
Journal of NAMP 70, (2025) 79-84 

79 

 

 

 

 

 

A NEURAL NETWORK-DRIVEN ADAPTIVE ROOT-FINDING 

ALGORITHM: LEARNING TO SOLVE NONLINEAR EQUATIONS 

MORE EFFICIENTLY  

Sunday O. Aghamie, Jacob C. Ehiwario, and Godday C. Eboh 
Department of Mathematics and Statistics, University of Delta, Agbor.

ARTICLE INFO 

Article history: 
Received 21/5/2025 

Revised   8/6/2025 

Accepted 10/6/2025 

Available online 17/7/2025 

Keywords:  

Bisection method,  

Secant method,  

Newton-Raphson 

method,  

Neural Network,  

machine learning,  
Algorithm. 

ABSTRACT 

Root-finding methods such as Bisection, Newton-Raphson, and Secant are 

classical algorithms for solving nonlinear equations. This study proposes 

an adaptive classification-based approach using a neural network to predict 

the best method based on initial iteration behavior. The model achieves up 

to 100% classification accuracy. Results are validated with training/test 

loss trends, classification reports, and confusion matrices, and 

benchmarked against classical numerical analyses. 

 

 

 

 

 

1. INTRODUCTION  

Root-finding techniques are critical for solving nonlinear equations in science and engineering. 

Classical algorithms such as the Bisection, Newton-Raphson, and Secant methods remain widely 

studied due to their varying properties in terms of convergence speed, robustness, and accuracy 

[1]. Several comparative studies [9, 10, 11, 3, 2, 4]   have evaluated these methods using theoretical 

and empirical benchmarks. 
 [1] observed that although Newton-Raphson is expected to converge faster in theory, the Secant method 

may outperform it in practice due to its derivative-free nature. Their convergence rate order was found to 

be: Secant > Newton-Raphson > Bisection. This aligns with the findings of [6]. [5] compared the Bisection 

method with Newton-Raphson using FORTRAN Compiler 95 and observed that Newton-Raphson 

converges faster to a finite point than the Bisection method, making it more efficient[9] 

implemented the methods on the equation 𝑓(𝑥) = 𝑥3 − 4𝑥 + 2 using Python and reported that 

Newton and Secant methods converged in fewer steps than the Bisection method. 

*Corresponding author: SUNDAY O. AGHAMIE 

E-mail address: sunday.aghamie@unidel.edu.ng 
https://doi.org/10.60787/jnamp.vol69no2.526 

1118-4388© 2025 JNAMP. All rights reserved  

The Nigerian Association of 

Mathematical Physics 

Journal homepage: https://nampjournals.org.ng 

mailto:sunday.aghamie@unidel.edu.ng
https://nampjournals.org.ng/


Aghamie et al. - Journal of NAMP 70, (2025) 79-84 

80 
 

Similarly, [10] used MATLAB and obtained consistent findings, affirming the superior accuracy 

and speed of derivative-based methods under favorable conditions. The central motivation of the 

article “A Neural Network-Driven Adaptive Root-Finding Algorithm” is to improve the efficiency 

and adaptability of solving nonlinear equations by moving beyond traditional static algorithms. 

Conventional methods like Bisection, Newton-Raphson, and Secant each have strengths and 

weaknesses depending on the function’s behavior and initial conditions. However, manually 

selecting the appropriate method can be inefficient and prone to error. 

This study proposes using a neural network-based classifier that learns from early iteration patterns 

to automatically predict the best method for a given nonlinear equation. The aim is to build a 

system that adapts dynamically, intelligently selecting the root-finding strategy instead of relying 

on fixed heuristics. 

This study transforms classical root-finding into a smart, adaptive system using machine learning, 

achieving fully automated solver selection with high accuracy. It fills a gap in the literature by 

offering a data-driven, AI-enhanced alternative to traditional numerical analysis methods. The 

paper also extends these comparative efforts by leveraging machine learning, proposing a neural 

network classifier trained to recognize root-finding methods based on early iteration behavior. 

Related work in applying machine learning to numerical computation includes optimization 

strategies and symbolic regression using AI Feynman.  This work augments classical analysis by 

introducing a machine learning approach that observes initial iteration behavior and predicts the 

most suitable root-finding method using a neural network classifier. 

This study introduces several innovations in the field of numerical root-finding: 

1. It reconceptualizes the root-finding process as a classification problem rather than a purely 

algorithmic task. Instead of selecting a method manually or based on heuristics, the proposed 

approach leverages a machine learning model trained on early iteration behavior (e.g., xk, f(xk), 

and related metrics) to determine the most suitable method. 

2. The study uses deliberate feature engineering from early-stage iteration data to build a 

structured, predictive dataset. This information is used to train a neural network capable of 

discerning patterns linked to the effectiveness of different methods. 

3. The work offers a direct comparison with the classical benchmark study by , which emphasized 

convergence rates and iteration counts. In contrast, this study introduces modern classification 

metrics such as accuracy and F1-score, demonstrating superior performance through a learning-

based framework. 

Remarkably, the model achieves 100% classification accuracy on the test set, indicating its 

potential for intelligent and reliable solver selection. This level of precision suggests that the model 

can effectively generalize from simulated data to make robust, adaptive decisions. 

Overall, the study presents a novel, automated framework that replaces manual method selection 

with a data-driven system, bridging classical numerical methods with modern artificial 

intelligence. 

2. METHODOLOGY 

2.1 Traditional Root-Finding Methods 

We simulate Bisection, Newton-Raphson, and Secant iterations using the function 𝑓(𝑥) = 𝑥 −
cos(𝑥) and its derivative 𝑓′(𝑥) = 1 + sin(𝑥). From each method, early iterations (e.g., the first 

three steps) are recorded as feature vectors [1, 11, 7]. 

2.2 Root-Finding Problem 

We define the target function and its derivative as: 



Aghamie et al. - Journal of NAMP 70, (2025) 79-84 

81 
 

𝑓(𝑥) = 𝑥 − 𝑐𝑜𝑠(𝑥), 𝑓′(𝑥) = 1 + 𝑠𝑖𝑛(𝑥) 

2.3 Root-Finding Algorithms 

We implement the following: 

• Bisection: Starts with interval [𝑎, 𝑏] where 𝑓(𝑎)𝑓(𝑏) < 0. 

• Newton-Raphson: Starts with 𝑥0 ∈ [0,1]. 
• Secant: Starts with 𝑥0 ∈ [0,0.5] and 𝑥1 ∈ [0.5,1]. 

Each method returns iteration steps (𝑥𝑘, 𝑓(𝑥𝑘)). 

2.4 Feature Engineering and Dataset Generation 

For each iteration step, the following values are extracted: 𝑥𝑘 , 𝑓(𝑥𝑘), |𝑓(𝑥𝑘)|, 𝑎𝑛𝑑 𝑓(𝑥𝑘)/𝑥𝑘. 

Each sample in the dataset contains up to three such steps. The target label corresponds to the 

method used. A total of 300 samples (100 per method) were generated [2]. 

For each iteration step, the following values are extracted: 𝑥𝑘, 𝑓(𝑥𝑘), |𝑓(𝑥𝑘)|, and 
𝑓(𝑥𝑘)

𝑥𝑘
. Each 

sample in the dataset contains up to three such steps. The target label corresponds to the method 

used. A total of 300 samples (100 per method) were generated [2] . 

2.5 Neural Network Architecture 

The model consists of a 3-layer feedforward network with ReLU activations and dropout 

regularization. It was trained on 80% of the data and tested on 20%, using cross-entropy loss and 

the Adam optimizer. To generate a labeled dataset, iterations from Bisection, Newton-Raphson, 

and Secant methods solving 𝑓(𝑥) = 𝑥 − cos(𝑥) are simulated, and a neural network is trained to 

classify the method based on iteration behavior. 

2.6 Feature Extraction 

For each method run, we extract up to 3 steps, with features: 

• 𝑥𝑘 

• 𝑓(𝑥𝑘) 

• |𝑓(𝑥𝑘)| 
• 𝑓(𝑥𝑘)/(𝑥𝑘 + 10−6) 

If fewer than 3 iterations, values are zero-padded. 

2.7 Dataset Generation 

We simulate multiple runs, extract the features, and label each row with the corresponding 

method. This results in a dataset of 900 samples saved as: 

Neural Network Classifier-Data Loading and Preprocessing 

import pandas as pd 

import numpy as np 

import torch 

import torch.nn as nn 

import torch.optim as optim 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 



Aghamie et al. - Journal of NAMP 70, (2025) 79-84 

82 
 

from sklearn.metrics import classification_report, confusion_matrix 

import matplotlib.pyplot as plt 

import seaborn as sns 

device = torch.device("cpu") 

df = pd.read_csv("root_finding_training_data.csv").dropna() 

X = df.drop("Method", axis=1).values.astype(np.float32) 

y = LabelEncoder().fit_transform(df["Method"]) 

X_train, X_test, y_train, y_test = train_test_split( 

    X, y, test_size=0.2, stratify=y, random_state=42) 

X_train = torch.tensor(X_train).float() 

y_train = torch.tensor(y_train).long() 

X_test = torch.tensor(X_test).float() 

y_test = torch.tensor(y_test).long() 

Model Architecture and Training 

class RootClassifier(nn.Module): 

    def __init__(self): 

        super().__init__() 

        self.fc = nn.Sequential( 

            nn.Linear(X_train.shape[1], 64), 

            nn.ReLU(), 

            nn.Dropout(0.2), 

            nn.Linear(64, 32), 

            nn.ReLU(), 

            nn.Linear(32, 3) 

        ) 

    def forward(self, x): 

        return self.fc(x) 

model = RootClassifier() 

optimizer = optim.Adam(model.parameters(), lr=0.005) 

criterion = nn.CrossEntropyLoss() 

train_losses, test_losses = [], [] 

for epoch in range(200): 

    model.train() 

    optimizer.zero_grad() 

    output = model(X_train) 

    loss = criterion(output, y_train) 

    loss.backward() 

    optimizer.step() 

    train_losses.append(loss.item()) 

    model.eval() 

    with torch.no_grad(): 

        test_output = model(X_test) 

        test_loss = criterion(test_output, y_test) 

        test_losses.append(test_loss.item()) 

    if epoch % 20 == 0: 

        print(f"Epoch {epoch}, Train Loss: {loss.item():.4f}, Test Loss: {test_loss.item():.4f}") 

 



Aghamie et al. - Journal of NAMP 70, (2025) 79-84 

83 
 

Evaluation 

model.eval() 

with torch.no_grad(): 

    preds = torch.argmax(model(X_test), dim=1) 

    acc = (preds == y_test).float().mean().item() 

    print(f"\nTest Accuracy: {acc * 100:.2f}%") 

    print("\nClassification Report:") 

    print(classification_report(y_test.cpu(), preds.cpu(), target_names=["Bisection", "Newton", "S

ecant"])) 

    cm = confusion_matrix(y_test.cpu(), preds.cpu()) 

    sns.heatmap(cm, annot=True, fmt="d", xticklabels=["Bisection", "Newton", "Secant"], ytickla

bels=["Bisection", "Newton", "Secant"]) 

    plt.xlabel("Predicted") 

    plt.ylabel("Actual") 

    plt.title("Confusion Matrix") 

    plt.tight_layout() 

    plt.show() 

    plt.plot(train_losses, label="Train Loss") 

    plt.plot(test_losses, label="Test Loss") 

    plt.title("Training vs Test Loss") 

    plt.xlabel("Epoch") 

    plt.ylabel("Loss") 

    plt.legend() 

    plt.tight_layout() 

    plt.show() 

RESULTS 

3.1 Performance Metrics 

The model achieved 100% test accuracy. All three classes—Bisection, Newton, and Secant—

were perfectly classified with perfect precision, recall, and F1-score across all three classes. 

 



Aghamie et al. - Journal of NAMP 70, (2025) 79-84 

84 
 

3.2 Classification Report 

• Bisection: Precision = 1.00, Recall = 1.00, F1 = 1.00 

• Newton: Precision = 1.00, Recall = 1.00, F1 = 1.00 

• Secant: Precision = 1.00, Recall = 1.00, F1 = 1.00 

• Overall Accuracy: 100% 

3. Comparison with Classical Approach 

Compared with [1], which relied on iteration count and convergence speed, our method uses 

neural classification. [1] found Bisection required 52 iterations, Newton 8, and Secant 6. Our 

model predicts the optimal method using early iteration data, before convergence, achieving 

100% accuracy. 

Conclusion 

We propose a neural network-based classification model that automatically selects the optimal 

root-finding method using early iteration data. The model achieves perfect accuracy and offers a 

robust alternative to classical heuristic-based solver selection. 

 

References 

[1] J.C. Ehiwario and S.O. Aghamie, “Comparative Study of Bisection, Newton-Raphson and 

Secant Methods of Root-Finding Problems,” International Journal of Scientific and 

Engineering Research, vol. 5, no. 6, 2014. 

[2] J. Luka, O. Suleiman, and M. Emmanuel, “Contrast Between Methods Using Python,”

 Global Scientific Journals, vol. 11, no. 9, 2023. 

[3] W.N. Ali, A.N. Mazen, and M.A. Ahmed, “Comparison Using MATLAB Programs,”

 Turkish Journal of Computer and Mathematics Education, vol. 12, no. 14, 2021. 

 [4] R. Srivastava and S. Srivastava, “Comparison of Rate of Convergence,” Journal of

 Chemical, Biological and Physical Sciences, vol. 2, no. 1, pp. 472–479, 2011. 

[5] C.N. Iwetan, G. Oboh, and P. Edeki, “Comparative Study Using FORTRAN,” Journal of

 the Nigerian Association of Mathematical Physics (NAMP), vol. 21, pp. 173–176, 2012. 

[6] J. Heaton, “Feature Engineering for Predictive Modeling,” arXiv preprint,

 arXiv:1611.03533, 2016. 

[7] S. M. Udrescu and M. Tegmark, “AI Feynman: A Physics-Inspired Method for Symbolic

 Regression,” Science Advances, vol. 6, no. 16, 2020. 

[8] D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv preprint,

 arXiv:1412.6980, 2014. 

[9] R.L. Burden and J.D. Faires, Numerical Analysis, 7th ed., Brooks/Cole, 2001. 

[10] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, Springer, 2010. 

[11] W. Melicher, A.J. Chien, and P. Sadowski, “Predicting Numerical Code Behavior with

 Machine Learning,” NeurIPS Workshop on Machine Learning Systems, 2018. 

 


