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ABSTRACT 

In this study, the computational finite difference scheme of Non-Standard 

Finite Difference Methods (NSFDM) for solving second-order Fredholm 

Integro-differential equations will be built. The numerical technique and the 

exact answer coincide at any point inside the interval of integration, 

according to the method's structure. A methodological study was also 

performed to demonstrate that the solutions to the second-order Fredholm 

integro-differential problem have a matching finite difference scheme. The 

resulting approach was then used to solve various current second-order 

Fredholm integro-differential equation problems, and the numerical 

comparison of results demonstrate the closeness and dependability of the 

derived finite difference scheme. 

 

1. Introduction  

One of the equations used in science and engineering the most is the integral-differential equation. 

It deals with a function's derivatives as well as integrals. After doing extensive research and basing 

his study on hereditary effects, Volterra examined population expansion. As a result, integro-

differential equations were developed [1]. The integro-differential equations, which fall under the 

categories of Fredholm and Volterra equations, assert that the unknown function (x) and one or 

more of its derivatives, such as y'(x), y''(x),..., appear both out and under the integral sign [2]. 

When it comes to the integral component of Volterra type, the upper bound of the region is 

variable, while for the Fredholm type, it is a fixed value. The Fredholm integro-differential 

equation has gained the interest and the attention of several researchers and these are observed in 

[7], [8], [9], [11] and [12] just to mention few among many over the the years. 
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 This researchers have used several numerical schemes in great deal to large advantage over the 

analytic approach and despite these great contribution from the use of numerical schemes there is 

still exist short-comings in terms of closeness, dependability and stability. In this investigation, we 

seek to address these short-comings by employing the derived finite scheme from an interesting 

perspective. 

Let )(xy be the exact solution of the integro-differential equation, 

( ) ( ) ( ) ( ),, xfdttytxmxDy
b

a
=−    bax ,      1 

with 

( ) ( ) ( ) ( ) ( ) ( )  ,
1

1211

j
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m

m

jm

m

jm dbycayc =+
=

−−  ,,...,1 vj =     2 

where ( )xf and ( )txm ,  are given continuous functions 21 ,,,, jmjm ccba
 

and 
jd some given 

constants. 

The form of the second order Fredholm integro-differential equations is to be examined here is 

  ( ) ( , ) ( , ) ( ) ,

b

a

y x f x y k x t y t dx a x b = +       3 

subject to the initial conditions  

y(a) = α, y’(a) = β        4 

where α and β are real constants. The function f (x  y) and the kernel k (x, t ) are known. 

It is necessary to ascertain the solution y(x), which demonstrates the holding of the following 

properties; 

• a solution must exists, 

• the solution is unique, and 

• the solution’s behavior changes continuously with the initial conditions. 

Integro-Differential Equations (IDEs) have garnered increasing attention in recent times. 

Applications of IDEs in the theory of engineering, mechanics, physics, chemistry, astronomy, 

biology, economics, potential theory, and electrostatics are numerous and span a wide range of 

fields. Since it is typically challenging to solve the integro-differential equations analytically, a 

numerical approach is needed. Circuit analysis is one of the many scenarios in science and 

engineering that are modeled by Fredholm integro-differential equations. A system of integro-

differential equations can be used to represent the activity of interacting excitatory and inhibitory 

neurons.  Additionally, they play a major role in the modeling of several physical processes, 

including neural networks and signal processing [3]. The Fredholm integro-differential equations 

have several applications in the fields of electromagnetic theory, dispersive waves, and ocean 

circulation [2]. One particular use of the Non-Standard Finite Difference Method (NSFDM) is the 

finite difference schemes. In the beginning, [4] described the precise linearization methodology. 

His thought was on the subject of whether it was possible to find a linear ordinary differential 

equation that shares the same general solution as the supplied linear ordinary differential equation. 

According to [5], if there is a solution to an ordinary differential equation, then it has the exact 

discretization. Several writers have created several approaches to solving equation (1).  Lagrange 

interpolation method [6], Tau operational method [7], Legendre polynomial method [8], 

generalized minimal residual method [9], differential transform method with Adomian 

polynomials [10], canonical basis function method [11], power series and chebyshev series 

approximation methods [12], Bessel function method [13], cubic spline collocation method [14], 
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nonstandard finite difference method [15], homotopy analysis transform method [2], on exact 

finite difference scheme, [16] among others. 

However, the computation of Fredholm integro-differential equations will be done in this study 

using a finite difference approach. 

 

Defnition [17] 1:  

A Finite Difference Scheme is one for which the solution to the difference equation has the same 

general solution as the associated differential equation. Below, we give the standard finite discrete 

representations for some derivatives;  

1n ny ydy

dt h

+ −
→         5 

  
2

1 1

2 2

2n n ny y yd y

dx h

+ −− −
=        6 

 

Defnition[ 18] 2:  

A finite difference scheme is called non-standard finite difference method, if at least one of the 

following conditions is met; 

i) in the discrete derivative, the traditional denominator is replaced by a non-negative 

function such that 
2( ) ( ), 0h h o h as h = + →         7 

ii) non-linear terms that occur in the differential equation are approximated in a non-local 

way i.e. by a suitable function of several points of the mesh. For example, 
2

1 1
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1 1 1

,
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MATERIALS AND METHODS 

It is crucial to note from the analysis of the Finite Difference Scheme that the solution to equation 

(1) can be expressed as, 

 '

0 0 0( ) ( , , , , )y x y y x x =         9 

with 

 
0 0 0 0

0 0 0 0

( , , , )

( , ', , ) '
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Consider a discrete model of equation (1) given by, 

1 1( , , , , , )n n n n ny g h y y x x h+ += =        11 

Its solution can be expressed in the form, 

 0 0 0( , , , ', , )n ny h y y x x =         12 
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with 

 
0 0 0 0

0 0 0 0

( , , , )

( , ', , ) '

y x x y

y x x y

 

 
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Defnition 3 

Equations (1) and (11) are said to have the same general solution if and only if 

( )n ny y x=           14 

for any values of h . 

Theorem 1 

The differential equation (1) has a Finite Difference Scheme by the expression, 

 1 1 1 1, , , , ,n n n n n ny y y x x x + + − +=        15 

where ϕ is that of equation (9). 

Proof 

The group characteristic of equation (1)'s solutions provides, 

 ( ) [ , ( ), , , ]y x h y x x h x x h + = − +        16 

If we now apply the changes, 

x → xn ,   y(x) → yn         17 

then, equation (16) becomes, 

 1 1 1 1, , , , ,n n n n n ny y y x x x + + − +=                    18 

equation here is the necessary ordinary difference equation, and its universal solution is the same 

as equation (1), the following ramifications of the above theorem are significant. 

 (i) Equation (16) holds for all x and h if all of the solutions to (1) exist for all x = ∞.  

If not, the relationship is taken to hold whenever (16)'s right side is clearly defined.  

(ii) The existence theorem is all that the theorem is. That is, a Finite Difference Scheme exists if 

an ordinary differential equation can be solved. No instructions are provided on how to actually 

build such a scheme, according to [17].  

 (iii) The theorem's main result is that, for a fixed but variable step-size, the solution to the 

difference equation is precisely equal to the solution to the ordinary differential equation on the 

computing grid. 

Formulation of the New Exact Finite Difference Scheme 

The previously mentioned Theorem 1 will be used to build a new finite difference method for 

second-order Fredholm integro-differential equations of the form (1), for which there are explicit, 
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exact general solutions. One of the characteristics of this scheme is that there are no numerical 

insolvabilities un its solutions. But it's crucial to remember that, given a collection of functions 

that are linearly independent, 

 ( ) ; 1,2,...,y x i N =          19 

The equivalent discrete functions can always be found as solutions to a Nth order linear difference 

equation [19]. Let's 

( ), ( )i i

n n ny y x x x n hn =  =         20 

Afterward, the necessary difference equation is given by the subsequent determinant: 
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1 1 1 1
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+ + + +
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Let us consider the equation of form (1) and suppose that the numerical solution of the difference 

equation at the same position x = xn marked by yn has the same general solution as the exact 

solution of the problem (1) at x = xn represented by y(xn). Consequently, the matching difference 

equation from equation (21), is provided by, 
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Evaluating the determinant of (22) to have 

( ) ( )

( )

2 1 1 1 2 2

2 1 1 2
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On solving (23) to have 
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Shifting downward the index by one unit, we obtain 

( ) ( )

( )
1 1 1 1 1 1 1

1

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n n n n n n n n n
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    − − + − =
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 25 

The Finite Difference Scheme in Equation (25) can solve any problem in Equation (1). It is 

noteworthy that equation (25) has the form (15). 
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Numerical Stability 

As numerical computation advances, stability guarantees that the error between the numerical 

solution and the exact answer stays restricted. In other words, the computed solution, f*(x), is close 

to f(x*), the solution of a slightly perturbed issue. Stability issues with the way that 

, ( , )i jf fi t j S−   for fixed discretization steps Δt and ΔS behave as numerical computing 

advances.  

Conditional Issues: The concept "near" can be measured by further information about the 

particular problem:
( ) ( )

( ) 0
( )

xf x f x
C f x

f x x

−
    where C is called condition number of 

this problem. If C is large, the problem is ill-conditioned. 

Error Estimate 

In this section, an error estimator for the approximate solution of (25) is obtained. We defined 

)()()( xyxyxe NN −= as the error function of the approximate solution )(xyN  to )(xy , where, 

)(xy  is the exact solution and )(xyN is the approximate solution computed for various values. 

RESULTS AND DISCUSSION 

Numerical Experiments 

The Finite Difference Scheme developed in this research shall be adopted in solving some 

modeled real-life Fredholm integrodifferential equations of the form (1). The following notations 

shall be used in the tables below. 

EMGAA - Absolute error in Mohammed et. al., (2016) 

EGEA - Absolute error in Gegele et. al., (2014) 

ETG - Absolute error in Taiwo and Gegele (2014) 

Exec t / sec . - Execution time per seconds for computation at each stage 

Problem 1: 

Consider the model Fredholm integro-differential equation, 

1

1

( ) 32 (1 ) ( ) , 1 1y x x xt y t dt x
−

 = + + −         26 

subject to the initial conditions, 

(0) 1, (0) 1y y= =          27 

The exact solution to the problem is given by 2 33
( ) 1 5

2
y x x x= + + . See: Gegele et. al., (2014) 

On the application of the newly derived Finite Difference Scheme (23) on Problem 1 we obtain 

the result presented in Table 1 below. 
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Table 1: Showing the result for Problem 1 

X Exact Approx. Error EMGAA Exec 

1 1.0199999999999998 1.0199999999999998 0.0000 1.250E-005 0.0136 

2 1.1000000000000001 1.1000000000000001 0.0000 5.000E-004 0.0215 

3 1.2700000000000000 1.2700000000000000 0.0000 4.375E-004 0.0218 

4 1.5600000000000001 1.5600000000000001 0.0000 3.700E-004 0.0220 

5 2.0000000000000000 2.0000000000000000 0.0000 2.625E-004 0.0223 

6 2.6200000000000006 2.6200000000000006 0.0000 2.000E-004 0.0225 

7 3.4500000000000002 3.4500000000000002 0.0000 1.875E-004 0.0226 

8 4.5200000000000005 4.5200000000000005 0.0000 1.300E-003 0.0317 

9 5.8600000000000003 5.8600000000000003 0.0000 1.212E-003 0.0319 

10 7.5000000000000000 7.5000000000000000 0.0000 2.500E-003 0.0321 

 

figure 1: graphical representation of the Fredholm integro-differential equation (problem 1) 

Problem 2: 

Consider the model Fredholm integro-differential equation, 

0

( ) ( ) , 0 1

t

xy x e x xty t dt x = − +         28 

subject to the initial conditions, 

(0) 1, (0) 1y y= =          29 

The exact solution to the problem is given by ( ) xy x e= . See: Mohammed et. al., (2016) 

On the application of the newly derived FDS (23) on Problem 2 we obtain the result presented in 

Table 2 below. 
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Table 2: Showing the result for Problem 2 

X Exact Approx. Error EMGAA Exec 

1 1.1051709180756477 1.1051709180756477 0.0000 2.01e-008 0.0294 

2 1.2214027581601699 1.2214027581601699 0.0000 1.27e-008 0.0396 

3 1.3498588075760032 1.3498588075760032 0.0000 1.36e-007 0.0463 

4 1.4918246976412703 1.4918246976412703 0.0000 5.25e-007 0.0568 

5 1.6487212707001282 1.6487212707001282 0.0000 2.29e-006 0.0664 

6 1.8221188003905091 1.8221188003905091 0.0000 3.98e-006 0.0667 

7 2.0137527074704766 2.0137527074704766 0.0000 1.59e-005 0.0668 

8 2.2255409284924679 2.2255409284924679 0.0000 7.76E-004 0.0670 

9 2.4596031111569499 2.4596031111569499 0.0000 3.67E-004 0.0671 

10 2.7182818284590455 2.7182818284590455 0.0000 5.65E-004 0.0672 

Figure 2: graphical representation of the Fredholm integro-differential equation (problem 2) 

Problem 3: 

Consider the model Fredholm integro-differential equation, 

1

2

1

146 1
( ) 10 ( ) , 1 1

35 2
y x x xty t dt x

−

 = − + −        30 

subject to the initial conditions, 

 (0) 1, (0) 0y y= =          31 

The exact solution to the problem is given by 
2 3( ) 1 5y x x x= + − . See: Taiwo and Gegele (2014) 

On the application of the newly derived FDS (23) on Problem 3 we obtain the result presented in 

Table 3 below. 
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Table 3: Showing the result for Problem 3 

X Exact Approx. Error ETG Exec 

0.1 1.0490000000000002 1.0490000000000002 0.0000 6.008E-008 0.0124 

0.2 1.1919999999999999 1.1919999999999999 0.0000 7.918E-008 0.0218 

0.3 1.4230000000000003 1.4230000000000003 0.0000 8.432E-007 0.0312 

0.4 1.7360000000000002 1.7360000000000002 0.0000 6.884E-007 0.0316 

0.5 2.1250000000000000 2.1250000000000000 0.0000 5.718E-007 0.0320 

0.6 2.5840000000000005 2.5840000000000005 0.0000 5.623E-007 0.0321 

0.7 3.1070000000000007 3.1070000000000007 0.0000 4.009E-007 0.0322 

0.8 3.6880000000000011 3.6880000000000011 0.0000 2.929E-007 0.0323 

0.9 4.3210000000000006 4.3210000000000006 0.0000 2.887E-007 0.0325 

1.0 5.0000000000000000 5.0000000000000000 0.0000 1.999E-007 0.0326 

 

figure 3: graphical representation of the Fredholm integro-differential equation (problem 3) 

Problem 4: 

Consider the model Fredholm integro-differential equation, 

1

0

5
( ) 11 ( ) , 0 1

3
y x x y t dt x = − +         32 

subject to the initial conditions, 

(0) (0) 1y y= =            33 

The exact solution to the problem is given by 2 35 5
( ) 1

6 3
y x x x x= + + − . See: Taiwo and Gegele 

(2014) 
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On the application of the newly derived EFDS (23) on Problem 4 we obtain the result presented 

in Table 4 below. 

Table 4: Showing the result for Problem 4  

X Exact Approx. Error ETG Exec 

0.1 1.1066666666666667 1.1066666666666667 0.0000 3.489E-006 0.0116 

0.2 1.2200000000000000 1.2200000000000000 0.0000 3.410E-006 0.0231 

0.3 1.3300000000000001 1.3300000000000001 0.0000 2.983E-006 0.0236 

0.4 1.4266666666666665 1.4266666666666665 0.0000 2.837E-006 0.0237 

0.5 1.5000000000000000 1.5000000000000000 0.0000 2.602E-006 0.0241 

0.6 1.5400000000000000 1.5400000000000000 0.0000 2.591E-006 0.0242 

0.7 1.5366666666666666 1.5366666666666666 0.0000 2.429E-006 0.0243 

0.8 1.4800000000000000 1.4800000000000000 0.0000 1.994E-006 0.0244 

0.9 1.3599999999999999 1.3599999999999999 0.0000 1.405E-006 0.0245 

1.0 1.1666666666666667 1.1666666666666667 0.0000 1.067E-008 0.0247 

 

figure 4: graphical representation of the Fredholm integro-differential equation (problem 4) 

From the results generated in Tables 1-4, it is clear that the Finite Difference Scheme in equation 

(23) is computationally reliable and efficient. This is because the computed solution matches 

exactly with the exact solution for each of the problems. It is also obvious from the results that the 

method performed better than the ones with which we compared our results with. The method is 

also efficient because from the tables, the execution times per seconds are very small. This shows 

that the method generates results very fast. 
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CONCLUSION 

In this study, a new Finite Difference Scheme for solving second order Fredholm Integro-

differential equations of the form (1) has been devised. The methods EGAA and ETG 

demonstrated weak numerical instability while the method FDS showed numerical stability during 

computation procedures. 
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