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ABSTRACT 

Game theory models competitive interactions, like military, political, or 

business conflicts, mathematically. Two-person zero-sum games, where 

one’s gain equals another’s loss, are central. Optimal strategies are often 

found by converting these games into linear programming (LP) problems 

solvable via methods like the simplex algorithm. However, converting LP 

problems into game formulations is less explored. This study bridges this 

gap by reformulating LPPs as skew-symmetric and nonsymmetric games. 

This approach benefits economic applications like comparative advantage 

and diet problems with positive constraints and prices. Skew-symmetric 

games’ Super LPP offers computational efficiency due to sparse structures. 

By enabling bidirectional translation between games and LP, this work 

expands game theory’s scope and enhances understanding of two-person 

zero-sum game properties, strategic frameworks, and their mathematical 

underpinnings.  

1. INTRODUCTION  

Game theory is the examination of strategic interactions employed to assess scenarios where two 

or more individuals act based on their individual self-interest; and the final results of such 

interactions are contingent on the choices made by each participant [1]. Most conventionally, these 

decision makers are called Players, and they engage in interactions within a framework known as 

the game. The players in the game are rational, meaning they actively strive to achieve particular 

objectives, taking into account their understanding or predictions of other players' behavior, and 

employing strategic thinking. 

A game is defined by its players/decision makers, the rules, the resulting payoffs, the values 

assigned to these payoffs, and the variables controlled by each player. In a game, a player makes 

decisions independently. A player is not necessarily one person; it may be a group of individuals 

acting in an organization, a firm, or an army. The key characteristic of a player is their specific 

objective within the game, and that they act autonomously to pursue that objective [4]. 
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Games can be classified based on several criteria in game theory. Some common categories include 

cooperative versus non-cooperative games, zero-sum versus non-zero-sum games, simultaneous 

versus sequential games, perfect information versus imperfect information games, and so many 

others. These categorizations enable researchers and analysts to better study and comprehend the 

dynamics and outcomes of strategic interactions in different types of games. Notable among these 

classes is the zero-sum versus non-zero-sum Games: Zero-sum games have a constant total payoff, 

meaning any gain by one player is balanced by an equal loss by another player. Non-zero-sum 

games allow for situations where the total payoff can increase or decrease. 

The two-person zero-sum game is characterized by the principle that one player's loss equals the 

other player's gain. The key features of this game can be illustrated using a payoff matrix. When 

both players have more than two operational strategies with no inferior strategies (i.e., the players 

must use each of their strategies in a given proportion) then we can determine the optimal mixed 

strategies of the game problem (i.e., the optimal proportion each strategy should be used) by 

converting it to a linear programming problem and solving the LP problem by the appropriate 

method [2]. 

There are abounding research reports in the literature on converting game problems into linear 

programming problems. Notably among these are the reports of Hillier and Lieberman [4], Taha 

[7], and Ekoko [2].  

Hameed, Iman and Sahar [3] explored the effectiveness of Linear Programming (LP) and Genetic 

Algorithms (GAs) in solving game theory problems, particularly in the context of basketball 

strategy.  

Olofınlade and Joshua [5] aimed to determine the optimal advertising strategies for 

telecommunications firms in Nigeria's telecommunications industry, like MTN, Airtel, Globacom, 

and 9mobile by applying game theory principles.  

However, there appears to be limited research in the existing literature on the reverse process. In 

other words, few studies have focused on transforming linear programming problems (LPP) into 

game problems. This study, therefore, focuses on formulating an LPP as a game problem, with the 

primary objective of converting an LPP into both a skew-symmetric game and a nonsymmetric 

game. For the sake of clarity, and to focus on the research’s objective, we’ll limit the scope of this 

paper to the two-person zero-sum game. 

METHOD 

We seek to obtain the Skew-symmetric game from a linear programming problem. 

First, we examine the following basic linear programming problem of the maximization form: 

Maximize 𝑧 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯+ 𝑐𝑛𝑥𝑛 

subject to  

 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 ≤ 𝑏1 

 𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 ≤ 𝑏2 

⋮  
 𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯+ 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚 

 𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0  
Next, we derive the dual of the given LPP in system (1) by interchanging the rows and columns, 

reversing the inequality signs, and converting the objective from maximization to minimization, 

as demonstrated below;  

(1) 
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Minimize 𝑧∗ = 𝑏1𝑦1 + 𝑏𝑦2 + ⋯+ 𝑏𝑚𝑦𝑚 

subject to  

 𝑎11𝑦1 + 𝑎21𝑦2 + ⋯+ 𝑎𝑚1𝑦𝑚 ≥ 𝑐1 

 𝑎12𝑦1 + 𝑎22𝑦2 + ⋯+ 𝑎𝑚2𝑦𝑚 ≥ 𝑐2 

⋮  
 𝑎1𝑛𝑦1 + 𝑎2𝑛𝑦2 + ⋯+ 𝑎𝑚𝑛𝑦𝑚 ≥ 𝑐𝑛 

 𝑦1, 𝑦2, … , 𝑦𝑚 ≥ 0  
The next step is to combine the LPP in system (1) and its dual LPP in system (2) together to form 

a super LPP. To merge the two LPPs, they must be of the same type—either both should have a 

maximization objective function or both should follow a minimization objective function. 

We shall first of all make sure both of them have a maximization objective function by We convert 

the minimization dual LPP in system (2) to maximization type by multiplying the objective 

function and constraints by −1, then, all the “≥” changes to “≤” . The dual LPP (2) in 

maximization objective function type is: 

Maximize −𝑧∗ = −𝑏1𝑦1 − 𝑏𝑦2 − ⋯− 𝑏𝑚𝑦𝑚 

subject to  

 −𝑎11𝑦1 − 𝑎21𝑦2 − ⋯− 𝑎𝑚1𝑦𝑚 ≤ −𝑐1 

 −𝑎12𝑦1 − 𝑎22𝑦2 − ⋯− 𝑎𝑚2𝑦𝑚 ≤ −𝑐2 

⋮  
 −𝑎1𝑛𝑦1 − 𝑎2𝑛𝑦2 − ⋯− 𝑎𝑚𝑛𝑦𝑚 ≤ −𝑐𝑛 

 𝑦1, 𝑦2, … , 𝑦𝑚 ≥ 0  
The combination of the LPP in system (1) and its dual LPP in system (3) produces a super LPP 

given in system (4) below: 

Maximize 𝑧 − 𝑧∗ = −𝑏1𝑦1 − 𝑏𝑦2 − ⋯− 𝑏𝑚𝑦𝑚 + 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯+ 𝑐𝑛𝑥𝑛 

subject to  

 0𝑦1 + ⋯+ 0𝑦𝑚 + 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 ≤ 𝑏1 

 0𝑦1 + ⋯+ 0𝑦𝑚 + 𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 ≤ 𝑏2 

⋮  
 0𝑦1 + ⋯+ 0𝑦𝑚 + 𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯+ 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚 

 −𝑎11𝑦1 − 𝑎21𝑦2 − ⋯− 𝑎𝑚1𝑦𝑚 + 0𝑥1 + ⋯ + 0𝑥𝑛 ≤ −𝑐1 

 −𝑎12𝑦1 − 𝑎22𝑦2 − ⋯− 𝑎𝑚2𝑦𝑚 + 0𝑥1 + ⋯ + 0𝑥𝑛 ≤ −𝑐2 

⋮  
 −𝑎1𝑛𝑦1 − 𝑎2𝑛𝑦2 − ⋯− 𝑎𝑚𝑛𝑦𝑚 + 0𝑥1 + ⋯+ 0𝑥𝑛 ≤ −𝑐𝑛 

 𝑦1, 𝑦2, … , 𝑦𝑚 ≥ 0; 𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0  

Taking a look at (4), it is easy to note its skew symmetric (anti symmetric) form. The coefficients 

𝑎𝑖𝑗’s are present in two instances: once with a plus sign and once in transposed form 𝑎𝑗𝑖 with a 

minus sign. Similarly, both the b's and c's appear twice, once in the vertical and once in the 

horizontal, with opposite algebraic signs.  

In a game, all columns share a similar structure, prompting the question: How can we manipulate 

the right-hand 𝑏𝑖’s and coefficients 𝑐𝑗’s of the programming problem to resemble ordinary 𝑎𝑖𝑗 's? 

To address this, we multiply each coefficient and right-hand side values in (4) by a positive 

constant 𝑝. Since, the new optimal solution and objective will only differ by the multiple, 𝑝. Then, 

we move the right-hand coefficients of the constraints to the left-hand side, since games are usually 

(2) 

(3) 

(4) 
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written without any right-hand coefficients. We now have 𝑛 + 𝑚 + 1 new variables, namely, 

(𝑝𝑦1, … , 𝑝𝑦𝑚, 𝑝𝑥1, … , 𝑝𝑥𝑛, 𝑝), the super problem, as given by (4) can be written as: 

Maximize 𝑧 − 𝑧∗ = −𝑏1𝑝𝑦1 − ⋯− 𝑏𝑚𝑝𝑦𝑚 + 𝑐1𝑝𝑥1 + ⋯+ 𝑐𝑛𝑝𝑥𝑛 + 0 

subject to  

 0𝑝𝑦1 + ⋯+ 0𝑝𝑦𝑚 + 𝑎11𝑝𝑥1 + ⋯+ 𝑎1𝑛𝑝𝑥𝑛 − 𝑝𝑏1 ≤ 0 

       ⋮  
 0𝑝𝑦1 + ⋯+ 0𝑝𝑦𝑚 + 𝑎𝑚1𝑝𝑥1 + ⋯+ 𝑎𝑚𝑛𝑝𝑥𝑛 − 𝑝𝑏𝑚 ≤ 0 

 −𝑎11𝑝𝑦1 − ⋯− 𝑎𝑚1𝑝𝑦𝑚 + 0𝑝𝑥1 + ⋯+ 0𝑝𝑥𝑛+𝑝𝑐1 ≤ 0 

⋮  
 −𝑎1𝑛𝑝𝑦1 − ⋯− 𝑎𝑚𝑛𝑝𝑦𝑚 + 0𝑝𝑥1 + ⋯+ 0𝑝𝑥𝑛+𝑝𝑐𝑛 ≤ 0 

 𝑝𝑦1, … , 𝑝𝑦𝑚 ≥ 0; 𝑝𝑥1, … , 𝑝𝑥𝑛 ≥ 0, 𝑝 > 0  

It is worthy of note that the duality theorem guarantees that the optimal objective value, 𝑧 of the 

original LP problem and that of its dual, 𝑧∗ must be exactly equal (i.e., 𝑧 − 𝑧∗ = 0). In other words, 

the optimal objective value of the super LPP, 𝑧 − 𝑧∗ is zero. Since we know that 𝑧 − 𝑧∗ = 0, we 

replace the objective function by the equivalent constraint; 

−𝑏1𝑦1 − 𝑏𝑦2 − ⋯− 𝑏𝑚𝑦𝑚 + 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯+ 𝑐𝑛𝑥𝑛 ≥     (6) 

The ">" sign has been intentionally included, even though it is redundant, with the 

acknowledgment that no feasible solution will necessitate its use. The system (5) becomes 

 0𝑝𝑦1 + ⋯+ 0𝑝𝑦𝑚 + 𝑎11𝑝𝑥1 + ⋯+ 𝑎1𝑛𝑝𝑥𝑛 − 𝑝𝑏1 ≤ 0 

       ⋮  
 0𝑝𝑦1 + ⋯+ 0𝑝𝑦𝑚 + 𝑎𝑚1𝑝𝑥1 + ⋯+ 𝑎𝑚𝑛𝑝𝑥𝑛 − 𝑝𝑏𝑚 ≤ 0 

 −𝑎11𝑝𝑦1 − ⋯− 𝑎𝑚1𝑝𝑦𝑚 + 0𝑝𝑥1 + ⋯+ 0𝑝𝑥𝑛+𝑝𝑐1 ≤ 0 

⋮  
 −𝑎1𝑛𝑝𝑦1 − ⋯− 𝑎𝑚𝑛𝑝𝑦𝑚 + 0𝑝𝑥1 + ⋯+ 0𝑝𝑥𝑛+𝑝𝑐𝑛 ≤ 0 

𝒃𝟏𝒚𝟏 + 𝒃𝒚𝟐 + ⋯+ 𝒃𝒎𝒚𝒎 − 𝒄𝟏𝒙𝟏 − 𝒄𝟐𝒙𝟐 − ⋯− 𝒄𝒏𝒙𝒏 ≤ 𝟎  

 𝑝𝑦1, … , 𝑝𝑦𝑚 ≥ 0; 𝑝𝑥1, … , 𝑝𝑥𝑛 ≥ 0, 𝑝 > 0  
Thus, the pay-off matrix of the skew-symmetric game is as follows: 

 

[
 
 
 
 
 
 

0 … 0 𝑎11 … 𝑎1𝑛 −𝑏1

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮
0 … 0 𝑎𝑚1 … 𝑎𝑚𝑛 −𝑏𝑚

−𝑎11 … −𝑎𝑚1 0 … 0 𝑐1

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮
−𝑎1𝑛 … −𝑎𝑚𝑛 0 … 0 𝑐𝑛

𝑏1 … 𝑏𝑚 −𝑐1 … −𝑐𝑛 0 ]
 
 
 
 
 
 

 

Next, we seek to obtain the nonsymmetric game from a linear programming problem. Again, we 

examine the following basic linear programming problem of the maximization form: 

Maximize 𝑧 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯+ 𝑐𝑛𝑥𝑛 

subject to  

 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 ≤ 𝑏1 

 𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 ≤ 𝑏2 

Player B 

P
la

y
er

 

A
 

(5) 

(8) 

(9) 

 

(7) 
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⋮  
 𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯+ 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚 

 𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0; and 

 𝑐𝑗 ≥ 0, 𝑏𝑖 ≥ 0, 𝑎𝑖𝑗 ≥ 0 

We can rewrite LPP (9) above by dividing each constraint 𝑖 by 𝑏𝑖, and substituting each term in 

the objective with a new variable, 𝑢𝑗  (i.e., 𝑢𝑗 = 𝑐𝑗𝑥𝑗). Hence, each term on the L.H.S 

becomes: 
𝑎𝑖𝑗𝑥𝑗

𝑏𝑖
 

and 
𝑎𝑖𝑗𝑥𝑗

𝑏𝑖
=

𝑎𝑖𝑗𝑢𝑗

𝑏𝑖𝑐𝑗
 (since 𝑥𝑗 =

𝑢𝑗

𝑐𝑗
). Hence, every term 

𝑎𝑖𝑗𝑥𝑗

𝑏𝑖
=

𝑎𝑖𝑗𝑢𝑗

𝑏𝑖𝑐𝑗
= 𝐴𝑖𝑗𝑢𝑗  (where 𝐴𝑖𝑗 =

𝑎𝑖𝑗

𝑏𝑖𝑐𝑗
). 

Therefore, LPP (9) above can be written as 

Maximize 𝑧 = 𝑢1 + 𝑢2 + ⋯+ 𝑢𝑛 

subject to  

 𝐴11𝑢1 + 𝐴12𝑢2 + ⋯+ 𝐴1𝑛𝑢𝑛 ≤ 1 

 𝐴21𝑢1 + 𝐴22𝑢2 + ⋯+ 𝐴2𝑛𝑢𝑛 ≤ 1 

⋮  
 𝐴𝑚1𝑢1 + 𝐴𝑚2𝑢2 + ⋯+ 𝐴𝑚𝑛𝑢𝑛 ≤ 1 

 𝑢1, 𝑢2, … , 𝑢𝑛 ≥ 0 

The nonsymmetric game in general form is thus 

[

𝐴11 𝐴12 … 𝐴1𝑛

𝐴21 𝐴22 … 𝐴2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑚1 𝐴𝑚2 … 𝐴𝑚𝑛

] 

RESULTS 

i. Consider the following linear programming problem: 

Maximize 𝑧 = 5𝑥1 + 2𝑥2 

subject to 

10𝑥1 − 6𝑥2 ≤ 10  

2𝑥1 + 𝑥2 ≤ 20  

−15𝑥1 + 20𝑥2 ≤ 300  

𝑥1, 𝑥2 ≥ 0  

The dual of the LPP is given as 

Minimize 𝑧∗ = 10𝑦1 + 20𝑦2 + 300𝑦3 

subject to 

10𝑦1 + 2𝑦2 − 15𝑦3 ≥ 5  

−6𝑦1 + 𝑦2 + 20𝑦3 ≥ 2  

𝑦1, 𝑦2, 𝑦3 ≥ 0  

As discussed, the next step in the conversion process is to convert this LPP to a maximization 

problem  

Maximize −𝑧∗ = −10𝑦1 − 20𝑦2 − 300𝑦3 

(10) 

(11) 

(12) 
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subject to 

−10𝑦1 − 2𝑦2 + 15𝑦3 ≤ −5  

6𝑦1 − 𝑦2 − 20𝑦3 ≤ −2  

𝑦1, 𝑦2, 𝑦3 ≥ 0  

The super LPP formed by combining this LPP and the original LPP (given on this illustration) is 

given as 

Maximize 𝑧−𝑧∗ = 5𝑥1 + 2𝑥2 − 10𝑦1 − 20𝑦2 − 300𝑦3 

subject to 

10𝑥1 − 6𝑥2 + 0𝑦1 + 0𝑦2 + 0𝑦3 ≤ 10  

2𝑥1 + 𝑥2 + 0𝑦1 + 0𝑦2 + 0𝑦3 ≤ 20  

−15𝑥1 + 20𝑥2 + 0𝑦1 + 0𝑦2 + 0𝑦3 ≤ 300  

0𝑥1 + 0𝑥2 − 10𝑦1 − 2𝑦2 + 15𝑦3 ≤ −5  

0𝑥1 + 0𝑥2 + 6𝑦1 − 𝑦2 − 20𝑦3 ≤ −2  

𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3 ≥ 0  

We can re-assign new variable letters to the 𝑥𝑗’s and 𝑦𝑗’s for the sake of convenience and easy 

computation as follows: let 𝑥1 = 𝑡1, 𝑥2 = 𝑡2, 𝑦1 = 𝑡3, 𝑦2 = 𝑡4, 𝑦3 = 𝑡5 and 𝑤 = 𝑧−𝑧∗.  

Therefore, the LPP can be rewritten as: 

Maximize 𝑤 = 5𝑡1 + 2𝑡2 − 10𝑡3 − 20𝑡4 − 300𝑡5 

subject to 

10𝑡1 − 6𝑡2 + 0𝑡3 + 0𝑡4 + 0𝑡5 ≤ 10  

2𝑡1 + 𝑡2 + 0𝑡3 + 0𝑡4 + 0𝑡5 ≤ 20  

−15𝑡1 + 20𝑡2 + 0𝑡3 + 0𝑡4 + 0𝑡5 ≤ 300  

0𝑡1 + 0𝑡2 − 10𝑡3 − 2𝑡4 + 15𝑡5 ≤ −5  

0𝑡1 + 0𝑡2 + 6𝑡3 − 𝑡4 − 20𝑡5 ≤ −2  

𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 ≥ 0  

The skew-symmetric game pay-off matrix (in compact form) with payoff from player B to player 

A is as follows: 

[
0 𝐴 −𝑏

−𝐴𝑇 0 𝑐
𝑏𝑇 −𝑐𝑇 0

] 

Where 𝐴 = [
−10 −2 15
6 −1 −20

], 𝑏 = [
−5
−2

], 𝑐 = [
−10
−20
−300

] 

ii. We consider an LPP with the 3 special properties as highlighted in the section: 

Maximize 𝑧 = 𝑥1 + 𝑥2 

subject to 

𝑥1 + 5𝑥2 ≤ 5  

2𝑥1 + 𝑥2 ≤ 4  

P
la

y
er

 A
 

Player B 
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𝑥1, 𝑥2 ≥ 0  

To convert the above LPP to a nonsymmetric game; first, let each term, 𝑐𝑗𝑥𝑗 in the objective 

function be 𝑢𝑗(i.e., let 𝑢𝑗 = 𝑐𝑗𝑥𝑗), then, divide each constraint 𝑖 by 𝑏𝑖 so that each term on the LHS 

of constraint 𝑖 becomes: 
𝑎𝑖𝑗𝑥𝑗

𝑏𝑖
.  

Since 𝑥𝑗 =
𝑢𝑗

𝑐𝑗
, 

𝑎𝑖𝑗𝑥𝑗

𝑏𝑖
 becomes  

𝑎𝑖𝑗𝑢𝑗

𝑏𝑖𝑐𝑗
= 𝐴𝑖𝑗𝑢𝑗  

where 𝐴𝑖𝑗 =
𝑎𝑖𝑗

𝑏𝑖𝑐𝑗
 

Now, for the LPP given above, 𝐴11 =
1

5(1)
= 0.2, 𝐴12 =

5

5(1)
= 1, 𝐴21 =

2

4(1)
= 0.5, 𝐴22 =

1

4(1)
=

0.25 

Therefore, the nonsymmetric game payoff matrix corresponding to the given LPP is: 

[
0.2 1
0.5 0.25

] 

Note to the reader: The selection of the LPP for conversion to the nonsymmetric game was 

intentional and carefully considered. Our research has shown that, for the conversion to result in a 

nonsymmetric payoff matrix, the following condition must be met: the set of right-hand values of 

the linear constraints, 𝑏𝑖, the set of coefficients, 𝑐𝑗 of the decision variables and the set of 

coefficients, 𝑎𝑖𝑗 in the linear constraints must each be of the same algebraic sign. This condition 

can be verified computationally. 

 

CONCLUSION 

We attempted and succeeded in making the conversion of an LPP to a skew-symmetric game, we 

first had to obtain a super LPP (which is skew-symmetric). Upon examination, the first appearance 

of our obtained super LPP did not fit the usual form of an LPP transformed from a two-person 

zero-sum game. The RHS of each of its constraints had different constant values, as opposed to 

just one constant value. And we could not just move the RHS values to the left since all the terms 

on the left must be an algebraic term (i.e., a variable with a coefficient). To correct this, we 

multiplied the constraints and the objective function with a positive constant, 𝑝. This enabled us 

to move the RHS to the left. The values of the RHS which were different, became one constant 

value i.e., zero. The process made it possible to identify the skew-symmetric game matrix. We 

also succeeded in converting an LPP to a nonsymmetric game.  

In conclusion, we found that LP problems can be converted to skew-symmetric and nonsymmetric 

games. From published literature, the conversion of a linear programming problem to a symmetric 

game has rarely or scarcely been done. But in this research, the success achieved in converting a 

LP problem to a skew-symmetric game and also a nonsymmetric game problem adds to the scanty 

literature published on it. 

Specifically, the conversion to nonsymmetric game problems has shown relevance in specific 
economic scenarios, such as in the comparative advantage problem and the minimum diet 
problem, where amounts of all limited resources and all prices are considered positive. Since, 
they meet the criteria of the LPP conversion to Nonsymmetric game, these problems can be 
studied as a nonsymmetric game problem.  

(14) 
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Lastly, the ability to and the subsequent process of converting LPP to game availed us the 
benefit of decrypting some of the mathematical properties of the game, and understanding the 
structure of its corresponding LPP (for instance, during the conversion to Skew symmetric 
game, we encountered the Super LPP and its special sparse structure, which requires minimal 
computational resources and therefore, easy for a computer to solve. As a result of this sparse 
property, the computation of the solution to a skew symmetric game is highly efficient.) 
It also enables us clearly see and understand the framework of these games (for instance, we 
can clearly see from the super LPP associated with the skew symmetric game, that the players 
have exactly, opposing strategies: given the LPP special structure, of zero diagonal and the 
upper diagonal elements negative of the lower diagonal.) 

Expanding on these findings, future research could investigate the transformation of linear 
programming problems into non-zero-sum games and explore potential practical applications 
arising from any unique structural properties of the given linear programming problem.  
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