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ABSTRACT
This paper presents a new Binomial option valuation model which
is  with  an  adaptive  swing  factor.  The  existing  versions  of  the
Binomial  model  are developed based on fixed swing factor and
results from fixed swing factor models are commonly associated
with  Snon-linear  error  propagations  which  translates  to  non-
monotonic  convergence  and reduced accuracy  in  application  to
option  pricing.  In  order  to  overcome  this  challenge,  we  adopt
swing  factors  which  are  functions  of  the  step  number(n).  The
accuracy,  convergence  and  stability  behavior  of  the  Binomial
option  pricing  model  with  adaptive  swing factor  (up  and down
move size) are all investigated. The Adaptive Factor Model when
compared with two popular versions of the traditional Binomial
models  -  the  Cox,  Ross  and  Rubinstein  (CRR)  model  [3],  the
Jarrow and Rudd (JR) model [5], a more recent Leisen and Reimer
(LR) [3] model registered more accurate performances, especially
with respect to option pricing

1. Introduction 

In 1979, the Binomial model was developed and published by Cox, Ross and Rubinstein [3] and
since then various versions of the model have been widely used in option valuation due to its
simplicity and flexibility. Numerous authors have since been analyzing and extending the ideas
with the aim to improve on it with respect to the various features of the model. Of particular
interest  to  researchers  have been the pricing accuracy,  the rate  of  convergence and stability
behavious of any version of the model. All versions of the binomial model differ basically in
terms of the parametization approach adopted by the author. 
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Based on the two conditions established from risk-neutral process, and properties of lognormal
distribution as well as having three parameters p ,u∧d to determine, Cox, Ross and Rubinstein
(1979) [3] leveraged on the one degree of freedom available and chose u=1/d which leads to:

p= erdt−d
u−d

 , u=eσ√dt , d=e−σ√dt 

Jarrow and Rudd (1983) [5] considered choice of parameters such that, for large values of the
step number n, the binomial stock price process approximates the lognormal stock price process
used in the Black-Scholes model. They showed that to obtain that assumed approximation, the up
and down move sizes u and d respectively should be

u=(r− 12 σ2)T
n

+σ √T
n

 

d=(r−12 σ2) T
n
−σ √ T

n
 

And as n tends to infinity, p=12
William  F.  Sharpe  in1978  [6],  proposed  the  idea  of  the  binomial  model.  Cox,  Ross,  and
Rubinstein (1979) formalized and pioneered the basic approach to the binomial model. They
developed a discrete-time binomial approach, the CRR model, to option valuing, and published it
with  the  title:  “Option  Pricing:  A  Simplified  Approach”.  The  CRR model  is  based  on  the
assumption that stock return is proportional to the risk-free interest rate. The essence of their
approach is the construction of a binomial lattice of stock prices where the risk-neutral valuation
rule  is  maintained.  The  fundamental  principle  of  option  valuation  by  arbitrage  methods  is
particularly clear in this setting. Its development requires only elementary Mathematics, yet it
contains,  as  a  special  limiting  case,  the  Black-Scholes  model,  which  had  previously  been
developed only by much more difficult methods. The model readily lends itself to generalization
in  many  ways,  and  its  construction  is  based  on  the  assumption  that  stock  prices  have  two
possible movement directions at each time point: Up or Down.
Rendleman and Bartter in 1979 [7], applied the CRR methodology to the pricing of put and call
options on debt securities.
Robert Jarrow and Andrew Rudd in1983 [8] modified the binomial model by simply assuming
that the up and down moves have equal probabilities of 0.5 each, having all the inputs which
describe price movements reflected in up and down move sizes; and that logarithmic stock return
matches the actual mean return of the stock.
Yuen and Yang in 2010 [9], continued the work on binomial models, proposing enhancements to
Boyle's  trinomial  tree  by  incorporating  measures  to  handle  different  regime  states.  Their
modifications  ensured  that  the  tree  model  could  accommodate  data  from  various  regimes
simultaneously while preserving its structural integrity. This approach aimed to provide a more
robust and flexible modeling framework.

The  CRR and  JR  models  do  value  options  to  some  degree  of  accuracy,  especially  with  a
reasonably high step number n, but there remains associated with the models the challenges of
non-monotonic convergence.

In 1996, Leisen and Reimer [1] introduced into the parametization, the idea of using the Peizer-
Pratt  Inversion function which is  a  discrete  equivalent  to  the cumulative normal  probability
distribution function that models continuous random variable. With Leisen-Reimer model, the
challenge of convergence rate was overcome and higher accuracy obtained in option pricing
process.
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The Peizer-Pratt  [4]  inversion function,  h−1 ( z ) , used by Leisen and Reimer was prsented as
follows:

h−1 ( z )=1
2
+ sign(z )

2 √1−e¿¿¿ 

With 
m=n+ 1

3
+ 0.1

n+1  

2. Theoretical Analysis
An option provides the holder with the right, but not the obligation, to buy an underlying
asset (if it’s a call option) or to sell the underlying asset (if it’s a put option) at a specific price
(the Exercise price) on or before a specified date in the future (expiration date)
The holder of an option will exercise his right at the expiration date T, only if the option has
value. A call  option has value at  expiration time T, if the stock price  sT  is greater than the
exercise price x, in which case, the option is worth sT−x
Hence if CTis the value of the Call Option at expiration, then: 
CT=max (0 , sT−x )(1) 
Taking the Expectation, we get:
E (CT )=E {max (0 , sT−x )(2) 
Based on risk-neutral argument, the value of the option at time t is equal to the value of the
option at maturity T discounted at the risk-free rate of interest r. Therefore:
C t=e−r (T −t ) E (CT )(3) 
Which gives:
C t=e−r(T −t ) E {max (0 , sT−x )}(4) 
Define τ=(T-t)                                                                                                                            (5)
Hence, 
C t=e−rτ E {max (0 , sT−x )}(6) 
Suppose Pt is the Put Option Value at T, then similar arguments leads to:
Pt=e−rτ E {max (0 , x−sT )}                                                                                                      (7)

Essentially, these existing versions of binomial model, (CRR, JR, and LR models) only 
differ in the unique definitions of the parameters; that is the swing factors u and d, as well
as the probabilities pu∧pd . 
Taking Expectation, in equation 3.6, we obtain:

E ( sT )=∑
j=0

n

∁ j
n pu

n− j pd
j st u

n− j d j ; j=0,1,2,…,n                                                             (8)

From equation (3.6)
C t=e−rτ E {max (0 , sT−x ) } 
Based on the properties of Expectation, we can rewrite this as:
C t=e−rτ {max [0 , E ( sT )−x ]} 
Substituting E ( sT ) from equation (3.8), we obtain:

C t=e−rτ∑
j=0

n

∁ j
n pu

n− j pd
j {0 , s t u

n− j d j−x }                                                                               (9)

Similarly,
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Pt=e−rτ∑
j=0

n

∁ j
n pu

n− j pd
j {0 , x−st u

n− j d j }                                                                              (10)

j=0,1,2, ,n
Equations (9) and (10) are the basic binomial models for call and put options respectively 
assuming that there is no payable dividend on the underlying stock prior to maturity. 

2.1 The Adaptive Factor Model (AFM):
The Adaptive Factor Model (AFM) herein introduced, modifies the Peizer-Pratt [4] inversion
function as used in Leisen-Reimer [1] by converting the constant decimal  0.1 to a variable  w ,
dependent on the strike price x.

2.2 Parametization of Cox, Ross and Rubinstein (CRR) Model
Estimation Of pu 
From risk-neutral economy, the expected yield from all assets equals the risk-free rate of interest.
Therefore;
E ( st+1 )=s t e

rdt                                                                                                                             (11)
Where dt is an incremental change in time
Also from the stock price and associated probability lattice
E ( st+1 )=pu st u+ pd st d 
                ¿ pu s t u+st d (1−pu ) , 
Implying that;
E ( st+1 )=pu st u− pu st d+s t d                                                                                                   (12)
Combining equations (3.11) and (3.12), we have:
pu st u−pu st d=s t e

rdt−s t d 
We strike out the commom term st and obtain
pu u−pu d=erdt−d  
Or
pu (u−d )=erdt−d 
Which gives us

pu=
erdt−d
u−d

                                                                                                                              (13)

Estimation of u
We go by matching variance on the lattices as follows
Var (s t+dt )=E (st+dt

2 )−E2 ( st+dt )=st
2 ( puu

2+ pd d2 )−st
2e2 rdt                                         (14)

From properties of lognormal distribution, it can be shown that

Var ( s t+dt

st
)=e2 rdt(eσ 2dt

−1)                                                                                                     (15)

Putting (14) and (15) together, we have
st
2 e2 rdt (eσ2 dt

−1 )=s t
2 ( puu

2+ pd d2)−st e
2 rdt 

giving
e2 rdt+σ2 dt

=pu u2+ pd d2                                                                                                           (16)

From (13) we substitute pu with  e
rdt−d
u−d

   in the rhs of   (16) as follows; 
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erdt−d
u−d

u2+u−erdt

u−d
d2 

Simplifying, we obtain
u2 erdt−u2d+ud2−d2 erdt

u−d
 

¿
( x2−x2 ) erdt−(u−d )

u−d
 

¿ (u+d ) erdt−1 
Putting this back into (16), we have:
erdt+σ 2dt=(u+d )erdt−1                                                                                                         (17)
We have ine degree of freedom. Hence we assume u=1/d which transforms equation (17) as:
u2 erdt−u (1−e2rdt+σ2dt )+erdt=0 
Solving, we obtain a positive root:
u=¿¿ 
We simplify the term inside the square root by first-order Taylor expansions, limiting the result
to powers of dt. This gives;
(1+e2 rdt+σ 2dt )−4 e2 rdt 

≈ [2+(2 r+σ 2 ) dt ]2−4 (1+2 rdt) 
≈4 σ2dt 
Hence

u=
2+(2 r+σ2 ) dt+2σ √dt

2σ2dt
 

≈1+rdt+ 1
2

σ 2dt +σ √dt−rdt  

≈1+σ √dt+
1
2

σ2dt

Recall Taylor Series expansion of the exponential function ex :

ex=1+ x
1 !

+ x2

2 !
+ x3

3 !
+… 

Therefore

1+σ √dt+1
2

σ2dt=eσ√dt, to order 2

Hence 
u=eσ√dt  and d=e−σ√dt 
This completes the parametization of the CRR model. The parameters for the three versions of
the binomial model that we are comparing this work with are shown in the following table:

CRR (79) JR (83) LR (96)

u=eσ√dt 
 
 d=e−σ√dt

u=e
(r− 12 σ 2)dt+σ√dt

d=e
(r−12 σ2 )dt−σ √dt

u= p '
p

erdt

 d=1−p '
1−p

erdt

pu=
erdt−d
u−d

pd=1−pu

pu=pd=
1
2

pu=
p '
p
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 pd=
1−p'
1−p

p'=h−1 (d1 )

 p=h−1(d2)

d1=
ln( s

x )+(r+ 12 σ2)T
σ √T

    

d2=d1−σ √T  

h−1( z)=1
2
+ sign(z)

2 √1−e−¿ ¿¿ 

m=n+ 1
2
+ 0.1

n+1      

2.3 Parametization for the Adaptive Factor Model 
The Adaptive Factor Model introduced here adopts t0he same parameters as Leisen-Reimer with
a  modification  to  the  Peizer-Pratt  Inversion  function  h−1( z) by  replacing  the  constant

0.1∈theterm 0.1
n+1  with a  variable  w=f (x).  The relationship between  w  anddx is  unique for

every strike price (x) determined by a process of quadratic regression as follows:
Consider for example, a European-style call option with parameters:
s = 24.78, x =27.00, r =  0.0526, σ= 0.25, T = 0.5
We set w = [0.05, 1.5¿ with a step size of  σ  = 10−5  and x = [24, 30] with step size of dx = 1
For each x in the closed interval x-3:1: x+3, we seek the best w (Optimum w) value in the 

interval 0.05:0.00001:1.5 that optimizes C t=e−rτ∑
j=0

n

∁ j
n pu

n− j pd
j {0 , s t u

n− j d j−x }   when adopting 

LR parameter, but with m=n+ 1
3
+ w

n+1   instead of   m=n+ 1
3
+ 0.1

n+1.  .

Table 1 below shows the set of optimal w values and corresponding strike price x; forming a set 
of ordered pairs (x, w) 
 Table 1:  X AND CORRESPONDING OPTIMAL W
x 24 25 26 27 28 29 30
w 0.05565 0.05 0.05 0.05594 0.06726 0.08321 0.1033

We then simulate a 2-degree polynomial regression with these ordered pairs to determine an 
appropriate algebraic relationship between w and x

.  Figure 1: Regression Curve for Optimal w Against Strike Price
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w = 0.000118333*(x – 27.000000000)2 + 0.001904875*(x - 27.000000000) + 0.055935714
This result suggests that our optimal Ct value is obtained when
w=0.000118333 ( x−27 )2+0.001904875 (x−27 )+0.055935714  replaces 0.1 in 

  m=n+ 1
3
+ 0.1

n+1  . 

Similarly, with a step number n=25, we now price the European option in consideration using a 
Matlab Code: 
The table below shows the result correct to 7 decimal places.

n     Cₜ (Our Formula) Cₜ (Black-Scholes)   Error
25 1.1398663          1.1398653    0.0000010

 3.0. Research Analysis and Discussion 
We are comparing our Adaptive Factor Model (AFM) with the three previous works by Cox-
Ross-Rubinstein (CRR), Jarrow-Rudd (JR) and Leisen-Reimer (LR) to determine the relative
pricing accuracy. We base our findings, analysis and discussion on the results from valuing the
option with the following parameters:
s =100, r = 0.07,  σ=0.3, T = 0.5 years, n = 25;
The strike  x is  ranged from 80 to 120;  the same option  tasks  considered in  Leisen-Reimer
(1996).
The values obtained from numerical and statistical simulations are presented in Tabless 2 and 3
as follows. 
Table 2: Call Option Parameters:
s =100, r = 0.07, σ=0.3, T = 0.5 years, n = 25; the strike x, ranged from 80 to 120.

Table 3:

105

                                 OBTAINED VALUES
                                             CALL
STRIK
E
(X)

TRUE
VALUE

CRR JR LR AFM

80 23.7579868 23.7408240 23.7623839 23.7582162 23.7579868
90 16.0996347 16.1337624 16.0843294 16.0994138 16.0996347
100 0.1337700 10.2131669 10.2010125 10.1331627 10.1337701
110 5.9494636 6.0121794 6.0245208 |5.9488863 5.9494637  
120 3.2828995 3.3188995 3.3341033 |3.2825816 3.2828006                        ERRORS

                              CALL
CRR JR LR AFM
0.0171627 0.0043971 0.0002294 0.0000000
0.0341277 0.0153053 0.0002209 0.0000000
0.0793969 0.0672424 0.0006073 0.0000001
0.0627158 0.0750572 0.0005773 0.0000001
0.0360989 0.0513027 0.0002190 0.0000000
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Put Option Parameters:

         s =100, r = 0.07, σ = 0.3, T = 0.5 years, n = 25; the strike x, ranged from 80 to 120.

 

 3.1. Comparative
Convergence Plots

Figure 2.   Convergence graph of CRR (with n=200)

Figure 3.  Convergence Graph of JR (n=200)
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                                            PUT    (OBTAINED VALUES)
 STRIKE
   (X)

TRUE VALUE       CRR       JR       LR     AFM

   80 1.0064201 0.9892573 1.0114918 1.0066495 1.0064201  
   90 3.0382499 3.0041221 2.9894915 3.0039013 3.0041221
   100 6.7737085 6.7737085 6.7622288 6.6937043 6.6943117
   110 12.2287752 12.2287752 12.2417913 12.1654821 12.1660595
   120 19.1915495 19.1915495 19.2074279 19.1552315 19.1554506

                                 PUT( ERRORS)
   CRR      JR     LR AFM
0.0171627 0.0050718 0.0002294 0.0000000
0.0341277   .0146307 0.0002209 0.0000000
0.0793969    .0679171 0.0006073 0.0000001
0.0627158 0.0757319 0.0005773 0.0000001
0.0360989  0.0519774 0.0002190 0.0000000
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 Figure 4.   Convergence Graph of LR (n=200)

Figure 5:  Convergence Graph of AFM (n=200)

 3.2. Comparative Error Decay Behaviours  
Figure 6:   CRR Error Decay Plot
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Figure 7:    J-R Error Decay Plot

Figure 8.      LR Error Decay Plot

      

Figure 9:  AFM Error Decay Plot
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     3.3. Comparative Stability Behaviours
Figure 10:  CRR Stability Plot
 

Figure 11:  J-R Stability Plot

Figure 12:    LR Stability Plot
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  Figure 13:  AFM Stability Plot

             

Findings and Discussions
1. Comparative Pricing Accuracy:  It  is  clear  from tables 2 and 3,  that  AFM is  more

accurate compared to CRR, J-R and LR in terms of option valuation.
2. Comparative Convergence Rates: The Convergence plots in Figures 2, 3, 4 and 5, we

see that CRR and JR exhibit similar patterns, a non-monotonic and slow convergence
pattern. However, in the case of LR and AFM, the convergence is smoother and faster.
As early as at when n=15, LR converge to a value, with a good degree of accuracy, and
AFM converges even faster. We infer that models based on adaptive-swing factor have
higher rate of convergence than the traditional versions built on fixed swing factors. 

3.  Comparative Error Decay Patterns: From the error decay plots in Figures 6 to 9, we
observe that the errors in both cases of CRR and JR reduce in a non-definite manner,
along growing step number n, but in LR and AFM, the errors decay smoothly and vanish
within a short time.

4. Comparative Stability Behaviours: Figures 10 to 13 are plots of the option values Ct,
against  the  step size dt  for  graphical  illustrations  of  the relative  stability  behaviours.
Based on observed number of divergent points within the interval of step size plotted, we
observe that AFM and LR have better stability properties than CRR and JR.

CONCLUSION
Results from this research suggests preference for models based on adaptive swing factor (AFM
and LR) when valuing options with considerations for good accuracy, rate of convergence and
stability. Among the models compared, the Adaptive Factor Model (AFM) is most accurate for
option  valuation.  AFM  is  recommendable  to  the  financial  market  practitioners  for  option
valuation
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