒
−(

𝑥1𝑘−𝑥1𝑘
𝑏1𝑘

)
2

+𝑒
−(

𝑥21−𝑥11
𝑏21

)
2

𝑒
−(

𝑥22−𝑥12
𝑏22

)
2

…𝑒
−(

𝑥2𝑘−𝑥1𝑘
𝑏2𝑘

)
2

+⋯+𝑒
−(

𝑥𝑛1−𝑥11
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥12
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥1𝑘
𝑏𝑛𝑘

)2

]

  

       ⋮ 

                    𝑤1𝑛 =
∏𝑗=1

𝑘 𝐾(
𝑥𝑛𝑗−𝑥1𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.      (19)  

𝑤1𝑛 =

𝑒
−(

𝑥𝑛1−𝑥11
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥12
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥1𝑘
𝑏𝑛𝑘

)
2

[𝑒
−(

𝑥11−𝑥11
𝑏11

)2
𝑒

−(
𝑥12−𝑥12

𝑏12
)2

…𝑒
−(

𝑥1𝑘−𝑥1𝑘
𝑏1𝑘

)
2

+𝑒
−(

𝑥21−𝑥11
𝑏21

)
2

𝑒
−(

𝑥22−𝑥12
𝑏22

)
2

…𝑒
−(

𝑥2𝑘−𝑥1𝑘
𝑏2𝑘

)
2

+⋯+𝑒
−(

𝑥𝑛1−𝑥11
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥12
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥1𝑘
𝑏𝑛𝑘

)2

]

  

 (20) 

To estimate, �̂�2
𝐴𝑁𝑃𝑀2 set 𝑖 = 2 in Equation (10) and (12), we have: 

�̂�𝟐
(𝐴𝑁𝑃𝑀2)

=  𝒙𝟐
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝟐𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)𝑾𝟐𝑦 +

𝜆 𝒙𝟐
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝟐
∗𝑿(𝐿𝐿𝑅))

−𝟏
𝑿′(𝑳𝑳𝑹)𝑾𝟐

∗  [𝑦 −   𝒙𝟐
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)�̀�𝟐𝑿
(𝐿𝐿𝑅))

−𝟏
𝑿′(𝐿𝐿𝑅)�̀�𝟐𝑦]   

 (21) 
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𝑾𝟐 = [

𝑤21 0
0
⋮
0

𝑤22

⋮
0

⋯ 0
…
⋱
⋯

0
⋮

𝑤2𝑛

]

(𝑛×𝑛)

         (22) 

The entries from Equation  (22) and the locally adaptive bandwidths of  [13] are translated to 

estimate �̂�𝟐
𝑨𝑵𝑷𝑴𝟐, 

     𝑤21 =
∏𝑗=1

𝑘 𝐾(
𝑥1𝑗−𝑥2𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥2𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.       (23) 

𝑤21 =

𝑒
−(

𝑥11−𝑥21
𝑏11

)2

𝑒
−(

𝑥12−𝑥22
𝑏12

)2

…𝑒
−(

𝑥1𝑘−𝑥2𝑘
𝑏1𝑘

)2

[𝑒
−(

𝑥11−𝑥21
𝑏11

)2
𝑒

−(
𝑥12−𝑥22

𝑏12
)2

…𝑒
−(

𝑥1𝑘−𝑥2𝑘
𝑏1𝑘

)2

+𝑒
−(

𝑥21−𝑥21
𝑏21

)
2

𝑒
−(

𝑥22−𝑥22
𝑏22

)
2

…𝑒
−(

𝑥2𝑘−𝑥2𝑘
𝑏2𝑘

)
2

+⋯+𝑒
−(

𝑥𝑛1−𝑥21
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥22
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥2𝑘
𝑏𝑛𝑘

)2

]

  

(24) 

𝑤22 =
∏𝑗=1

𝑘 𝐾(
𝑥2𝑗−𝑥2𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥2𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.     (25) 

𝑤22 =

𝑒
−(

𝑥21−𝑥21
𝑏21

)2

𝑒
−(

𝑥22−𝑥22
𝑏22

)2

…𝑒
−(

𝑥2𝑘−𝑥2𝑘
𝑏2𝑘

)2

[𝑒
−(

𝑥11−𝑥21
𝑏11

)2
𝑒

−(
𝑥12−𝑥22

𝑏12
)2

…𝑒
−(

𝑥1𝑘−𝑥2𝑘
𝑏1𝑘

)
2

+𝑒
−(

𝑥21−𝑥21
𝑏21

)
2

𝑒
−(

𝑥22−𝑥22
𝑏22

)
2

…𝑒
−(

𝑥2𝑘−𝑥2𝑘
𝑏2𝑘

)
2

+⋯+𝑒
−(

𝑥𝑛1−𝑥21
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥22
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥2𝑘
𝑏𝑛𝑘

)2

]

  

(26)     

                    𝑤2𝑛 =
∏𝑗=1

𝑘 𝐾(
𝑥𝑛𝑗−𝑥2𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥2𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2, … , 𝑘.    (27)  

𝑤2𝑛 =

𝑒
−(

𝑥𝑛1−𝑥21
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥22
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥2𝑘
𝑏𝑛𝑘

)
2

[𝑒
−(

𝑥11−𝑥21
𝑏11

)2
𝑒

−(
𝑥12−𝑥22

𝑏12
)2

…𝑒
−(

𝑥1𝑘−𝑥2𝑘
𝑏1𝑘

)
2

+𝑒
−(

𝑥21−𝑥21
𝑏21

)
2

𝑒
−(

𝑥22−𝑥22
𝑏22

)
2

…𝑒
−(

𝑥2𝑘−𝑥2𝑘
𝑏2𝑘

)
2

+⋯+𝑒
−(

𝑥𝑛1−𝑥21
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥22
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥2𝑘
𝑏𝑛𝑘

)2

]

  

(28) 

To estimate, �̂�𝑛
𝐴𝑁𝑃𝑀2 set 𝑖 = 𝑛 in Equation (10) and (12), we have: 

�̂�𝒏
(𝐴𝑁𝑃𝑀2)

=  𝒙𝒏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝒏𝑿(𝐿𝐿𝑅))
−𝟏

𝑿′(𝐿𝐿𝑅)𝑾𝒏𝑦 +

𝜆 𝒙𝒏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)𝑾𝒏
∗ 𝑿(𝐿𝐿𝑅))

−𝟏
𝑿′(𝑳𝑳𝑹)𝑾𝒏

∗  [𝑦 −   𝒙𝒏
′(𝐿𝐿𝑅)

(𝑿′(𝐿𝐿𝑅)�̀�𝒏𝑿(𝐿𝐿𝑅))
−𝟏

𝑿′(𝐿𝐿𝑅)�̀�𝒏𝑦]  

𝑾𝒏 = [

𝑤𝑛1 0
0
⋮
0

𝑤𝑛2

⋮
0

⋯ 0
…
⋱
⋯

0
⋮

𝑤𝑛𝑛

]

(𝑛×𝑛)

         (29) 
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The entries from Equation (29) and the locally adaptive bandwidths of  [13] are translated to 

estimate �̂�𝒏
𝑨𝑵𝑷𝑴𝟐, 

     𝑤𝑛1 =
∏𝑗=1

𝑘 𝐾(
𝑥1𝑗−𝑥𝑛𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥𝑛𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.       (30) 

𝑤𝑛1 =

𝑒
−(

𝑥11−𝑥𝑛1
𝑏11

)2

𝑒
−(

𝑥12−𝑥𝑛2
𝑏12

)2

…𝑒
−(

𝑥1𝑘−𝑥𝑛𝑘
𝑏1𝑘

)2

[𝑒
−(

𝑥11−𝑥𝑛1
𝑏11

)2
𝑒

−(
𝑥12−𝑥𝑛2

𝑏12
)2

…𝑒
−(

𝑥1𝑘−𝑥𝑛𝑘
𝑏1𝑘

)2

+𝑒
−(

𝑥21−𝑥𝑛1
𝑏21

)
2

𝑒
−(

𝑥22−𝑥𝑛2
𝑏22

)
2

…𝑒
−(

𝑥2𝑘−𝑥𝑛𝑘
𝑏2𝑘

)
2

+⋯+𝑒
−(

𝑥𝑛1−𝑥𝑛1
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥𝑛2
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥𝑛𝑘
𝑏𝑛𝑘

)2

]

  

(31) 

𝑤𝑛2 =
∏𝑗=1

𝑘 𝐾(
𝑥2𝑗−𝑥𝑛𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥𝑛𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.          (32) 

𝑤𝑛2 =

𝑒
−(

𝑥21−𝑥𝑛1
𝑏21

)2

𝑒
−(

𝑥22−𝑥𝑛2
𝑏22

)2

…𝑒
−(

𝑥2𝑘−𝑥𝑛𝑘
𝑏2𝑘

)2

[𝑒
−(

𝑥11−𝑥𝑛1
𝑏11

)2
𝑒

−(
𝑥12−𝑥𝑛2

𝑏12
)2

…𝑒
−(

𝑥1𝑘−𝑥𝑛𝑘
𝑏1𝑘

)
2

+𝑒
−(

𝑥21−𝑥𝑛1
𝑏21

)
2

𝑒
−(

𝑥22−𝑥𝑛2
𝑏22

)
2

…𝑒
−(

𝑥2𝑘−𝑥𝑛𝑘
𝑏2𝑘

)
2

+⋯+𝑒
−(

𝑥𝑛1−𝑥𝑛1
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥𝑛2
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥𝑛𝑘
𝑏𝑛𝑘

)2

]

  

(33) 

𝑤𝑛𝑛 =
∏𝑗=1

𝑘 𝐾(
𝑥𝑛𝑗−𝑥𝑛𝑗

𝑏𝑖𝑗
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥𝑛𝑗

𝑏𝑝𝑗
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.      (34)  

𝑤𝑛𝑛 =

𝑒
−(

𝑥𝑛1−𝑥𝑛1
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥𝑛2
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥𝑛𝑘
𝑏𝑛𝑘

)
2

[𝑒
−(

𝑥11−𝑥𝑛1
𝑏11

)2
𝑒

−(
𝑥12−𝑥𝑛2

𝑏12
)2

…𝑒
−(

𝑥1𝑘−𝑥𝑛𝑘
𝑏1𝑘

)
2

+𝑒
−(

𝑥21−𝑥𝑛1
𝑏21

)
2

𝑒
−(

𝑥22−𝑥𝑛2
𝑏22

)
2

…𝑒
−(

𝑥2𝑘−𝑥𝑛𝑘
𝑏2𝑘

)
2

+⋯+𝑒
−(

𝑥𝑛1−𝑥𝑛1
𝑏𝑛1

)
2

𝑒
−(

𝑥𝑛2−𝑥𝑛2
𝑏𝑛2

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥𝑛𝑘
𝑏𝑛𝑘

)2

]

  

(35) 

with respective diagonal matrices of kernel weights, 𝑾𝟐,𝑾𝟑, … ,𝑾𝒏  follows pattern from 

Equations (30, 32 and 34). 

Using matrix notation, the ANPM2 can be expressed as: 

   �̂�(𝐴𝑁𝑃𝑀2) =

[
 
 
 
 𝒉𝟏

(𝐿𝐿𝑅)
𝑦 +  𝝀𝒉𝟏

(𝐿𝐿𝑅)
(𝑦 − (𝒉𝟏

(𝐿𝐿𝑅)
𝑦)

𝒉𝟐
(𝐿𝐿𝑅)

𝑦 +   𝝀𝒉𝟐
(𝐿𝐿𝑅)

(𝑦 − (𝒉𝟐
(𝐿𝐿𝑅)

𝑦)

⋮

𝒉𝒏
(𝐿𝐿𝑅)

𝑦 +  𝝀𝒉𝒏
(𝐿𝐿𝑅)

(𝑦 − (𝒉𝒏
(𝐿𝐿𝑅)

𝑦)]
 
 
 
 

,           (36) 
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   �̂�(𝐴𝑁𝑃𝑀2) =

[
 
 
 
 𝒉𝟏

(𝐿𝐿𝑅)
+   𝝀𝒉𝟏

(𝐿𝐿𝑅)
(𝑰 − (𝒉𝟏

(𝐿𝐿𝑅)
)

𝒉𝟐
(𝐿𝐿𝑅)

+   𝝀𝒉𝟐
(𝐿𝐿𝑅)

(𝑰 − (𝒉𝟐
(𝐿𝐿𝑅)

)

⋮

𝒉𝒏
(𝐿𝐿𝑅)

+   𝝀𝒉𝒏
(𝐿𝐿𝑅)

(𝑰 − (𝒉𝒏
(𝐿𝐿𝑅)

)]
 
 
 
 

 y,                (37)  

  �̂�(𝐴𝑁𝑃𝑀2) =  𝑯(𝐴𝑁𝑃𝑀2)𝑦 ,             (38) 

where 𝑰 is the 𝑛 × 𝑛 identity matrix, the 1× 𝑛 vector   

𝒉𝒊
(𝐿𝐿𝑅)

+   𝝀𝒉𝒊
(𝐿𝐿𝑅)

(𝑰 − (𝒉𝒊
(𝐿𝐿𝑅)

) is the 𝑖𝑡ℎ row of the 𝑛 × 𝑛 ANPM2 Hat matrix 𝑯(𝐴𝑁𝑃𝑀2). 

Using matrix notation, the ANPM2 estimate of the response is given as: 

 �̂�(𝐴𝑁𝑃𝑀2) =

[
 
 
 
 𝒉𝟏

(𝑨𝑵𝑃𝑀2)

𝒉𝟐
(𝑨𝑵𝑃𝑀2)

⋮

𝒉𝒏
(𝑨𝑵𝑃𝑀2)

]
 
 
 
 

𝑦,          (39) 

�̂�(𝐴𝑁𝑃𝑀2) = 𝑯(𝐴𝑁𝑃𝑀2)𝑦,      (40) 

where 𝒉𝒊
(𝑨𝑵𝑃𝑀2)

= 𝒉𝒊
(𝐿𝐿𝑅)

+  𝜆𝒉𝒊
(𝐿𝐿𝑅)

(𝑰 − 𝒉𝒊
(𝐿𝐿𝑅)

) is the is the 𝑖𝑡ℎ row of the 𝑛 × 𝑛 ANPM2 Hat 

matrix 𝑯(𝐴𝑁𝑃𝑀2). 

3.0  Application (Minced Fish Quality Data) 

The Minced Fish Quality Data is presented in [3]. The problem seeks the setting of three 

explanatory variables 𝑥1 (washing temperature), 𝑥2(washing time) and 𝑥3 (washing ratio of water 

volume to sample weight) that would optimize four aspect of quality of minced fish, namely, 

springiness (𝑦1), thiobarbituric acid number (𝑦2), cooking loss (𝑦3), and whiteness index (𝑦4).  

Based on the process requirements, a CCD was conducted to establish the design experiment and 

observed responses as presented in Table 1. 

Table 1: The Minced Fish Quality Data generated through CCD 

𝑖 
CODED LEVELS 

𝑦1 𝑦2 𝑦3 𝑦4 
𝑥1 𝑥2 𝑥3 

1 -1 -1 -1 1.83 29.31 29.50 50.36 

2 1 -1 -1 1.73 39.32 19.40 48.16 

3 -1 1 -1 1.85 25.16 25.70 50.72 

4 1 1 -1 1.67 40.18 27.10 49.69 

5 -1 -1 1 1.86 29.82 21.40 50.09 

6 1 -1 1 1.77 32.20 24.00 50.61 

7 -1 1 1 1.88 22.01 19.60 50.36 

8 1 1 1 1.66 40.02 25.10 50.42 

9 
-

1.682 
0 0 1.81 33.00 24.20 29.31 

10 1.682 0 0 1.37 51.59 30.60 50.67 
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11 0 
-

1.682 
0 1.85 20.35 20.90 48.75 

12 0 1.682 0 1.92 20.53 18.90 52.70 

13 0 0 
-

1.682 
1.88 23.85 23.00 50.19 

14 0 0 1.682 1.90 20.16 21.20 50.86 

15 0 0 0 1.89 21.72 18.50 50.84 

16 0 0 0 1.88 21.21 18.60 50.93 

17 0 0 0 1.87 21.55 16.80 50.98 

Source: [3]. 

3.1.2.  Transformation of Data from Central Composite Design (CCD) 

In nonparametric regression techniques for RSM, the explanatory variable values are scaled to 

range between 0 and 1. Data collected through a Central Composite Design (CCD) is transformed 

using the following mathematical relation: 

 𝑥𝑛𝑒𝑤 =
𝑀𝑖𝑛(𝑥𝑜𝑙𝑑)−𝑥0

(𝑀𝑖𝑛(𝑥𝑜𝑙𝑑)−𝑀𝑎𝑥(𝑥𝑜𝑙𝑑))
        (41)  

where 𝑥𝑛𝑒𝑤 is the transformed value, 𝑥0 is the target value that needed to be transformed in the 

vector containing the old coded value,  represented as 𝑥𝑜𝑙𝑑, Min (𝑥𝑜𝑙𝑑) and 𝑀𝑎𝑥(𝑥𝑜𝑙𝑑) are the 

minimum and maximum values in the vector 𝑥𝑜𝑙𝑑  respectively, [14]. 

The natural or coded variables in Table 1 are transformed to explanatory variables in Table 2 

using Equation (41)  

Target points needed to be transformed for location 1 under the coded variables are given below:   

Target points 𝑥0 : − 1 , −1,−1; 𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) : −
1.682 , −1.682,−1.682;  𝑀𝑎𝑥(𝑥𝑜𝑙𝑑): 1.682 , 1.682, 1.682 

𝑥𝑛𝑒𝑤 =
𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) − 𝑥0

(𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) − 𝑀𝑎𝑥(𝑥𝑜𝑙𝑑))
 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥1 ∶  𝑥11 =
−1.682 − (−1)

((−1.682) − (1.682)
= 0.2030 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥2 ∶  𝑥12 =
−1.682 − (−1)

((−1.682) − (1.682))
= 0.2030 

Target points needed to be transformed for location 2 under the coded variables are given below: 

Target points 𝑥0: 1 , −1,−1; 𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) : −
1.682 , −1.682,−1.682;  𝑀𝑎𝑥(𝑥𝑜𝑙𝑑): 1.682 , 1.682, 1.682  
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𝑥𝑛𝑒𝑤 =
𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) − 𝑥0

(𝑀𝑖𝑛(𝑥𝑜𝑙𝑑) − 𝑀𝑎𝑥(𝑥𝑜𝑙𝑑))
 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥1 ∶  𝑥21 =
−1.682 − (1)

((−1.682) − (1.682))
= 0.7970 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥2 ∶  𝑥22 =
−1.682 − (−1)

((−1.682) − (1.682))
= 0.2030 

The values of the explanatory variables are transformed by the relation in Equation (41) which is 

coded between 0 and 1 as given in Table 2. 

 

Table 2: The transformed Minced Fish Quality Data 

𝑖 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 𝑦4 

1 0.2030 0.2030 0.2030 1.83 29.31 29.50 50.36 

2 0.7970 0.2030 0.2030 1.73 39.32 19.40 48.16 

3 0.2030 0.7970 0.2030 1.85 25.16 25.70 50.72 

4 0.7970 0.7970 0.2030 1.67 40.18 27.10 49.69 

5 0.2030 0.2030 0.7970 1.86 29.82 21.40 50.09 

6 0.7970 0.2030 0.7970 1.77 32.20 24.00 50.61 

7 0.2030 0.7970 0.7970 1.88 22.01 19.60 50.36 

8 0.7970 0.7970 0.7970 1.66 40.02 25.10 50.42 

9 0.0000 0.5000 0.5000 1.81 33.00 24.20 29.31 

10 1.0000 0.5000 0.5000 1.37 51.59 30.60 50.67 

11 0.5000 0.0000 0.5000 1.85 20.35 20.90 48.75 

12 0.5000 1.0000 0.5000 1.92 20.53 18.90 52.70 

13 0.5000 0.5000 0.0000 1.88 23.85 23.00 50.19 

14 0.5000 0.5000 1.0000 1.90 20.16 21.20 50.86 

15 0.5000 0.5000 0.5000 1.89 21.72 18.50 50.84 

16 0.5000 0.5000 0.5000 1.88 21.21 18.60 50.93 

17 0.5000 0.5000 0.5000 1.87 21.55 16.80 50.98 

 

The process requirements for each response given in [3] are as follows: 

Maximize 𝑦1 with lower bound 𝐿=1.70, and target value ∅= 1.92;  

Minimize  𝑦2with target value ∅ =20.16 and upper bound 𝑈=21.00;  

Minimize  𝑦3with target value ∅ =16.80, and upper bound 𝑈 =20.00;  

Maximize 𝑦4 with lower bound 𝐿 =45.00, and target value ∅ =50.98. 

In the minced fish quality data as given in section 3.0  4, we seek to show the performance of  

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 over 𝑂𝐿𝑆,  𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵 based on the goodness-of-fit statistics and the 

process requirements. 
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Table 3 represents the mixing parameters for the multi-response minced fish quality data and the 

values of the mixing parameters are obtained via genetic algorithm tool in MATLAB 7.10.0.499 

(R2010a).  

 

Table 3: Mixing Parameters of different models for Minced Fish Quality Data 

Response Model 𝝀 

𝑦1 

𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵 1.0000 

𝑀𝑅𝑅2𝑃𝐴𝐵 1.0000 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 1.0000 

𝑦2 

𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵 0.7085 

𝑀𝑅𝑅2𝑃𝐴𝐵 1.0000 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 0.9631 

𝑦3 
𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵 0.9320 

 𝑀𝑅𝑅2𝑃𝐴𝐵 1.0000 

 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 0.1318 

𝑦4 

𝑂𝐿𝑆 NOT APPLICABLE 

𝑀𝑅𝑅1𝑃𝐴𝐵 0.9999 

𝑀𝑅𝑅2𝑃𝐴𝐵 1.0000 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 0.0900 

 

Table 4: Model goodness –of- fit of the Minced Fish Quality Data 

Response Model 𝑫𝑭 𝑷𝑹𝑬𝑺𝑺∗∗ 𝑷𝑹𝑬𝑺𝑺 𝑺𝑺𝑬 𝑴𝑺𝑬 𝑹𝟐(%) 𝑹𝑨𝒅𝒋
𝟐 (%) 

𝑦1 

𝑂𝐿𝑆 14.0000 - - 0.0231 0.0017 92.1250 91.0000 

𝑀𝑅𝑅1𝑃𝐴𝐵 12.0072 0.0019 0.0497 0.0123 0.0010 94.3907 95.7905 

𝑀𝑅𝑅2𝑃𝐴𝐵 12.0393 0.0015 0.0294 0.0124 0.0010 95.7900 94.4000 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 12.0053 0.0010 0.0272 0.0123 0.0010 95.7910 94.3905 

𝑦2 

𝑂𝐿𝑆 12.0000 - - 90.9033 7.5753 93.3850 91.1800 

𝑀𝑅𝑅1𝑃𝐴𝐵 8.2177 7.4867 162.1356 37.8103 4.6011 97.2486 94.6430 

𝑀𝑅𝑅2𝑃𝐴𝐵 8.0060 10.7141 173.4754 37.7558 4.7159 97.2500 94.5100 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 8.2934 6.9898 151.8825 38.0158 4.5838 97.2336 94.6630 

𝑦3 

𝑂𝐿𝑆 9.0000 - - 41.1338 4.5704 84.0250 71.6600 

𝑀𝑅𝑅1𝑃𝐴𝐵 2.0443 8.0901 120.7925 2.0489 1.0023 99.2060 93.7860 

𝑀𝑅𝑅2𝑃𝐴𝐵 2.2192 10.1660 147.5776 2.2228 1.0016 99.1400 93.7900 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 2.0641 4.7756 71.3928 2.0676 1.0017 99.1988 93.7895 
 𝑂𝐿𝑆 14.0000 - - 198.8048 14.2003 54.1238 47.5700 

𝑦4 𝑀𝑅𝑅1𝑃𝐴𝐵 12.0072 17.4184 461.3785 12.1886 1.0151 97.1875 96.2522 
 𝑀𝑅𝑅2𝑃𝐴𝐵 12.0214 9.5980 250.5095 12.2085 1.0156 97.1800 96.2500 
 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 12.0001 6.6035 174.8811 12.1387 1.0116 97.1990 96.2654 
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In Table 4, 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵, outperformed OLS, 𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵 in terms of PRESS and 

𝑃𝑅𝐸𝑆𝑆∗∗ with respect to springiness (𝑦1), 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵  𝑎𝑛𝑑 𝑀𝑅𝑅1𝑃𝐴𝐵   are jointly better in terms 

of SSE and MSE. Whereas, 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 is better in terms of 𝑅2, and 𝑀𝑅𝑅1𝑃𝐴𝐵 is better in terms 

of 𝑅𝐴𝑑𝑗
2 . In terms of  thiobarbituric acid number (𝑦2), 𝐴𝑁𝑃𝑀1𝑃𝐴𝐵 is better with respect to PRESS, 

PRESS**, MSE and 𝑅𝐴𝑑𝑗
2  than OLS,  𝑀𝑅𝑅1𝑃𝐴𝐵 and  𝑀𝑅𝑅2𝑃𝐴𝐵. while 𝑀𝑅𝑅2𝑃𝐴𝐵 performed better 

than OLS, 𝑀𝑅𝑅1𝑃𝐴𝐵, and 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 in terms SSE and 𝑅2. For cooking loss (𝑦3), 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 

outperformed other models such as OLS, 𝑀𝑅𝑅1𝑃𝐴𝐵 and  𝑀𝑅𝑅2𝑃𝐴𝐵 in terms of  PRESS, 𝑃𝑅𝐸𝑆𝑆∗∗, 

SSE and 𝑅2 statistics while 𝑀𝑅𝑅2𝑃𝐴𝐵 performed better than existing models in terms of  MSE and 

𝑅𝐴𝑑𝑗
2 . 

In terms of whiteness index (𝑦4), 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 performed better than OLS,  𝑀𝑅𝑅1𝑃𝐴𝐵, and 

𝑀𝑅𝑅2𝑃𝐴𝐵 with respect to PRESS and 𝑃𝑅𝐸𝑆𝑆∗∗, SSE, MSE, 𝑅2 and 𝑅𝐴𝑑𝑗
2  statistics. 

 
 

Figure 1. Plot A: maximize Springiness; Plot B: minimize thiobarbituric acid number; Plot  

C: minimize Cooking Loss; Plot D: maximize whiteness Index. 

 

The multi-response residual plots in Figure 1,  is a clear indication that the models 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 

both having the smallest residual response for the respective residual data points.  

 

Table 5: Model optimal solution via the Desirability function in the minced fish data 

 

Model  

 

 

 

 

 

 

 

 

 

 

 

 

 

d1 

 

d2 d3 d4 
D (%) 

 OLS 0.38 1.00 0.72 1.91 19.50 17.22 50.30 0.94 1.00 0.87 0.89 92.29 

 

0.57 0.00 0.55 1.99 18.68 19.18 48.63 1.00 1.00 0.26 0.61 62.82 

  0.13 1.00 0.00 1.85 26.40 30.46 0.00 0.68 0.00 0.00 0.00 0.00 

  0.26 1.00 0.63 1.94 20.16 8.33 53.89 1.00 1.00 1.00 1.00 100.00 

 

In the overall desirability, the model 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 outperforms other models since in their 

respective settings of the explanatory variables that simultaneously optimized the responses more 

than any other model. Obviously, 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 further justify the performance over OLS,  

𝑀𝑅𝑅1𝑃𝐴𝐵 and  MRR2𝑃𝐴𝐵. 

4.0  SIMULATION STUDY 

In this section, we compare the performances of the respective regression models, 𝑀𝑅𝑅1𝑃𝐴𝐵, 
𝑀𝑅𝑅2𝑃𝐴𝐵, and 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 using simulated data. Each simulation comprises of 500 data sets 

based on the following underlying polynomial models: 
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4.1   Simulation Study 1: Multi-Response Chemical Process Problem  

This problem is analyzed by [10] with the aim to get the setting of the explanatory variables 𝑥1 

and 𝑥2 (representing reaction time and temperature, respectively). 

 

Table 6: The CCD for the Simulating Data for Models 1-5   

𝑖 𝑥1 𝑥2 

1 0.8536 0.8536 

2 0.1464 0.8536 

3 0.8536 0.1464 

4 0.1464 0.1464 

5 1.0000 0.5000 

6 0.0000 0.5000 

7 0.5000 1.0000 

8 0.5000 0.0000 

9 0.5000 0.5000 

10 0.5000 0.5000 

11 0.5000 0.5000 

12 0.5000 0.5000 

13 0.5000 0.5000 

 

4.2.    Simulation Study 2: Multi-Response Chemical Process Problem 

In this section, we compare the performances of the respective regression models using simulated 

data 𝑀𝑅𝑅1𝑃𝐴𝐵, 𝑀𝑅𝑅2𝑃𝐴𝐵 and 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 . Each simulation comprises 500 data sets based on 

the following underlying polynomial models: 

𝐌𝐨𝐝𝐞𝐥 𝟏: 20 − 10𝑥1 − 25𝑥2 − 15𝑥1𝑥2 + 20𝑥1
2 + 50𝑥2

2 +  (2sin(4𝜋𝑥1) + 2 cos(4𝜋𝑥2) −

2𝑠𝑖𝑛(4𝜋𝑥1𝑥2));  

𝐌𝐨𝐝𝐞𝐥 𝟐: 66 + 22𝑥1 + 10𝑥2 + 13𝑥1𝑥2 − 23𝑥1
2 − 25𝑥2

2 +  (2 sin(3𝜋𝑥1) − 2 cos(3𝜋𝑥2) +
2 sin(2𝜋𝑥1𝑥2));  

𝐌𝐨𝐝𝐞𝐥 𝟑: 38 − 17𝑥1 + 19𝑥2 + 21𝑥1𝑥2 − 23𝑥1
2 + 29𝑥2

2 +  (2 sin(8𝜋𝑥1) + 2 cos(8𝜋𝑥2) −
2 sin(8𝜋𝑥1𝑥2));  

𝐌𝐨𝐝𝐞𝐥 𝟒: 45 − 27𝑥1 + 9𝑥2 − 22𝑥1𝑥2 + 10𝑥1
2 + 13𝑥2

2

+  (2 sin(3𝜋𝑥1) − 2 cos(3𝜋𝑥2) + 2 sin(3𝜋𝑥1𝑥2)); 

𝐌𝐨𝐝𝐞𝐥 𝟓: 90 − 59𝑥1 − 41𝑥2 − 36𝑥1𝑥2 + 15𝑥1
2 + 25𝑥2

2

−  (2 sin(4𝜋𝑥1) − 2 cos(33𝜋𝑥2) + 2 sin(3𝜋𝑥1𝑥2)) 

Table 7:  Comparison of the AVESSE of each method for each model in the simulation studies 

 

Model 𝛾 𝑀𝑅𝑅1𝑃𝐴𝐵 𝑀𝑅𝑅2𝑃𝐴𝐵 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 

(1,7) 

0.00 6.7900 7.1812 4.0705 

0.50 16.3440 16.3791 4.1749 

1.00 36.3603 43.0333 4.1869 

(2, 8) 

0.00 7.0896 6.2485 3.9548 

0.50 12.3478 14.4442 3.9690 

1.00 33.1176 33.8967 4.1850 
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(3, 9) 

0.00 6.3701 7.0739 3.7469 

0.50 13.2077 15.4709 3.8466 

1.00 28.9234 40.5788 4.0296 

(4, 10) 

0.00 5.7516 5.9733 4.0996 

0.50 9.9041 21.1713 4.2393 

1.00 12.0239 63.0711 4.2839 

(5, 11) 

0.00 6.7111 6.7820 3.4760 

0.50 12.6459 13.0680 4.0113 

1.00 31.7956 30.1685 4.5220 

 

In Table 7, 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 is stable in terms of AVESSE for model 1 through model 5 as the 

misspecification parameters increase from zero to one, while, 𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵 increases 

in their respective AVESSE as the misspecification parameter increases from zero to one. This 

suggest that 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 is the most suitable model over  𝑀𝑅𝑅1𝑃𝐴𝐵 and  𝑀𝑅𝑅2𝑃𝐴𝐵. 

 

Discussion of Results 

In this paper, we have shown a new blend between locally adaptive bandwidth that is driven by 

local variability in the data and the adaptive nonparametric regression model for RSM data.  

 

We have compared results of the adaptive nonparametric regression model (𝐴𝑁𝑃𝑀2𝑃𝐴𝐵) with 

OLS,  𝑀𝑅𝑅1𝑃𝐴𝐵 and  𝑀𝑅𝑅2𝑃𝐴𝐵 using the same data sets in section 3.0 to 4.2. The 𝐴𝑁𝑃𝑀1𝑃𝐴𝐵 

for single response chemical process data performed better in terms of goodness-of-fit statistics 

and optimization result over OLS, 𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵. While, for the multi-response 

problem, 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 performed better than OLS, 𝑀𝑅𝑅1𝑃𝐴𝐵 𝑎𝑛𝑑 𝑀𝑅𝑅2𝑃𝐴𝐵 with respect to 

goodness-of-fit statistics and the process requirements for the data considered. Furthermore, the 

locally adaptive bandwidth enhanced the performance of 𝑀𝑅𝑅1𝑃𝐴𝐵, 𝑀𝑅𝑅2𝑃𝐴𝐵  and 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 

in terms of goodness-of-fit statistics for the  data type examined. 

 

Simulation studies were also carried out to further investigate the performance of the regression 

models by varying the misspecification parameters from zero to one. It was observed that 

𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 was stable in terms AVESSE as the misspecification parameter increases from zero 

to one. However, 𝑀𝑅𝑅1𝑃𝐴𝐵 𝑎𝑛𝑑 𝑀𝑅𝑅2𝑃𝐴𝐵 tend to increase with respect to AVESSE as 

misspecification parameter increases from zero to one. 

 

Conclusions  

In addition, the model 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 compared with OLS, 𝑀𝑅𝑅1𝑃𝐴𝐵 𝑎𝑛𝑑 𝑀𝑅𝑅2𝑃𝐴𝐵 performed 

satisfactorily in terms of goodness-of-fit tests. The model 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵, again on the average 

performance did better than existing models  𝑀𝑅𝑅1𝑃𝐴𝐵 𝑎𝑛𝑑 𝑀𝑅𝑅2𝑃𝐴𝐵 in terms of goodness-of-

fits statistics and process requirements. 

Lastly, simulation study was carried out on nonparametric regression models to further investigate 

the effect of the misspecification parameter as it increases from zero to one. It was observed that 

the 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 was considerably stable over 𝑀𝑅𝑅1𝑃𝐴𝐵 and 𝑀𝑅𝑅2𝑃𝐴𝐵 for models 1 to 5. 

Evidently, the model 𝐴𝑁𝑃𝑀2𝑃𝐴𝐵 appear to have better performance over the models, 𝑀𝑅𝑅1𝑃𝐴𝐵 

and 𝑀𝑅𝑅2𝑃𝐴𝐵 in all the RSM data considered in this paper. Conclusively, the adaptive 

nonparametric regression model incorporate local linear regression (LLR) portion and product of 
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the optimal mixing parameter and, theresiduals of the LLR to provide a second opportunity of 

fitting part of the data that were not captured by the LLR model and while the locally adaptive 

bandwidths perform adequate smoothing of the dataset by location for kth number of explanatory 

variables and provides a better estimates for the dataset utilized in this paper. 
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