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ABSTRACT 

The complexities inherent underlying in the chaotic systems have made long 

term prediction impossible due to their sensitivity dependence on initial 

condition. There is need to employ machine learning to detect intricacies as 

they can capture patterns in complex system and also, extract fractional 

order behaviour from data. In this study, the comparison between the 

performance of Recurrent Neural Networks (RNN) and Long Short-Term 

Memory (LSTM) networks in forecasting fractional-order Lorenz chaotic 

time series data was investigated. The results show that training and test 

data for LSTM networks have lower Root Mean Squared Error (RMSE) 

values than the RNN values, indicating superior generalization to unseen 

data. By effectively modeling long-term dependencies of the chaotic system, 

LSTM enhances prediction accuracy and performance compared to 

traditional RNNs. Accordingly, these findings imply that LSTM networks are 

more capable of modeling fractional-order dynamics, chaotic systems, thus 

being more valuable in applications. 

. 

1. Introduction  

Traditional integer-order calculus is extended to arbitrary orders in fractional-order calculus (FOC) 

[1]. FOC offers a novel method for simulating and analyzing physical processes by providing more 

adjustable parameters. By using fractional derivatives and integrals, it is especially helpful for 

characterizing systems with memory effects or long-range interactions, which are prevalent in a 

variety of physical, biological, and engineering contexts. 
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The dynamic characteristics of semiconductors that conventional integer-order models are unable 

to capture are described by fractional models in electronics [2]. Because of their powerful 

modeling capabilities, a wide range of fractional models have been created and extensively used 

in recent decades in domains including electrical engineering [3], signal processing [4], neural 

networks [5], and others. 

An intriguing subfield of chaos theory that applies the classical theory of chaos to systems with 

fractional-order differential equations is that of fractional-order chaotic systems. These systems 

have complicated behaviors with erratic, aperiodic motion, yet because of the non-integer order of 

differentiation, they have some special characteristics. Due to the severe dependence of fractional-

order chaotic systems on initial conditions, even slight modifications to the initial state can result 

in trajectories that diverge significantly over time. They also exhibit characteristics such as the 

lack of periodic orbits, topological mixing, and unpredictable behavior. Applications in practical 

fields require an understanding and the ability to govern fractional-order chaotic systems. In order 

to secure communication or manipulate chaotic dynamics for desired results, methods such as 

chaos management and synchronization are employed to stabilize chaotic behavior or synchronize 

chaotic systems.  

One distinct type of nonlinear system that is extremely unpredictable is a chaotic system. Even 

more sophisticated in their behavior, fractional-order chaotic systems are crucial to the encryption 

and decoding of secure communications [6, 7]. Since Leon Chua initially presented the well-

known Chua's circuit [8], the application of chaotic systems has gained significant attention. In 

accordance with these concepts, Pham et al., 2017 [9] created a three-dimensional fractional-order 

chaotic system without equilibrium, while [10] created an electronic circuit to produce a 4-D 

fractional-order chaotic system. The problem of approximating fractional-order systems using 

low-order rational functions has been tackled through optimization strategies [11-13]. However, 

fractional-order chaotic systems are difficult to realize in engineering applications due to their 

complexity and unpredictability. Specifically, fractional-order circuit units, which are composed 

of numerous electrical components, are also a source of complexity. In fact, there are two primary 

causes of uncertainty: (1) the chaotic system's extreme unpredictability and non-linearity, and (2) 

the discrepancies between nominal and actual values seen in electrical circuit components [14]. 

As for potential pairings between machine learning and fractional dynamics, we discover that, as 

demonstrated in [15] or [16] machine learning can be utilized to extract fractional order behavior 

from data. In general, the least number of publications were discovered in this category. This could 

be because fractional order dynamics modeling necessitates a deep understanding of machine 

learning and mathematics. 

Research on employing artificial neural networks (ANN) to forecast and describe chaotic systems 

began about ten years ago, with the work of [17]. The authors conducted a study in 2009 to 

investigate the feasibility of using artificial neural networks (ANN) for the purpose of forecasting 

the outputs of nonlinear dynamic systems. They trained the artificial neural networks (ANN) with 

a Nonlinear Autoregressive Moving Averages model with Exogenous input (NARMAX) using the 

Lorenz System, which produced a chaotic data set. Phase diagrams, statistical studies, and 
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Lyapunov exponents were utilized to assess the neural network output and contrast it with the real 

Lorenz System. This paper was substantially motivated by their efforts. 

In this research, a chaotic input signal generated from fractional order chaotic system was used to 

compare the one-step-ahead predictions provided by traditional Recurrent Neural Networks 

(RNNs) and Long Short-Term Memory (LSTM) networks and also to evaluate both networks' 

modeling and prediction abilities. 

2. Fractional Order Chaotic Lorentz System  

The Lorenz fractional order system is given by the nonlinear differential equation below 

𝑑𝛼𝑥

𝑑𝑡𝛼
= 𝑎(𝑦 − 𝑥)          (1) 

𝑑𝛼𝑦

𝑑𝑡𝛼
= (𝑐 − 𝑎)𝑥 − 𝑥𝑦 + 𝑐𝑦                                     (2) 

𝑑𝛼𝑧

𝑑𝑡𝛼 = 𝑥𝑦 − 𝑏𝑧                                                                                                                                     (3) 

where 𝑎 is the Pranti number, 𝑐 is the Rayleigh number,  𝑏 is the magnitude of the system, 𝑥 is 

convection overturning, 𝑦 is the horizontal temperature difference, and 𝑧 is the vertical temperature 

difference. The above equation is fractional order form of integer form of the Lorenz [18, 19].   

This system of equations was created by Lorenz to show that weather unpredictability is not caused 

by random terms of unknown origin, but rather by the properties of the Navier-Stokes equation 

solutions. His fundamental claim was that there might be an attractive and invariant set in a 

deterministic system, where the dynamics are still constrained but also linearly unstable [20]. 

When such strange attractors exist, trajectories are chaotic and appear random [20]. The two 

surfaces of a strange attractor only appear to merge because the uniqueness theorem suggests that 

trajectories cannot overlap or merge. Lorenz came to the conclusion that this seeming merger takes 

place on a "infinite complex of surfaces". These days, we call this "infinite complex of surfaces" 

a fractal. Additionally, two trajectories that start relatively near to one another will soon split and 

take very distinct routes because of the attractor's sensitive dependence on initial conditions. This 

has important practical ramifications because long-term prediction is very difficult due to the 

system's rapid amplification of tiny uncertainty. To have a more complex dynamic, the fractional 

order form of the Lorenz system was realized, and the detail of the dynamical behaviour can be 

seen in [21]. The phase space portrait and the corresponding trajectory are shown in the Figures 1 

and 2 below.  
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Figure 1: Phase portrait of fractional order chaotic Lorenz system at 𝑎 = 35, 𝑏 = 3, 𝑐 = 8/3 with 

initial conditions −10, −8, 37 and 𝛼 = 0.95 

 

Figure 2: Time series of the state variable of fractional order chaotic Lorenz system at 𝑎 = 35, 𝑏 =

3, 𝑐 = 8/3 with initial conditions −10, −8, 37 and 𝛼 = 0.95 

3. Long Short-Term Memory Units (LSTMs) 

LSTMs [22] are a type of long short-term memory unit that was created especially to handle the 

vanishing gradient problem. LSTMs allow RNNs to learn dependencies over considerably longer 

sequences, well beyond 1000-time steps, by preserving a more consistent error signal [23]. Gated 
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cells, which store extra information outside of the normal neural network flow, are integrated to 

do this [23, 24]. Specialized gates govern the functions of an LSTM. These gates include an input 

gate I𝑡 for adding new data to the cell, an output gate Ο𝑡 for retrieving cell entries, and a forget-

gate F𝑡 for resetting cell contents (figure 3). Equations 13, 14, and 15 provide specific details on 

the calculations that control these gates.  

 

Figure 3: Calculation of input, forget, and output gates in an LSTM [25]. 

Ο𝑡 = 𝜎(X𝑡W𝑥𝑜 + H𝑡−1Wℎ𝑜 + b𝑜)                      (13) 

I𝑡 = 𝜎(X𝑡W𝑥𝑖 + H𝑡−1Wℎ𝑖 + b𝑖)                          (14) 

F𝑡 = 𝜎(X𝑡W𝑥𝑓 + H𝑡−1Wℎ𝑓 + b𝑓)                       (15) 

Where W𝑥𝑖,  W𝑥𝑓, W𝑥𝑜  ∈  ℝ𝑑×ℎ and Wℎ𝑖,  Wℎ𝑓, Wℎ𝑜  ∈  ℝℎ×ℎ  are weight matrices while b𝑖,  b𝑓, 

b𝑜  ∈  ℝ1×ℎ are their respective biases. The sigmoid activation function 𝜎 is used to transform the 

output ∈  (0, 1) which each result in a vector with entries ∈ (0, 1). 

 

Next, we introduce a candidate memory cell C̃𝑡 𝜖 ℝ𝑛×ℎ, which performs computations similarly to 

the previously mentioned gates but uses a tanh activation function to produce an output in the 

range (−1, 1). This memory cell also has its own set of weights w𝑥𝑐 𝜖 ℝ𝑑×ℎ , wℎ𝑐 𝜖 ℝℎ×ℎ,  and 

biases b𝑐 𝜖 ℝ`1×ℎ(figure 4). The corresponding computation is outlined in Equation 16. 

 

C̃𝑡 = 𝑡𝑎𝑛ℎ(X𝑡W𝑥𝑐 + H𝑡−1Wℎ𝑐 + b𝑐)                       (16) 

 
Figure 4: Computation of candidate memory cells in LSTM [25]. 
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To integrate various components, we introduce the previous memory content C𝑡−1𝜖 ℝ𝑛×ℎ, which, 

in combination with the gates, determines how much of the previous memory content to retain in 

order to update to the new memory content C𝑡 (figure 5). This process is described in Equation 17, 

where ⨀ represents element-wise multiplication. 

C𝑡 = F𝑡⨀C𝑡−1+I𝑡⨀C̃𝑡                                              (17) 

 
Figure 5: Computing the memory cell internal state in an LSTM model [25]. 

 

The final step is to incorporate the computation of the hidden states H𝑡 𝜖 ℝ𝑛×ℎ  into the framework, 

as shown in Equation 18. 

H𝑡 = O𝑡  ⨀ 𝑡𝑎𝑛ℎ(C𝑡)                                             (18) 

With the tanh function we ensure that each element of H𝑡 is 𝜖 (−1, 1) . The full LSTM framework 

can be seen in Figure 6. 

 
Figure 6: Computation of hidden state in an LSTM [25]. 

 

The Root Mean Squared Error (RMSE) is a commonly used loss function for regression tasks, 

including those involving Long Short-Term Memory (LSTM) networks. The RMSE measures the 

square root of the average of the squared differences between the predicted and true values. 

Results and Discussion 

Equations (1), (2), and (3) yielded data from solving the fractional order Lorenz system, which we 

used to train two models: an LSTM network and a conventional RNN. These models were trained 

to forecast the state of the fractional order Lorenz System one step ahead of time. The simulated 
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data is structured so that neural network models can utilize 30% of the data for testing, while 70% 

of the data for training [26-29]. 

To train the model, two fundamental components must be established: a training dataset and a 

static architecture. The testing dataset, like the training set, consists of three sequences. We need 

to reshape the data into this required configuration. Both the training and testing inputs are in the 

form of 10 size sequences with 3,297 and 6,696 time steps respectively in (x, y, z) format. 

Recurrent neural networks (RNNs) are a type of neural network that uses loops to preserve 

information throughout the network while receiving sequential input by processing each element 

one at a time. These networks are trained using specialized weight adjustment methods, like 

Backpropagation Through Time, which employs a gradient descent-based learning strategy [30]. 

The gradient problem associated with RNN during propagation can either increase or decrease 

exponentially as the number of time steps increases. which can result in the gradients either 

vanishing or exploding. This limits the network's capacity to efficiently learn over time the 

connection between previous and subsequent states in the system [30, 31]. 

The vanishing and exploding gradient problem can be effectively resolved by using LSTM neural 

networks [32]. By storing data for extended periods of time, these customized RNNs are able to 

learn long-term dependencies. LSTM networks use a gated cell mechanism that retains the error 

and allows it to be backpropagated over time and between layers, enabling the network to learn 

over numerous time steps [33, 34]. While maintaining historical system state information, time 

series sequences can be processed and predicted by LSTM networks. As the system's complexity 

rises, they perform better than normal RNNs at learning long-term dependencies [35]. The 

fractional order of Lorenz chaotic time series plots, which are displayed in Figure 7, provides 

insight into the data's complexity as well as the LSTM's capacity for learning and generalization. 

It draws attention to the complex interactions between machine learning and chaotic dynamics, 

guiding model development and evaluation of models. Using fractional-order Lorenz chaotic time 

series is important because it improves the LSTM network's capacity to represent dynamic, 

complex systems, which improves generalization and predictive performance in chaotic settings. 

The sensitive dependence on initial conditions that characterizes chaotic systems is depicted in the 

plot of the fractional order Lorenz system.  Even slight variations in initial conditions can lead to 

vastly different trajectories [19], emphasizing the complexity that LSTMs must learn to model. 

The plot can reveal various complexities inherent in the chaotic system. A rich, convoluted 

trajectory suggests that the LSTM needs to extract meaningful features over time from the 

sequential data [36]. The ability of LSTMs to maintain memory over longer sequences is crucial 

for understanding these complex patterns [22]. 
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Figure 7: the fractional order Lorenz chaotic time series used for training and testing of a LSTM 

model. 



Adeniji et al - Journal of NAMP 69, 1 (2025)139-152 

147 

Figure 8 depicts the Log loss over epoch for LSTM Model. Because the LSTM model has not yet 

mastered the intricate and chaotic temporal relationships included in the fractional order time 

series, it is noted that the log loss is relatively significant during the early training phases. The 

explanation for this is because chaotic systems, particularly those with fractional orders, display 

intricate dynamics, such as sensitivity to initial conditions, extended memory, and non-linearity 

[37]. Because of its recurrent structure, the LSTM requires time to capture these features. The 

LSTM model is successfully learning from the training data while still generalizing to the 

validation set when the epoch increases and the training loss and validation loss decrease jointly. 

This indicates that the model is functioning successfully [38].  It is also observed that beyond 25 

epochs, there is erratic behaviour of the training loss and validation loss which indicate that the 

model is struggling to learn from the fractional chaotic data [39, 40]. It suggests that the model 

may start to learn the training data and being sensitive to particular details that do not hold on the 

validation set. This can occur in chaotic systems where slight perturbances to the input can results 

in significant changes in the output [19]. 

 

Figure 8: Log loss over epoch for LSTM Model in predicting fractional order of Lorenz chaotic 

system. 

 

It is obvious from figure 9 that the training and testing losses drop at the same time, suggesting 

that the model is learning from the training data and generalizing well to the testing data. The 

model is capturing the chaotic temporal patterns without overfitting, as evidenced by the 

diminishing training and testing losses over epochs [39]. The RNN gradually enhances its 

predictions on the training and test sets by capturing temporal dependencies in the fractional 

chaotic time series. The series' chaotic character and the RNN's memory capacity are both 

effectively captured. This is the outcome of appropriate generalization and training. This is as a 

result of the proper training and generalization. The chaotic time series is complex, but the model 

manages to learn the long-term dependencies through its recurrent structure. 
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Figure 9: Training and testing losses over epoch for RNN Model 

The result in Table 1 displayed both the traditional RNN and the LSTM models applied to 

fractional order chaotic data generated from the Lorenz system. It is obvious from figure 10 that 

train RMSE and test RMSE values for LSTM are low compared to the Train RMSE and test RMSE 

values for RNN. The lower test RMSE values for LSTM imply that they generalize better to unseen 

data (test data) than RNN. Because of its simpler architecture, RNN may overfit or perform poorly, 

whereas LSTM avoids these problems by selectively remembering and forgetting patterns. This 

implies that during the training stage, LSTM is more effective at identifying the fundamental 

dynamics and patterns of the fractional-order chaotic system. Unlike RNN, which has trouble with 

vanishing or exploding gradients over time, LSTM's architecture (with memory cells and gates) 

enables it to capture long-term dependencies in sequences more successfully [28, 41]. Because 

LSTM can manage complicated temporal dynamics and long-term dependencies, it is more suited 

for modeling fractional-order chaotic systems, as evidenced by its lower RMSE values in both the 

train and test sets when compared to RNN. The complex and nonlinear dynamics found in chaotic 

systems can be more accurately modeled by LSTMs due to their more advanced memory 

mechanism [28, 42]. Traditional RNNs, on the other hand, might not be able to capture the intricate 

attractors and peculiar behaviors that characterize chaotic systems because of their simpler 

recurring structure.  It is obvious that the LSTM is more effective at capturing the chaotic attractors 

and fractional-order features of the system since it can minimize loss more efficiently than the 

RNN. Although modeling chaotic systems is highly difficult, the LSTM's architecture enables 

more accurate representation, as evidenced by the reduced loss values. In situations where ordinary 

RNNs would not be able to catch intricate time series patterns, LSTMs with lower RMSE values 

outperform typical RNNs in capturing chaotic behavior and storing long-term dependencies 

utilizing memory cells. 

Table 1: Comparison of RNN and LSTM models' prediction performance on train and test data 

across several epochs. 

Epoch LSTM RNN 

Train RMSE Test RMSE Train RMSE Test RMSE 

25 0.073586 0.076948 0.188000 0.617000 
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50 0.055446 0.058238 0.180000 0.322000 

75 0.050663 0.053167 0.131000 0.382000 
100 0.052248 0.051021 0.121000 0.279000 

125 0.044221 0.044684 0.094000 0.172000 

150 0.042600 0.040065 0.056000 0.125000 

200 0.038220 0.035155 0.032000 0.067000 

 

Figure 10: Bar chart representing RNN and LSTM models' prediction performance on train and 

test data across several epochs. 

Conclusion 

In this study, LSTM and a traditional RNN models are used in modeling and predicting the state 

of a fractional order chaotic system for one-step ahead. It is observed that train RMSE and test 

RMSE values for LSTM are low compared to the Train RMSE and test RMSE values for RNN. 

The lower test RMSE values for LSTM imply that they generalize better to unseen data (test data) 

than RNN. In addition, the LSTM’s performs better in terms of forecasting future values in a 

fractional order chaotic time series due to its ability to model and learn long-term dependencies 

inherent in the fractional order chaotic system than the RNN, with its limited ability to retain 

relevant long-term information and cannot predict future states accurately. Learning about 

fractional-order chaotic Lorenz systems can indeed provide useful insights for real-world 

applications like weather forecasting by capturing memory effects (e.g., persistent weather 

patterns, climate cycles like El Niño), stock market predictions, and traffic management. 

Further studies can indeed be beneficial in investigating the effectiveness of predicting fractional-

order chaotic systems of various other types of Recurrent Neural Networks (RNNs), compared 

to the traditional RNN and LSTM. Each variant of RNN brings unique strengths that could 

potentially improve the modeling of complex systems like fractional-order chaotic systems, which 

exhibit both nonlinearity and memory effects. By incorporating memory effects and long-term 

dependencies, these models can improve predictions and decision-making in these critical areas. 
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