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Keywqr ds: ‘ option pricing. In order to overcome this challenge, we adopt
?daptlve Swing swing factors which are functions of the step number(n). The
actor,

accuracy, convergence and stability behavior of the Binomial
option pricing model with adaptive swing factor (up and down
move size) are all investigated. The Adaptive Factor Model when

Fixed swing factor,
Monotonic error

propagation, compared with two popular versions of the traditional Binomial

Pelzer'-Pratt models - the Cox, Ross and Rubinstein (CRR) model [3], the

nversion Jarrow and Rudd (JR) model [5], a more recent Leisen and Reimer

function (LR) [3] model registered more accurate performances, especially
with respect to option pricing

1. Introduction

In 1979, the Binomial model was developed and published by Cox, Ross and Rubinstein [3] and
since then various versions of the model have been widely used in option valuation due to its
simplicity and flexibility. Numerous authors have since been analyzing and extending the ideas
with the aim to improve on it with respect to the various features of the model. Of particular
interest to researchers have been the pricing accuracy, the rate of convergence and stability
behavious of any version of the model. All versions of the binomial model differ basically in
terms of the parametization approach adopted by the author.
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Based on the two conditions established from risk-neutral process, and properties of lognormal
distribution as well as having three parameters p,uAdto determine, Cox, Ross and Rubinstein
(1979) [3] leveraged on the one degree of freedom available and chose u=1/d which leads to:

_erdt_d u_eavﬁ d_e—a\s“a
P=u—a "~ ’ B
Jarrow and Rudd (1983) [5] considered choice of parameters such that, for large values of the
step number n, the binomial stock price process approximates the lognormal stock price process
used in the Black-Scholes model. They showed that to obtain that assumed approximation, the up
and down move sizes u and d respectively should be

1,\T \F
U=|\r——ao |—+0 4 —
2 n n
d:(r—ld2 LS
2 n

) ) 1

And as n tends to infinity, pZE

William F. Sharpe in1978 [6], proposed the idea of the binomial model. Cox, Ross, and
Rubinstein (1979) formalized and pioneered the basic approach to the binomial model. They
developed a discrete-time binomial approach, the CRR model, to option valuing, and published it
with the title: “Option Pricing: A Simplified Approach”. The CRR model is based on the
assumption that stock return is proportional to the risk-free interest rate. The essence of their
approach is the construction of a binomial lattice of stock prices where the risk-neutral valuation
rule is maintained. The fundamental principle of option valuation by arbitrage methods is
particularly clear in this setting. Its development requires only elementary Mathematics, yet it
contains, as a special limiting case, the Black-Scholes model, which had previously been
developed only by much more difficult methods. The model readily lends itself to generalization
in many ways, and its construction is based on the assumption that stock prices have two
possible movement directions at each time point: Up or Down.

Rendleman and Bartter in 1979 [7], applied the CRR methodology to the pricing of put and call
options on debt securities.

Robert Jarrow and Andrew Rudd in1983 [8] modified the binomial model by simply assuming
that the up and down moves have equal probabilities of 0.5 each, having all the inputs which
describe price movements reflected in up and down move sizes; and that logarithmic stock return
matches the actual mean return of the stock.

Yuen and Yang in 2010 [9], continued the work on binomial models, proposing enhancements to
Boyle's trinomial tree by incorporating measures to handle different regime states. Their
modifications ensured that the tree model could accommodate data from various regimes
simultaneously while preserving its structural integrity. This approach aimed to provide a more
robust and flexible modeling framework.

The CRR and JR models do value options to some degree of accuracy, especially with a
reasonably high step number n, but there remains associated with the models the challenges of
non-monotonic convergence.

In 1996, Leisen and Reimer [1] introduced into the parametization, the idea of using the Peizer-
Pratt Inversion function which is a discrete equivalent to the cumulative normal probability
distribution function that models continuous random variable. With Leisen-Reimer model, the
challenge of convergence rate was overcome and higher accuracy obtained in option pricing
process.
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The Peizer-Pratt [4] inversion function, h™'(z), used by Leisen and Reimer was prsented as
follows:
h'(z)= ; SIQH( )\/1—

2. Theoretical Analysis

An option provides the holder with the right, but not the obligation, to buy an underlying
asset (if it’s a call option) or to sell the underlying asset (if it’s a put option) at a specific price
(the Exercise price) on or before a specified date in the future (expiration date)

The holder of an option will exercise his right at the expiration date T, only if the option has
value. A call option has value at expiration time T, if the stock price Sr is greater than the
exercise price x, in which case, the option is worth Sy —x

Hence if Cis the value of the Call Option at expiration, then:

C,=max[0,s,—x|(1)

Taking the Expectation, we get:

E(C;|=E{max|0,s,—x|(2)

Based on risk-neutral argument, the value of the option at time t is equal to the value of the
option at maturity T discounted at the risk-free rate of interest r. Therefore:

c=e"""E[C;|(3)

Which gives:

Ctze_r(T_[)E{max(O, sT—x”(4)

Define 1=(T-t) %)
Hence,

C,= e_”E{max(O,sT—x)}(G)

Suppose P, is the Put Option Value at T, then similar arguments leads to:
Pt:efrTE|max(0,x—sT)Jv (7)
Essentially, these existing versions of binomial model, (CRR, JR, and LR models) only
differ in the unique definitions of the parameters; that is the swing factors u and d, as well
as the probabilities p,APy-

Taking Expectation, in equation 3.6, we obtain:

E(s;|= ZC” "ipisu"’d’;j=0,1,2,...,n (8)

From equatlon (3.6)
C,=e "E{max|0,s;—x|}
Based on the properties of Expectation, we can rewrite this as:
Ctze_"{maxiO,E(sT)—x}}
Substituting E (ST) from equation (3.8), we obtain:
C=e "ZC" "Ipi0,s.u" d —x} 9)

Slmllarly,
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P.=e "ZC” "Ipl{0,x—su"d’'} (10)

J O) 1 ’2) )n
Equations (9) and (10) are the basic binomial models for call and put options respectively
assuming that there is no payable dividend on the underlying stock prior to maturity.

2.1 The Adaptive Factor Model (AFM):

The Adaptive Factor Model (AFM) herein introduced, modifies the Peizer-Pratt [4] inversion
function as used in Leisen-Reimer [1] by converting the constant decimal 0.1 to a variable w,
dependent on the strike price x.

2.2 Parametization of Cox, Ross and Rubinstein (CRR) Model
Estimation Of p,
From risk-neutral economy, the expected yield from all assets equals the risk-free rate of interest.
Therefore;
E(s.|]=s.e™ (11)
Where dt is an incremental change in time
Also from the stock price and associated probability lattice
E(Se1|=P,Su+pys.d
Lp,su+sd(l-p,|,

Implying that;
E(s,,,]=p,s,u—p,s,d+s,d (12)
Combining equations (3.11) and (3.12), we have:
p,s.u—p,s.d=s.e™—s,d
We strike out the commom term S, and obtain
p,u—p,d=€"—d
Or
p,lu—d|=e"~d
Which gives us
e —d

- 13
e — (13)

t+1

Estimation of u
We go by matching variance on the lattices as follows

Var (St+dt) =E (Sf+dt) - E2 (Sz+dt) = St2 puu2+ pdd2 - Serrdt (14)

From properties of lognormal distribution, it can be shown that

Va r( ts+dt 62rdt(ea“‘_1) (15)
t

Putting (14) and (15) together, we have

2dt

S[Zledt ° _].):S[Z(puuz"‘pddZ)_stezrdt
giving
ledt+0‘ :puu2+pdd2 (16)

rdt

From (13) we substitute p, with €
u f—

in the rhs of (16) as follows;
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rdt rdt

e —d 2 u—e  »
u +

u—d u—d
Simplifying, we obtain
u2 erd[_u2d+ud2_d2 erdt

u—d
. (xz—xz)erd[—(u—d)
u—d

Llurdle™—1
Putting this back into (16), we have:
erdt+o dt:(u+d)erdt_1 (17)
We have ine degree of freedom. Hence we assume u=1/d which transforms equation (17) as:

2 rde e2rdt+02dt)+erdt:0

ue u(l—
Solving, we obtain a positive root:

u=éé

We simplify the term inside the square root by first-order Taylor expansions, limiting the result
to powers of dt. This gives;

(1+ledt+02‘")_4ledt
2 2
~[2+(2r+0%)dt| —4(1+2rdt)
~40° dt
Hence -
u_2+(2r+02)dt+20\/dt
20°dt
%1+rdt+%ozdt+o\/a—rdt

1
z1+o¢dt+§ozdt

Recall Taylor Series expansion of the exponential function e*:

Therefore
1+o \/E+%GZ dt=e"'*_to order 2

Hence B

u=e”" and d=e o'

This completes the parametization of the CRR model. The parameters for the three versions of
the binomial model that we are comparing this work with are shown in the following table:

CRR (79) JR (83) LR (96)
. :p_' rdt
u:ed\“;dt (rfioz)d&a\s’a u p €
u=e
— —U\;“Ja 1_ 2 .
a=e e | d= 1_}; e
rdt !
e —d 1 _p
= pu—p =— pu_
pdzl_pu

103



Sadiq J. I and Durojaiye M.O. - Journal of NAMP 69, 1 (2025) 99-110

_1-p'
pd_ 1_p
P':hfl(dl)
P:h_l(dz)
In Sy r+lcf2 T
d= X 2
1 O;\/?
d,=d,—o VT
h (2= SO0 T
1 0.1
m=n+—+——
2 n+l

2.3 Parametization for the Adaptive Factor Model
The Adaptive Factor Model introduced here adopts tOhe same parameters as Leisen-Reimer with
a modification to the Peizer-Pratt Inversion function h™'(z) by replacing the constant

01 . . . . . .
0.1€thetermm with a variable w=f(x). The relationship between w anddx is unique for

every strike price (x) determined by a process of quadratic regression as follows:

Consider for example, a European-style call option with parameters:

s =24.78,x =27.00, r= 0.0526,0=0.25, T=0.5

We set w = [0.05, 1.5( with a step size of 0 =10 and x = [24, 30] with step size of dx = 1
For each x in the closed interval x-3:1: x+3, we seek the best w (Optimum w) value in the

interval 0.05:0.00001:1.5 that optimizes C,=e "Z ¢ip, 'pi{0,s.u"d’—x] when adopting

j=0
. 1 1. 0.1
LR parameter, but with m=n+-+——- Y instead of m=n+=+
3 n+l 3 n+l.

Table 1 below shows the set of optimal w values and corresponding strike price x; forming a set
of ordered pairs (x, w)

Table 1: X AND CORRESPONDING OPTIMAL W

X 24 25 26 27 28 29 30

w 0.05565 | 0.05 0.05 0.05594 | 0.06726 | 0.08321 | 0.1033

We then simulate a 2-degree polynomial regression with these ordered pairs to determine an
appropriate algebraic relationship between w and x

. Figure 1: Regression Curve for Optimal w Against Strike Price

104



Sadiq J. I and Durojaiye M.O. - Journal of NAMP 69, 1 (2025) 99-110

Polynomial Regression of Optimal w against Strike Price (x)

- Data Points
| Suadratic Regression

Optimal w

15 20 25 30 35 L ul
Strike Price ()

w =0.000118333%*(x — 27.000000000)* + 0.001904875%*(x - 27.000000000) + 0.055935714
This result suggests that our optimal Ct value is obtained when

w=0.000118333(x—27*+0.001904875 [x —27|+0.055935714 replaces 0.1 in

Similarly, with a step number n=25, we now price the European option in consideration using a
Matlab Code:

The table below shows the result correct to 7 decimal places.

n C: (Our Formula) C¢ (Black-Scholes)
25 1.1398663 1.1398653

Error
0.0000010

3.0. Research Analysis and Discussion

We are comparing our Adaptive Factor Model (AFM) with the three previous works by Cox-
Ross-Rubinstein (CRR), Jarrow-Rudd (JR) and Leisen-Reimer (LR) to determine the relative
pricing accuracy. We base our findings, analysis and discussion on the results from valuing the
option with the following parameters:

s=100,r=0.07, 0=0.3, T=0.5 years, n = 25;

The strike x is ranged from 80 to 120; the same option tasks considered in Leisen-Reimer
(1996).

The values obtained from numerical and statistical simulations are presented in Tabless 2 and 3
as follows.

Table 2: Call Option Parameters:

s =100, r=0.07, 0=0.3, T = 0.5 years, n = 25; the strike x, ranged from 80 to 120.

OBTAINED VALUES
CALL

STRIK | TRUE CRR JR LR AFM

E VALUE

(X)

80 23.7579868 | 23.7408240 | 23.7623839 | 23.7582162 | 23.7579868

90 16.0996347 | 16.1337624 | 16.0843294 | 16.0994138 | 16.0996347
T | 100 0.1337700 | 10.2131669 | 10.2010125 | 10.1331627 | 10.1337701
able3: |75 5.9494636 | 6.0121794 | 6.0245208 | }5.9488863-| 5.9494637

120 328 GHJ]RS21RRQQR 3 3341033 !27R‘)'§R1G 3.2828006

CALL

CRR JR LR AFM

0.0171627 0.0043971 | 0.0002294 0.0000000

0.0341277 0.0153053 | 0.0002209 0.0000000

0.0793969 0.0672424 | 0.0006073 0.0000001

0.0627158 0.0750572 | 0.0005773 0.0000001

0.0360989 0.0513027 | 0.0002190 0.0000000 105




Sadiq J. I and Durojaiye M.O. - Journal of NAMP 69, 1 (2025) 99-110

Put Option Parameters:

s=100,r=0.07, 6 =0.3, T =0.5 years, n = 25; the strike x, ranged from 80 to 120.

PUT (OBTAINED VALUES)

STRIKE | TRUE VALUE CRR JR LR AFM

(X)

80 1.0064201 | 0.9892573 1.0114918 | 1.0066495 | 1.0064201

90 3.0382499 | 3.0041221 2.9894915 | 3.0039013 | 3.0041221

100 | 6.7737085 | 6.7737085 | 6.7622288 | 6.6937043 | 6.6943117

110 | 12.2287752 | 12.2287752 | 12.2417913 | 12.1654821 | 12.1660595

120 | 19.1915495 | 19.1915495 | 19.2074279 | 19.1552315 | 19.1554506

PUT( ERRORS)

CRR JR LR AFM

0.0171627 0.0050718 0.0002294 0.0000000

0.0341277 0146307 0.0002209 0.0000000

0.0793969 0679171 0.0006073 0.0000001

0.0627158 0.0757319 0.0005773 0.0000001 .
3.1. 0.0360989 0.0519774 0.0002190 0.0000000 Comparative

Figure 2. Convergence graph of CRR (with n=200)

CRR Convergence Plot
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Figure 3. Convergence Graph of JR (n=200)
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JR Convergence Plot
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Figure 4. Convergence Graph of LR (n=200)

Leisen-Reimer (L-R) Convergence Plot

L-R
— — —EXACT

—~1.16

114 —

A
1.12

11 i i
0 20 40 60 B0 100 120 140 160 180 200

Step Mumber (n)

Figure 5: Convergence Graph of AFM (n=200)

Adaptive Factor Model (AFM) Convergence Plot
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3.2. Comparative Error Decay Behaviours
Figure 6: CRR Error Decay Plot
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CRR Absolute Error Plot
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Figure 7:  J-R Error Decay Plot

J-R Error Propagation
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Figure 8. LR Error Decay Plot
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Figure 9: AFM Error Decay Plot
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102 Error Propagations (Adaptive Factor Model)
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3.3. Comparative Stability Behaviours

Figure 10: CRR Stability Plot
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Figure 12: LR Stability Plot
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Stability Curve For LR
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Figure 13: AFM Stability Plot
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Findings and Discussions

1.

2.

Comparative Pricing Accuracy: It is clear from tables 2 and 3, that AFM is more
accurate compared to CRR, J-R and LR in terms of option valuation.

Comparative Convergence Rates: The Convergence plots in Figures 2, 3, 4 and 5, we
see that CRR and JR exhibit similar patterns, a non-monotonic and slow convergence
pattern. However, in the case of LR and AFM, the convergence is smoother and faster.
As early as at when n=15, LR converge to a value, with a good degree of accuracy, and
AFM converges even faster. We infer that models based on adaptive-swing factor have
higher rate of convergence than the traditional versions built on fixed swing factors.
Comparative Error Decay Patterns: From the error decay plots in Figures 6 to 9, we
observe that the errors in both cases of CRR and JR reduce in a non-definite manner,
along growing step number n, but in LR and AFM, the errors decay smoothly and vanish
within a short time.

Comparative Stability Behaviours: Figures 10 to 13 are plots of the option values Ct,
against the step size dt for graphical illustrations of the relative stability behaviours.
Based on observed number of divergent points within the interval of step size plotted, we
observe that AFM and LR have better stability properties than CRR and JR.

CONCLUSION

Results from this research suggests preference for models based on adaptive swing factor (AFM
and LR) when valuing options with considerations for good accuracy, rate of convergence and
stability. Among the models compared, the Adaptive Factor Model (AFM) is most accurate for
option valuation. AFM is recommendable to the financial market practitioners for option
valuation
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