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Abstract 

It is very obvious that the assumption of the classical linear regression model are rarely 

fulfilled in real life situation. The violation of assumption of independent regressors and equal 

error variances leads to the problems of multicollinearity and heteroscedasticity respectively. 

In practice, both problems do exist together in a data set. Most of the developed existing 

estimators addressed each problem separately. Usually, one of the problems is handled while 

the other is left uncared for. Estimators to handle the two problems jointly are hardly common. 

There is therefore a need to develop estimators that can handle parameter estimation even 

when there is multicollinearity and heteroscedasticity. Consequently, this paper proposed 

estimators to handle parameter estimation of linear regression model having both 

multicollinearity and heteroscedasticity problems with the aim of identifying the most efficient 

(best) when both are in existence. The Ordinary least squares (OLS) estimators resulted to the 

weighted Least Squares model with Heteroscedasticity measures by real weight (OLSRW) and 

three other weights (OLSW1, OLSW2, OLSW3. Similarly, the Generalized Ridge Esimator 

(GRE) and the Ordinary Ridge Estimator (ORE) respectively resulted into proposed estimators 

GRERW, GREW1, GREW2, GREW3, ORERW, OREW1, OREW2, and OREW3. Monte carlo 

simulation were conducted one thousand (1000) times on a linear regression model exhibiting 

different levels of multicollinearity (ρ = 0.6, 0.8, 0.9, 0.99, 0.999, 0.9999 ) with various known 

natures of heteroscedasticity, error variances (𝝈𝒊
𝟐 = 𝟎. 𝟎𝟏, 𝟏. 𝟎, 𝟐𝟓, 𝟏𝟎𝟎, 𝟔𝟐𝟓) at seven levels of 

sample size (n=15, 20, 30, 50, 100, 250, 500). The comparison of the estimators were done 

based on the their finite sampling properties especially the mean squares error, and were 

compared at each level of multicollinearity, heteroscedasticity, error variance and sample sizes. 

Ranking of the estimators were also conducted on the basis of their performances using the 

criteria. The results of investigation revealed that with known Heteroscedasticity structures 

present with multicollinearity problem, the proposed GRERW estimator is best. Also, when 

there is problem of multicollinearity with known natures of heteroscedasticity but assumed to 

be unknown, the proposed estimator GREW2 performed better. 

 
Keywords: Linear regression model, Multicollinearity, Heteroscedasticity, Error variance, Proposed        

     estimators, Sample size. 

 

1.0 INTRODUCTION 

Linear regression model is recognized as the most widely used statistical techniques for solving functional relationship 

problems among variables, it explains observations of a dependent variable with observed values of one or more 

independent variables. A classical linear regression model is commonly used for prediction tool. The k- variable linear 

regression model used to study the relationship between a dependent variable and k-independent variables is represented by: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯+ 𝛽𝑘𝑥𝑘𝑖 + e𝑖 , 𝑖 = 1, … , 𝑛                                                        (1) 

 Where y is the dependent variable, x1, …, xk are the independent or explanatory variables, 0 ,1, …,k are the unknown 

parameters to be estimated,  e𝑖  is the random or disturbance or stochastic term and k is the number of explanatory variables 

excluding the constant term. 
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In vector form, the equation (1) becomes 

𝑌 = 𝑋𝛽 +  𝜀                                                                                                                         (2) 

Such that 
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                                                                          (3) 

Where y is an n×1 vector of observations on a response variable, X matrix is an n×(k+1) full rank of independent variables, 

β is a (k+1)×1 vector of unknown parameters to be estimated, 𝜀 is  n×1 vector of  random error [1] 

The parameter β in a linear regression model commonly estimated using Ordinary least squares estimator (OLSE). The 

OLSE of β is given as: 

𝛽̂𝑂𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑌                                                                                                            (4) 

𝛽̂𝑂𝐿𝑆 is unbiased estimator of β. The estimator is generally preferred, provided all the underlying classical linear regression 

model assumptions are satisfied [2]. It had been observed that some of these assumptions in the model are hardly satisfied 

in real life situation. Many authors including [3], Fomby [4], Ayinde et al [5] have suggested various situations and 

instances where these assumptions may be violated and itemized their consequences on the OLS estimator when used to 

estimate the model parameter. The violation of assumption of independent regressors leads multicollinearity as found in 

business and economic data. Multicollinearity is the term used to explain cases in which the explanatory variables or 

regressors are correlated (Lukman [6]). Multicollinearity has been a serious problem in most economic variables that 

required urgent attention. If there is perfect multicollinearity, the regression coefficients are indeterminate and their 

standard error will be infinite, if the multicollinearity is not perfect but high, estimates of the regression coefficients are 

possible but  they do have large standard errors which affect both the inferences and forecasting that is based on the model 

[7].  

The Ordinary least squares (OLS) estimates remain unbiased and inefficient when multicollineariy is present [8]. From the 

literature reviewed, several authors have worked on the methods of detecting the presence of multicollinearity and 

developed the alternatives estimators to estimate the parameters in the linear regression model. These include Ridge 

regression estimator developed by Hoerl and Kennard [9], [10], [11], [12], [13], [14], [15]. There is another method based 

on principal component regression suggested by [16] to handle multicollinearity  by eliminating the model instability and 

reduces the variances of the regression coefficients. Some authors adopted the method of partial least squares [17]  and 

[18] which generalizes and combine attributes from principal component analysis and multiple linear regression. 

However, the concept of ridge was introduced by [9]. Ridge regression is biased method of estimation which has been 

shown to be more efficient than OLS estimator when data exhibit multicollineatrity. It is obtained by adding a ridge 

parameter k, to the main diagonal element of 𝑋′𝑋, the correlation matrix. 

The ridge estimator is given by: 

𝛽̂𝑅 = (𝑋 ′𝑋 + 𝐾𝐼)−1𝑋 ′𝑌                                                                                                         (5) 

Where k is a non-negative constant called the biasing or ridge parameter. It is observed that when k=0, the equation (5) 

returns to ordinary least square estimator. In ridge regression, different estimation techniques had been proposed for finding 

the optimal biasing parameter k, among authors are [9], [19, [20], [13], [21], [22] and recently [15], [23], [24], [25]. 

In addition, with different k values , the estimator becomes Generalized Ridge Estimator (GRE) and with constant k value, 

the estimator is Odinary ridge estimator (ORE). In considering the properties of the ridge estimator in (5), the mean is 

obtained by taking the expectation in (5) to give 

𝐸(𝛽̂𝑅) = 𝑍𝛽                                                                                                                             (6) 

Where = (𝑋′𝑋 + 𝐾𝐼)−1𝑋′𝑋 .  

The bias of the estimator is defined as: 

𝐵𝑖𝑎𝑠(𝛽𝑅) = 𝐸(𝛽̂𝑅) − 𝛽                                                                                                           (7) 

Then, by substituting (6) into (7) yields 

Bias(𝛽̂𝑅) =  − (X′X + KI)−1K β                                                                                            (8) 

Bias2(β̂
R
) =   [(X′X + KI)−1]2𝐾2β

2                                                                                                  (9) 

The variance of the ridge estimator is derived to yield:  

V(𝛽̂𝑅) =  σ2[(X′X + KI)−1]2X′X                     (10) 

While the mean square error (MSE) of the ridge estimator is obtained as: 

MSE (𝛽̂𝑅) =  σ2[(X′X + KI)−1]2𝑋|X + [(X′X + KI)−1]2𝐾2β2                                              (11) 
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Since X′X is a positive definite matrix, there exists an orthogonal matrix 𝑄 such that 𝑋′𝑄𝑋 = 𝑇, where 𝑇 = 𝑑𝑖𝑎𝑔(𝑡1, 𝑡2, … . . , 𝑡𝑝) and 

𝑡1, 𝑡2, … . . , 𝑡𝑝 are the eigenvalues of  X′X. Now let 𝛼 = 𝑄′𝛽,  then,  

𝑀𝑆𝐸(𝛽̂𝑅)  = 𝜎2 ∑
𝑡𝑖

(𝑡𝑖+𝑘)2
𝑝
𝑖=1 + 𝐾2 ∑

∝𝑖
2

(𝑡𝑖+𝑘)2
𝑝
𝑖=1                                                               (12) 

Where 𝛼𝑖 is the 𝑖𝑡ℎ element of the vector  𝛼 = 𝑄′𝛽. In view of the above, the MSE of the OLS estimator is the trace of the variance-

covariance matrix given as: 

MSE (𝛽̂𝑂𝐿𝑆)  =  𝜎2trace(𝑋|X )
−1

= 𝜎2 ∑
1

𝑡𝑖

𝑝
𝑖=1                                                                  (13) 

Several biasing ridge parameter k, for Generalized ridge estimator exist in literature. These include the one proposed by [9]. They gave 

the optimum value of k as: 

𝐾𝑖 =
𝜎2

𝛼𝑖
2  ,  𝑖 = 1, 2,… . , 𝑝                                                                                                           (14) 

Since 𝜎2 and 𝛼𝑖
2 are generally unknown, they were suggested by Hoerl and Kennard to be replaced by their corresponding unbiased 

estimates 𝜎̂2 and 𝛼̂𝑖
2 , therefore,  

𝐾̂𝑖 = 
𝜎̂2

𝛼̂𝑖
2  , where  𝜎̂2 =

∑ 𝜀𝑖
2𝑛

𝑖=1

𝑛−𝑝
 . 

Several biasing ridge parameter k, for Ordinary ridge estimator also exist in literature. These include the  one proposed by [9] given 

as: 

𝐾̂𝐻𝐾 =
𝜎̂2

𝑀𝑎𝑥(𝛼̂𝑖
2)

                                                                                                                    (15) 

When all the assumptions of the classical linear regression model hold except that the error terms are not homoscedastic i.e 𝐸(𝜀′𝜀)  ≠
 𝜎2𝐼  which implies that  𝐸(𝜀′𝜀)  ≠  𝜎2ῼ  . the resulting model is the Generalized least squares (GLS) with ῼ [26]. Assume P to be a non-

singular symmetric matrix such that ῼ =  𝑃′𝑃 as positive definite. Then 𝑃−1 is introduced to a linear regression model in (2) to yield 

𝑃−1𝑌 =  𝑃−1𝑋𝛽 + 𝑃−1𝜀 
and the transformed model becomes: 

𝑌∗ =  𝑋∗𝛽 + 𝜀∗                                                                                             (16) 

Thus, the variance of the transformed disturbance term (𝜀𝑖
∗) is homoscedastic. Consequently, the OLS estimates of the transformed model 

have all the optimal properties of OLS and the usual inferences are valid. By Gauss-markov theorem [27], the best linear unbiased 

estimator of 𝛽 via the transformed (16) is defined as 

𝛽̂𝐺𝐿𝑆 = (𝑋∗′𝑋∗)
−1

𝑋∗′𝑌∗                                                                                                           (17) 

which is equivalent to: 

 𝛽̂𝐺𝐿𝑆 =  [𝑋 ′Ω−1𝑋]
−1

𝑋 ′Ω−1𝑌                                                                                                   (18) 

Where ῼ−1 = 𝑃−1′
𝑃−1, the Aitken has shown that GLS estimator 𝛽̂ of 𝛽 as defined in (17) is efficient among the class of linear unbiased 

estimators of 𝛽 with variance-covariance of  𝛽 given by: 

𝑉𝑎𝑟(𝛽̂𝐺𝐿𝑆) = 𝜎2 (𝑋 ′Ω
−1

𝑋)
−1

                                                                            (19) 

When  heteroscedasticity exists in a data set. The predicted values are unbiased and inefficient, and the sampling variances of the error 

term are known to be underestimated causing the t and F tests to be invalid [4]; [8]; [28]. To compensate for the lost of efficiency. 

Several methods have been developed, these include the estimators provided by [29], [30], [31], [32], [33], [34] and [35]. In most cases, 

when both problems do present in a data set. The use of ridge regression estimator or weighted least squares estimator becomes 

inappropriate to hand both problems simultaneously. Consequently, this paper proposed and examined estimators to handle both 

multicollinearity and heteroscedasticity jointly.  
 

2.0  MATERIALS AND METHODS 

2.1 The Proposed Estimator Derivative 

Having obtained the Ridge regression estimator as earlier stated in (5) as 𝛽̂𝑅 = (𝑋′𝑋 + 𝐾𝐼)−1𝑋 ′𝑌, then, applying OLS Estimator in the 

transformed model (16) resulted into Generalized least squares estimator  𝛽̂𝐺𝐿𝑆 = (𝑋∗′𝑋∗)
−1

𝑋∗′𝑌∗ which is earlier stated in (17). The proposed 

Estimator with the conclusion of (5) and (17) becomes Weighted ridge estimator which is derived as: 

𝛽̂𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 =  (𝑋∗′
𝑋∗ + 𝐾𝐼)

−1
𝑋∗′

𝑌∗                                                                                       (20) 

Then, solving equation (20) resulted into: 

𝛽̂𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = [𝑋′Ω−1𝑋 + 𝐾𝐼]−1(𝑋′Ω−1𝑌)                                                      (21)   

Where ῼ−1 is assumed to be known, however,  ῼ−1 is not always known in practice. It is often estimated but to have model corrected for 

heteroscedasticity, weight variables are required [36]; [37]. 

The following estimators, both existing and proposed are used in the study. Applying OLS estimator (16) resulted into weighted least 

square estimator which includes OLSRW, OLSW1, OLSW2, OLSW3, furthermore, if GRE and ORE are applying into (16), it resulted 

into the Proposed estimators: GRERW, GRERW1,GREW2, GREW3, ORERW, OREW1, OREW2 and OREW3.                                                 
  

2.2 Model Formulation for Monte Carlo Study 

To examine the proposed and existing estimators, a regression model of the form is considered 

𝑦𝑖 =  𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + e𝑖                                                                 (22)  

Where   e𝑖 is the error term assumed to be normally distributed with mean zero and variance 𝜎𝑖
2, i.e e𝑖~𝑁(0, 𝜎𝐼

2). The Xs are fixed 

independent variables exhibiting different degrees of multicollinearity and 𝑦𝑖 is the response variable, 𝛽𝑠 are known values. 
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2.3 Procedure for the Explanatory variables  

The specified intercorrelated  normally distributed variables were generated using the equations provided by [10] and used 

by [7], [12], [13], [38],  [39] for three (3) explanatory variables. This is given as: 

𝑋𝑡𝑖 = (1 − 𝜌2)
1

2𝑍𝑡𝑖 + 𝜌𝑍𝑡𝑝                                                                                                     (23) 

t = 1, 2, 3.     i= 1, 2, …., p, where 𝑍𝑡𝑖 is the independent standard normal distribution with mean zero and unit variance, 𝜌 

is the correlation among the explanatory variables. The values of 𝜌 were taken as 0.6, 0.8, 0.9, 0.99, 0.999, and 0.9999. In 

this study, the number  of explanatory variables (p) was taken to be three (3). 
 

2.4 Procedure for Generating the Error Term 

The error term were generated using the distribution of standard normal variate stated below in (24) to exhibit different 

form of Heteroscedasticity and the various heteroscedasticity  structures considered in this paper includes 𝜎𝑖
2 =

𝜎2𝐴𝐵𝑆(𝑋𝑖1) [40], 𝜎2𝑋𝑖1
2  [30], 𝜎2(1 + 𝑋𝑖1)

2 [41], 𝜎2𝑒𝑥𝑝(𝑋𝑖1) [42] and 𝜎2⌊𝐸(𝑌𝑖)⌋
2. Following the distribution of the 

standard normal variate, 𝜀𝑖~𝑁(0, 𝜎𝑖
2) 

𝜀𝑖 = 𝑍𝜎𝑖  , where 𝑍 ~𝑁(0, 1) 

=  𝑍𝜎√ῼ                                                                                                                               (24)   
 

2.5 Procedure for Generating the Response variable 

The true values of the regression coefficient of model (22) are fixed as 𝛽0 = 4.0, 𝛽1 = 3.4, 𝛽2 = 4.5 and 𝛽3 = 6.0. Having 

generated 𝑋𝑖 with different level of multicollinearity and error terms with various natures of heteroscedasticity. The values 

of the dependent variable is generated using (22). Monte Carlo simulation experiments were carried out one thousand 

(1000) times at seven sample sizes (n= 15, 20, 30, 50, 100, 250, 500). 
 

2.6 Criterion for Investigation and Performance of Proposed Estimator. 

Evaluation, examination and comparison of the estimators were done based on the finite sampling properties especially the 

mean squares error (MSE) which comprises variance and square of bias of the estimator. 

𝑀𝑆𝐸(𝛽̂𝑖) =  
1

1000
∑ (𝛽̂𝑖𝑗 − 𝛽̂𝑖)

21000
𝑗=1                                                                                     (25) 

For each replicate, the estimated MSE for each of the estimators (𝛽̂) is obtained. The estimator with the smallest estimated 

MSE is considered best. 
 

3.0 RESULTS 

The full summary of the simulated results under the mean square error criterion at various sample sizes, multicollinearity 

levels, known natures of heteroscedasticity, error variances are pictorially presented in figures 1, 2, 3, 4, 5, 6 while with 

known but assumed to be unknown heteroscedasticity structures equally presented in figures  7, 8, 9, 10, 11 and 12. 

 
Figure 1: Graphical Representation of the Mean Square Error  of the Estimators at Different Sample Sizes  When Multicollinearity is High with Known 

Nature of Heteroscedasticity of the Form  ABS(X)  and Error Variance of 25. 
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Figure 2: Graphical Representation of the Mean Square Error  of the Estimators at Different Sample Sizes   When Multicollinearity is 

High with Known Nature of Heteroscedasticity of the Form (𝑋)2 and  Error Variance of 0.01. 
 

 
Figure 3: Graphical Representation of the Mean Square Error of the Estimators at Different Sample Sizes When Multicollinearity is High with Known  

Nature of Heteroscedasticity of the Form   (1 + 𝑋)2 and Error Variance of 25. 
 

 
Figure 4: Graphical Representation of the Mean Square Error  of the Estimators at  Different Sample Sizes  When Multicollinearity is Severe  with 

Known  Nature of Heteroscedasticity of the Form  EXP(X)  and Error Variance of 100. 

 
Figure 5: Graphical Representation of the Mean Square Error  of the Estimators at Different Sample Sizes When Multicollinearity is Severe  with Known  

Nature of Heteroscedasticity of the Form  [𝐸(𝑌)]2 and Error Variance of 1. 
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Table 1 :     Number  of Times Each Estimator Produced Minimum Mean Square Error When  Counted  Over  Level of 

Multicollinearity , Known Natures of Heteroscedasticity  and  Error  Variance. 

Estimators 

Sample Size 

TOTAL RANK 15 20 30 50 100 250 500 

OLS 0 0 0 0 0 0 0 0 12.5 

OLSW1 2 0 0 0 1 0 0 3 7 

OLSW2 0 0 0 0 0 0 0 0 12.5 

OLSW3 0 0 0 0 0 0 0 0 12.5 

OLSRW 15 2 5 12 17 20 24 95 3 

GRE 5 1 0 0 0 0 0 6 5 

GREW1 2 0 0 0 3 1 2 8 4 

GREW2 0 0 4 0 0 0 0 4 6 

GREW3 0 0 0 0 0 0 0 0 12.5 

GRERW 96 107 95 90 75 72 62 597 1 

ORE 0 0 0 0 2 0 0 2 8 

OREW1 0 0 0 0 1 0 0 1 9 

OREW2 0 0 0 0 0 0 0 0 12.5 

OREW3 0 0 0 0 0 0 0 0 12.5 

ORERW 30 40 46 48 51 57 62 334 2 

     TOTAL 150 150 150 150 150 150 150 1050   

NOTE : Estimator with highest frequency is bolded 

  
Figure 6 :   Graphical Representation of the Frequency of the Best Estimators Under  Mean Square Error Criterion at Different Sample 

Sizes When There is Multicollinearity With Known Natures of Heteroscedasticity in the Model. 
 

 
Figure 7: Graphical Representation of the Mean Square Error of the estimators at Different Sample Sizes When Multicollinearity is 

Severe with known but Assumed to be Unknown Nature of Heteroscedasticity of the form  𝐴𝐵𝑆(𝑋)  and Error Variance of  25. 
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Figure 8:   Graphical Representation of the Mean Square Error of the estimators at Different Sample Sizes When Multicollinearity is High with known 

but Assumed to be Unknown Nature of Heteroscedasticity of the form  (𝑋)2  and Error Variance of  1.      

  
Figure 9: Graphical Representation of the Mean Square Error of the estimators at  Different Sample Sizes When Multicollinearity is High with known but 

Assumed to be Unknown Nature of eteroscedasticity of the form  (1 + 𝑋)2    and Error Variance of 0.01. 

 

Figure 10: Graphical Representation of the Mean Square Error of the estimators at Different Sample Sizes When Multicollinearity is 

High with known but Assumed to be Unknown Nature of Heteroscedasticity of the form 𝐸𝑋𝑃(𝑋)   and Error  Variance of  1. 

 
Figure 11:   Graphical Representation of the Mean Square Error of the estimators at Different Sample Sizes When Multicollinearity is 

Severe with known but Assumed to be Unknown Nature of Heteroscedasticity of the form [𝐸(𝑌)]2  and Error Variance of  100. 
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Table 2:  Number of Times Each Estimator Produces Minimum Mean Square Error When  Counted Over Levels of        

Multicollinearity, Known  But Assumed to be Unknown Natures of  Heteroscedasticity And Error Variance. 

Estimators 

Sample Size 

TOTAL RANK 15 20 30 50 100 250 500 

OLS 3 0 0 2 0 0 0 5 10 

OLSW1 6 0 0 0 4 3 2 15 8 

OLSW2 1 0 0 0 1 1 0 3 11 

OLSW3 0 0 0 0 0 1 0 1 12 

GRE 97 88 24 23 23 0 0 255 1 

GREW1 11 25 50 22 35 18 18 179 3 

GREW2 15 19 38 56 14 65 47 254 2 

GREW3 2 0 18 23 38 15 30 126 4 

ORE 5 3 4 0 1 0 0 13 9 

OREW1 5 9 10 8 12 12 13 69 6 

OREW2 3 6 4 13 8 29 23 86 5 

OREW3 2 0 2 3 14 6 17 44 7 

    TOTAL 150 150 150 150 150 150 150 1050   

NOTE : Estimator with highest frequency is bolded. 

 

Figure 12:   Graphical Representation of the Frequency of the Best Estimators Under Mean Square Error Criterion at 

Different Sample Sizes When There is Multicollinearity With Known But Assumed to be Unknown Natures of 

Heteroscedasticity in the Model. 
 

4.0 DISCUSSION 
Based on Figures1, 2, 3, 4, 5 and 6 pictorially presented. It can be generally observed that, as the sample size increases, the 

mean square error generally reduces. However, except for a particular known nature of heteroscedasticity of the form 

(1 + 𝑋)2 , the mean square error of some of the estimators do converge to zero as pictorially presented in figures 1, 2, 4 and 

5. As the multicollinearity increases with known natures of heteroscedasticity, the mean square error of the estimators 

increases. Also, as error variance increases, the mean square error of the estimators increases. Having counted the number 

of times each estimator has minimum mean square error over the six (6) levels of multicollinearity, five (5) known natures 

of heteroscedasticity and five (5)  levels of error variance, Table 1 was observed. Thus, the maximum frequency is expected 

to be one-hundred and fifty (150) and so the closer the frequency of an estimator to one-hundred and fifty (150), the better 

the  estimator.                                                          

The following are observed from Table 1. The Generalized ridge estimator real weight (GRERW) is best estimator with 

highest frequency at all level of sample sizes to handle the problem of multicollinearity with known forms of 

heteroscedasticity jointly. Morever, ORERW generally fair when 𝑛 ≤ 500. Although, ORERW performs equally with 

GRERW when 𝑛 = 500. More generally, the best three (3) estimators in terms of  mean square error are GRERW, 

ORERW and OLSRW. Figure 6 presents their frequency of counts at different sample sizes. The simulated results 

pictorially presented in figures 7, 8, 9, 10 and 11 under the mean square error  criterion at various sample sizes, 

multicollinearity levels, known but assumed to be unknown heteroscedasticity structures and error variances, it can be 

observed that as the sample size increases, the mean square error of the estimators generally decreases.  
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However, with the exception of a particular known  but assumed to be unknown nature of heteroscedasticity of the form  

(1 + 𝑋)2 , the mean square error of some of the estimators do converge to the same value as pictorially presented in figures 

7, 8, 10 and 11. As multicollinearity increases with known but assumed to be unknown natures of heteroscedasticity, the 

mean square error of the estimators increases. Table 2 result was obtained based on number of times each estimator 

produced minimum mean square error when counted over levels of multicollinearity, known but assumed to be unknown 

natures of heteroscedasticity and error variances. The following are observed form Table 2, the Generalized ridge estimator 

(GRE) is best estimator when ≤ 20 , while GREW1 is best when 𝑛 = 30  to remedy the problem of multicollinearity with 

known but assumed to be unknown forms of heteroscedasticity jointly. GREW2 is best estimator  when sample size is 

between 50 and 500, except when 𝑛 = 100, at this instance, GREW3 is best. More generally, the five (5) best estimators in 

terms of mean square error are GRE, GREW2, GREW1, GREW3 and OREW2. Figure 12 presents their frequency of 

counts at different sample sizes. 
 

5.0 CONCLUSION 

The study has proposed estimators for the estimation of parameter linear regression with multicollinearity and 

heteroscedasticity problems. When there is multicollinearity with known natures of heteroscedasticity problem , the 

proposed estimator GRERW performs more efficiently than the existing ones to remedy both problems simultaneously. 

Since the natures of heteroscedasticity are rarely known in reality, which resulted to multicollinearity with known but 

assumed to be unknown natures of heteroscedasticity in the model. The proposed estimator GREW2 performs better and 

more efficient than the existing estimators to handle the problem of multicollinearity with known but assumed to be 

unknown natures of heteroscedasticity jointly.                                                                                                                                              
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