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ABSTRACT 

Heteroscedasticity, a common violation of the homoscedasticity assumption 

in classical linear regression models, adversely affects parameter 

estimation and predictive accuracy, is a critical issue to be addressed. This 

study developed and evaluated new weighted ridge estimators for mitigating 

the effects of heteroscedasticity in linear regression models, particularly 

where there is little or no multicollinearity. The proposed estimators were 

derived by combining ridge regression and weighted least squares 

techniques. Monte Carlo simulations at varying levels of heteroscedasticity, 

error variances, and sample sizes, were used to assess their performance 

with the mean square error (MSE) showing that the proposed ORERW 

estimator performed best when the nature of heteroscedasticity is known, 

while OREW2 was superior when heteroscedasticity is unknown. Real-life 

data on passenger car mileage was used to validate the estimators with 

GREW3 and OREW3 outperforming the traditional methods. 

1. INTRODUCTION  

The classical linear regression model is widely recognized as a foundational tool for predictive 

analysis. Its appeal lies in its simplicity, interpretability, and the extensive range of computational 

tools available for validating theoretical assumptions and analyzing diverse data types. In essence, 

linear regression predicts the behaviour of a response variable based on its linear relationship with 

one or more predictor variables [1]. This capability has made it a staple in data analysis across 

numerous disciplines, including but not limited to the natural sciences, engineering, medicine, and 

social sciences by examining the relationship between a dependent variable and explanatory 

variables. Regression analysis provides valuable insights into the underlying dynamics of various 

phenomena.  
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Its adaptability and robust theoretical underpinnings ensure its continued relevance in both 

academic research and practical applications, from modeling scientific processes to informing 

decision-making in complex societal and industrial contexts [1, 2]. 

The simple linear regression model is given by: 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑘
𝑗=1 +  𝜀𝑖 ,         𝑖 = 1,2, … , 𝑛                                                                                          (1) 

where 𝑦𝑖 is the ith dependent (response) variable, x1, …, xk are the k independent (explanatory) 

variables, 𝛽
𝑗
, 𝑗 = 0, 1, 2, …  𝑘 are the k + 1 unknown regression parameters, which values are to 

be estimated. 𝜀𝑖 is the ith stochastic (disturbance) term and it is assumed to follow the distribution 

of y, which is normally distributed with mean zero and a constant variance 𝜎2. 

Given a sample of n independent observations: 

𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 +  𝜀𝑖 ,                𝑖 = 1, 2, … . , 𝑛                                                  (2). 

Thus,  

𝑦1 =  𝛽0 + 𝛽1𝑥11 + 𝛽2𝑥12 + ⋯ + 𝛽𝑘𝑥1𝑘 +  𝜀1 

𝑦2 =  𝛽0 + 𝛽1𝑥21 + 𝛽2𝑥22 + ⋯ + 𝛽𝑘𝑥2𝑘 +  𝜀2 

                                                   .         .        .           .          ……….  .              . 

                                                   .         .        .            .        … ……..   .            .    

                                                 𝑦𝑛 =  𝛽0 +  𝛽1𝑥𝑛1 + 𝛽2𝑥𝑛2 + ⋯ + 𝛽𝑘𝑥𝑛𝑘 +  𝜀𝑛. 

In vector form, equation (3) is obtained as: 

𝑌 = [𝑦1𝑦2. . . 𝑦𝑛] = [1𝑥11  … 𝑥1𝑘1𝑥21  … 𝑥2𝑘 . . .1. . . 𝑥𝑛1     … … …  . . 𝑥𝑛𝑘][𝛽0𝛽1. . . 𝛽𝑘] + [𝜀1𝜀2. . . 𝜀𝑛]     (3)  

The general form of equation (3) is given by: 

𝑌 = 𝑋𝛽 +  𝜀                                                                                                                                               (4)       

where 𝑦  is an (n x 1) vector of observations on a response variable, X matrix is an n×(k+1) full 

rank of independent variables, β is a (k+1) ×1 vector of unknown parameters to be estimated, 𝜀 is 

(n×1) vector of random error [1].The parameter  𝛽 in a linear regression model are commonly 

estimated using the Ordinary Least squares Estimator (OLSE). 

The OLSE of 𝛽 is given as: 

𝛽̂𝑂𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑌                                                                                                                                  (5) 

Where   𝛽̂
𝑂𝐿𝑆

 is an unbiased estimator 𝛽. The unbiased variance-covariance matrices of the OLS 

estimator is defined as:  

𝑉𝑎𝑟(𝛽̂𝑂𝐿𝑆) =  𝜎̂2(𝑋′𝑋)−1                                                                                                                       (6) 

Where 𝜎̂2 =
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑛−𝑝
, proposed by Maddalla [2] and Kibra [3].                                                        (7) 

 

The estimator in equation (5) is widely preferred as it is the best linear unbiased estimator (BLUE), 

provided that the assumptions underpinning the linear regression model remain intact [4, 5]. 

However, in practical applications, many of these assumptions are seldom fully met. Authors such 

as Neter and Wasserman [6], Fomby et al. [7], and Ayinde et al. [8] have highlighted various 
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scenarios where these assumptions may be violated. For instance, a breach in the independence of 

regressors in multiple linear regression models results in multicollinearity, a significant issue 

reported by several researchers. Despite being unbiased, the Ordinary Least Squares (OLS) 

Estimator becomes inefficient under multicollinearity, with parameter estimates highly sensitive 

to minor data variations [9, 10, 11]. 

 

This sensitivity inflates the predicted value's variance [2, 7, 12], diminishing the performance of 

OLS estimator under multicollinearity. Consequently, numerous authors have proposed diagnostic 

methods and alternative estimators, such as the ridge regression estimator developed by Hoerl and 

Kennard [13], alongside contributions from McDonald and Galarneau [14], Lawless and Wang 

[15], Wichern and Churchill [16], Gibbon [17], Kibra [3], Durogade and Kashid [18], Kibra and 

Shipra [19], Lukman et al. [20], Aslam and Ahmad [21], and Zubair and Adenomon [22]. 

 

Principal Component Regression, introduced by Hotelling [23], offers another approach, reducing 

correlated variables to a smaller number of uncorrelated ones with maximum variances. 

Additionally, partial least squares (PLS) regression, as proposed by [24, 25], integrates elements 

from principal component analysis and multiple linear regression. Ridge regression, first 

conceptualized by Hoerl and Kennard [13], is particularly noteworthy by incorporating a biasing 

parameter 𝑘 into the diagonal of the  

𝑋′𝑋 correlation matrix. Ridge regression provides a biased but more efficient estimator with a 

smaller mean square error (MSE) than OLS. 

 

The biased ridge estimator with constant k> 0 is defined as: 

𝛽̂𝑅 = (𝑋′𝑋 + 𝐾𝐼)−1𝑋′𝑌                                                                                                                            (8) 

where k is called the ridge (biasing) parameter. If k = 0, then equation (8) reduces to equation (5), 

OLS estimator. This implies that OLS estimator is a special case of ridge estimator. The optimal 

value of k in ridge regression have been proposed by various authors using different estimation 

techniques, among these authors are: Hoerl and Kennard [13], McDonald and Galarneau [14], 

Hoerl et al. [26], Liu [27], Khalaf and Shukur [28], Durogade and Kashid [18], Ayindeet al. [11], 

Lukmanet al [29], recently Zubair and Adenomon [22] and Kibra and Lukman [30]. When 

different k-values are used, the estimator is referred to as the Generalized Ridge Estimator (GRE), 

whereas a constant k-value results in the Ordinary Ridge Estimator (ORE). To analyze the 

characteristics of the ridge estimator in equation (8), its mean (expected value) is derived by 

calculating the expectation of equation (8).: 

 

𝐸(𝛽̂𝑅) = 𝐹𝛽                                                                                                                           (9) 

where 𝐹 = (𝑋′𝑋 + 𝐾𝐼)−1𝑋′𝑋. 

The bias of the estimator is defined as: 

𝐵𝑖𝑎𝑠(𝛽𝑅) = 𝐸(𝛽̂𝑅) − 𝛽                                                                                                     (10) 

 

Then, substituting (9) into (10) gives 

 𝐵𝑖𝑎𝑠(𝛽̂𝑅) =  − (𝑋′𝑋 + 𝐾𝐼)−1𝐾𝛽.                                                                                 (11) 

 

Squaring both sides gives 

𝐵𝑖𝑎𝑠2(𝛽̂𝑅) =   𝐾2(𝑋′𝑋 + 𝐾𝐼)−1𝛽𝛽′(𝑋′𝑋 + 𝐾𝐼)−1                                                        (12) 

 

The variance of the ridge estimator is derived by taking the variance of both sides:  
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𝑉𝑎𝑟(𝛽̂𝑅) = 𝑉𝑎𝑟(𝐹𝛽) 

= 𝐹2𝑉𝑎𝑟(𝛽) 

=  ⌊(𝑋′𝑋 + 𝐾𝐼)−1⌋
2

(𝑋′𝑋)2𝜎2(𝑋′𝑋)−1 

𝑉𝑎𝑟(𝛽̂𝑅) =  𝜎2⌊(𝑋′𝑋 + 𝐾𝐼)−1⌋
2

𝑋′𝑋 .                                                                            (13) 

 

The mean square error (MSE) of the ridge estimator is defined by: 

 

𝑀𝑆𝐸(𝛽̂𝑅) =  𝜎2⌊(𝑋′𝑋 + 𝐾𝐼)−1⌋
2

𝑋′𝑋 + ⌊(𝑋′𝑋 + 𝐾𝐼)−1⌋
2

𝐾2𝛽2                                (14) 

 

Since 𝑋′𝑋 is a positive  definite matrix, there exists an orthogonal matrix ∅ such that 𝑋′∅𝑋 = 𝐸, 

where 𝐸 = 𝑑𝑖𝑎𝑔(𝑒𝑖,   𝑒2, … … .,   𝑒𝑝) and 𝑒𝑖,   𝑒2, … … .,   𝑒𝑝 are the eigenvalues of  𝑋′𝑋. Now let 

∝ =  ∅′𝛽.  

The scalar Mean Square Error (MSE) is obtained as: 

𝑀𝑆𝐸(𝛽̂𝑅)  = 𝜎2 ∑
𝑒𝑖

(𝑒𝑖+𝑘)2

𝑝
𝑖=1 + 𝐾2 ∑

𝛼𝑖
2

(𝑒𝑖+𝑘)2

𝑝
𝑖=1                                                               (15) 

where ∝𝑖 is the 𝑖𝑡ℎ element of the vector  ∝ =  ∅′𝛽 . 

 

Considering the above, the trace of the variance-covariance matrix is the MSE of the OLS 

estimator given by: 

𝑀𝑆𝐸 (𝛽̂𝑂𝐿𝑆)  =  𝜎2𝑡𝑟𝑎𝑐𝑒(𝑋′𝑋 )−1 = 𝜎2 ∑
1

𝑒𝑖

𝑝
𝑖=1                                                                   (16) 

Different biasing parameter k, for GRE are found in previous studies such as [13], which produced 

k optimum as: 

𝐾𝑖 =  
𝜎2

𝛼𝑖
2,   𝑖 = 1, 2, … … . . , 𝑝                                                                                             (17) 

Since 𝜎2 and 𝛼𝑖
2 are unknown generally, it is suggested that they should be replaced by their 

corresponding unbiased estimates 𝜎̂
2
 and 𝛼̂𝑖

2
 (Hoerl and Kennard [13]. Hence, 

𝐾̂𝑖 =  
𝜎̂2

𝛼̂𝑖
2 ,       where 𝜎̂

2
 is defined in equation (7). 

 

Numerous biasing ridge parameters 𝑘 for the ORE are documented in previous studies, including 

the parameter proposed by [13], expressed as: 

𝐾̂𝐻𝐾 =  
𝜎̂2

𝑀𝑎𝑥(𝛼̂𝑖
2)

                                                                                                                (18) 

 

However, the violation of homoscedasticity assumption leads to heteroscedasticity, which occurs 

in cross sectional data. The penalties of using OLS estimator to estimate the parameters when 

heteroscedasticity exists are biased and inefficient estimates, which makes the usual hypothesis to 

be incorrect. In heteroscedasticity problem, the variances of the disturbance terms are no longer 

equal, that is, 𝐸(𝜀′𝜀)  ≠  𝜎2ῼ. The resulting model is the Generalized least square (GLS) with ῼ 

[31]. Given a non-singular symmetric matrix P : ῼ =  𝑃′𝑃 is positive definite.  

 

Then applying 𝑃−1 to equation (4) gives: 

 

𝑃−1𝑌 =  𝑃−1𝑋𝛽 + 𝑃−1𝜀                                                                                                (19) 

 

and transforming it gives: 
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 𝑌∗ =  𝑋∗𝛽 + 𝜀∗                                                                                           (20) 

 

The variance of the disturbance term (𝜀𝑖
∗) in equation (20) is homoscedastic (equal variance). From 

equation (20), the OLS estimates of the transformed model have all the optimal properties of the 

OLS and the usual inferences are valid. By Gauss-markov theorem [32], the best linear unbiased 

estimator of  𝛽 via the transformed model (20) is defined as: 

𝛽̂
𝐺𝐿𝑆

= (𝑋∗′
𝑋∗)

−1
𝑋∗′

𝑌∗                                                                                                  (21) 

Which is equivalent to:   

 𝛽̂𝐺𝐿𝑆 =  [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝑌                                                                                          (22) 

Where  ῼ−1 = 𝑃−1′
𝑃−1, the Aitken has shown that GLS estimator 𝛽̂ of 𝛽 as defined in (21) is 

efficient among the class of linear unbiased estimators of 𝛽 with variance-covariance of  𝛽 given 

by:   

𝑉𝑎𝑟(𝛽̂𝐺𝐿𝑆) = 𝜎2(𝑋′Ω−1𝑋)−1.                                                                                           (23) 

 

When there is heteroscedasticity problem in a data set, the OLS estimates and predicted values are 

unbiased and also inefficient since the estimates do not obey the minimum variance property [7] 

and biased estimates of the standard error making valid inferences to be unreliable [6, 9]. In order 

to make amends for an imbalance or lost of efficiency, different methods have been developed, 

these include the estimators provided by Cochran et al. [33], Park [34], Hartley et al. [35], Rao 

[36], Hartley and Jayatillake [37], Horn et al. [38], Magnus [39], White [40], Cragg [41], Shin 

[42], Balasiddamuni et al. [43 and Shin and Kim [44]. 

 

In certain instances, both multicollinearity and heteroscedasticity can coexist within a dataset. 

Under such conditions, the ridge regression or weighted least squares estimator alone proves 

insufficient to effectively address both issues simultaneously. As a result, this study was 

undertaken to assess the performance of the proposed new estimators in managing 

heteroscedasticity in scenarios with zero multicollinearity, as well as in cases where both problems 

are present in the dataset. 

2. MATERIALS AND METHODS  

2.1 Derivation of the Proposed New Estimator 

 

Recall equation (8),  𝛽̂
𝑅

= (𝑋′𝑋 + 𝐾𝐼)−1𝑋′𝑌, and applying OLS estimator to equation (20) gives 

GLS estimator  (𝛽̂
𝐺𝐿𝑆

= (𝑋∗′
𝑋∗)

−1
𝑋∗′

𝑌∗ as in equation (21). Therefore, the proposed ridge 

estimator is the mathematical combination of equations (8) and (21), which gives 

𝛽̂
𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑

=  (𝑋∗′
𝑋∗ + 𝐾𝐼)

−1
𝑋∗′

𝑌∗.                                                                                 (24) 

 

Then, solving equation (24) further gives 

𝛽̂
𝑊𝑅𝐸

= [𝑋′Ω−1𝑋 + 𝐾𝐼]−1(𝑋′Ω−1𝑌)                                                                               (25) 

 

As developed by Amalare et al. [45], assumed Ω−1 is known, though it is always unknown in real 

situation. It is often estimated but to have heteroscedasticity corrected measure for the model, 

weight variables are needed as suggested by Fuller and Rao [46] and Carroll and Ruppert [47].  

 

This present study used the following proposed and existing estimators. Thus, applying OLS 

estimator into the transformed model (20), led to the formulation of weighted least square 
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estimator, which includes ordinary least square estimator with real weight (OLSRW) and three (3) 

others: OLSW1, OLSW2, OLSW3. Furthermore, if GRE and ORE are applying into equation (20), 

it resulted into the proposed new estimators: Generalized ridge estimator with real weight 

(GRERW), ORERW, GREW1, OREW1, GREW2, OREW2, OREW3 and GREW3. 

 

2.2 Model Formulation for Simulation Study 

 

The multiple linear regression in equation (26) is considered in order to examine the proposed and 

existing estimators: 

                       𝑦𝑖 =  𝛽0 +  𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 +  𝜀𝑖                                                       (26) 

where 𝜀𝑖~𝑁(0, 𝜎𝑖
2). The 𝑋i variables are fixed independent predictors with no multicollinearity, 

while 𝑦𝑖 represents the response variable, and the 𝛽 coefficients are predefined values. 

 

2.3 Procedure for Generating the error term with varying of Heteroscedasticity 

 

The error term was generated based on the normal variate distribution outlined in equation (27) to 

reflect different heteroscedasticity patterns. The study considered various heteroscedasticity 

structures, including: 𝜎𝑖
2 = 𝜎2𝐴𝐵𝑆(𝑋𝑖1) [48], 𝜎2𝑋𝑖1

2  [34], 𝜎2(1 + 𝑋𝑖1)2 [49], 𝜎2𝑒𝑥𝑝(𝑋𝑖1) [50] and 

𝜎2⌊𝐸(𝑌𝑖)⌋
2
. Following the distribution of the standard normal variate, 𝜀𝑖~𝑁(0, 𝜎𝑖

2) 

𝜀𝑖 = 𝑍𝜎𝑖  , where 𝑍 ~𝑁(0, 1) 

         = 𝑍𝜎√ῼ .                                                                                                                    (27) 

 

2.4 Procedure for Generating Explanatory Variables 

 

The simulation procedure provided by [14] and used by Wichern and Churchill [16], Gibbons [17], 

Kibra [3], Mansson et al. [51], Kibra and Lukman [30] and Idowu et al. [52], was adopted to 

generate explanatory variables in the study. 

This is given as: 

𝑋𝑡𝑖 = (1 − 𝜌2)
1

2𝑍𝑡𝑖 + 𝜌𝑍𝑡𝑝                                                                                                  (28) 

t = 1, 2, 3,…, n,  i = 1, 2, …, p,  where 𝑍𝑡𝑖~𝑁(0, 1),  rho (𝜌) represents the correlation between 

any two explanatory variables. In this study, a multicollinearity level of zero is assumed (𝜌 = 0), 

and 𝑝 denotes the number of explanatory variables. 

 

2.5 Procedure for Generating the Response Variable 

 

The true values of the model parameters in equation (26) were set as 𝛽
0

= 4.0, 𝛽
1

= 3.4, 𝛽
2

= 4.5 

and 𝛽
3

= 6.0. After generating 𝑋𝑖 with zero multicollinearity and error terms reflecting various 

heteroscedasticity patterns, the dependent variable values were computed using equation (26). A 

Monte Carlo simulation was performed 1,000 times, varying parameters across five error variances 

(𝜎𝑖
2 = 0.01, 1.0, 25, 100, 625), five known heteroscedasticity structures, and seven sample sizes 

(n = 15, 20, 30, 50, 100, 250, 500). 

 

2.6 Criterion for Evaluation and Performance of the Proposed new Estimator 

The performance of the proposed estimator is assessed through an examination, evaluation, and 

comparison based on its finite sampling properties, particularly the mean square error (MSE), 

which consists of the variance and the squared bias of the estimator. The MSE is expressed as: 
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𝑀𝑆𝐸(𝛽̂𝑖) =  
1

1000
∑ (𝛽̂𝑖𝑗 − 𝛽̂𝑖)

21000
𝑗=1                                                                               (29) 

The estimated MSE for each estimator (𝛽̂)  is calculated  for each replicate. The best estimator is 

the one with the lowest estimated MSE. 

RESULTS AND DISCUSSION 

3.1 Simulation Result 

 

Figures 1 - 6 visualize the complete summary of the simulated results under the mean square error 

criterion at the five (5) known heteroscedasticity natures with multicollinearity level of zero, as 

well as various error variances and sample sizes. Figures 7 - 12 illustrate the known but presumed 

unknown heteroscedasticity structures. 

 

Figure 1: Graphical Representation of the Mean Squares Error of the Estimators at different 

 Sample Sizes with known Nature of Heteroscedasticity of the form ABS(X) and Error 

 Variance of 1.0. 

 

Figure 2: Graphical Representation of the Mean Squares Error of the Estimators at different 

 Sample  Sizes with known Nature of Heteroscedasticity of the form (1 + 𝑋)2 and  

 Error  Variance of 1.0. 
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Figure 3: Graphical Representation of the Mean Squares Error of the Estimators at different 

 Sample Sizes with known Nature of Heteroscedasticity of the form (𝑋)2and Error 

 Variance of 25. 

 
Figure 4: Graphical Representation of the Mean Square Errors of the Estimators at different 

 Sample Sizes with known Nature of Heteroscedasticity of the form Exp(X) and Error 

 Variance of 100. 

 
Figure 5: Graphical Representation of the Mean Square Errors of the Estimators at different 

 Sample  Sizes with known Nature of Heteroscedasticity of the form [𝐸(𝑌)]2 and  Error 

 Variance of 625. 
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Table 1: Number of Times Each Estimator Produced Minimum mean square errors when counted 

over the known natures of Heteroscedasticity structure and Error Variance 

 
NOTE: Estimator with highest frequency is bolded. 

 

Figure 6: Graphical Representation of the Frequency of the Best Estimators under Mean   

 Squares error Criterion at different Sample Sizes when there is known Natures          

 of Heteroscedasticity in the Model. 

 
 

Figure 7: Graphical Representation of the Mean Square Error of the Estimators at different 

 Sample Sizes with known but Assumed to be Unknown Nature of Heteroscedasticity 

 of the form ABS(X) and Error Variance of 1. 
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Figure 8: Graphical Representation of the Mean Square Error of the Estimators at different  

 Sample Sizes with known but Assumed to be Unknown Nature of Heteroscedasticity 

 of the form (𝑋)2 and Error Variance of  25. 

 
Figure 9: Graphical Representation of the Mean Square Error of the Estimators at different 

Sample Sizes with known but Assumed to be Unknown Nature of  Heteroscedasticity of the form 

(1 + 𝑋)2 and Error Variance of 100. 

 

Figure 10: Graphical Representation of the Mean Square Error of the Estimators at different 

Sample Sizes with known but Assumed to be Unknown Nature of  Heteroscedasticity of the form 

[𝐸(𝑌)]2 and Error Variance of 100. 
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Figure 11: Graphical Representation of the Mean Square Error of the Estimators at different 

Sample Sizes with known but Assumed to be Unknown Nature of Heteroscedasticity of the form 

Exp(X) and Error Variance of 625. 

Table 2: Number of Times Each Estimator Produced Minimum Mean Square Error when 

counted over the known but assumed to be unknown natures of Heteroscedasticity and Error 

Variances. 

Sample 

Size 

Estimators 

OLS 
OLS

W1 

OLS

W2 

OLS

W3 
GRE 

GRE

W1 

GRE

W2 

GRE

W3 
ORE 

ORE

W1 

ORE

W2 

ORE

W3 

15 3 3 2 4 5 3 1 1 1 0 1 1 

20 0 1 0 0 7 3 2 2 2 4 0 4 

30 0 5 1 1 2 5 1 1 3 3 3 0 

50 0 0 0 1 1 2 2 2 4 8 4 1 

100 0 1 3 3 0 0 1 3 0 5 9 0 

250 0 3 3 2 0 0 1 4 0 1 11 0 

500 0 1 1 1 0 0 1 4 0 5 11 1 

TOTAL 3 13 10 12 16 13 9 17 10 26 39 7 

RANK 12 5.5 8.5 7 4 5.5 10 3 8.5 2 1 11 

NOTE: Estimator with highest frequency is bolded. 

 

Figure 12: Graphical Representation of the Frequency of the Best Estimators under Mean 

 Square Error Criterion at different Sample Sizes with known but Assumed to be 

 Unknown Natures of Heteroscedasticity in the Model.  
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3.2 Application to Real Life Dataset 

3.2.1 Passenger Car Mileage Data 

This study used the dataset originally adopted by Seber [53] and later used in the subsequent 

analysis by Wooldridge [54] and Seber and Lee [55]. The dataset adopted by [53], comprises 81 

Cars or observations about the Passenger Car Mileage with four (4) predictors in the model. 

Table 3: Variable Description 

  Variable Name           Description 

𝑥𝑖1 

𝑥𝑖2 

𝑥𝑖3 

𝑥𝑖4 

              Y 

VOL (Cubic feet of Cab Space) 

 SP (Top speed, miles per hour) 

 HP (Engine horsepower) 

 WT (Vehincle weight, hundreds of pounds) 

  MPG (Average miles per gallon). 

 

Table 3 provides a comprehensively described each variable used in the models. The independent 

variables were standardized so that their mean would be zero and their variance of 1. The Variance 

inflation factor (VIF) proposed by authors [56, 57] was employed to diagnose multicollinearity in 

the model and some other statistics, amongst which are LM test and Durbin-Watson statistics 

proposed by White [40] Durbin-Watson [58], to diagnose for heteroscedasticity and auto-

correlation respectively. 

Table 4:  Summary of Results obtained from Passenger Car Mileage Data. 

 

 

Estim

ator 

 

 

Statist

ics 

Parameter estimates and Some other  Statistics   

1
 2

 3
 4

 
F 

Value 

VIFMax LM 

test 

DW/ 

Adj.R2 

Swz.BI

C 

 

MSE 

 

RANK 

 

OLS Est. 

Coef 

0.762 0.034 0.053 0.016 255.94 6.778 14.41 

(0.00) 

2.3699 

(0.957) 

0.8586 

103.402 0.1869 9 

Std. 

Error 

0.445 0.075 0.034 0.059 

p-

value 

0.093 0.000 0.191 0.788 

OLSW

1 

Est. 

Coef 

0.888 0.029 0.664 0.033 212.57 3.466 1.118 

(0.29) 

2.3462 

(0.949) 

0.7923 

115.507 0.1697 8 

Std. 

Error 

0.410 0.077 0.036 0.043 

p-

value 

0.035 0.001 0.071 0.448 
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OLSW

2 

Est. 

Coef 

0.850 0.027 0.073 0.012 265.09 6.756 0.458 

(0.50) 

 

2.559 

(0.991) 

0.8501 

112.873 0.1639 7 

Std. 

Error 

0.402 0.071 0.029 0.044 

p-

value 

0.04 0.000 0.016 0.785 

OLSW

3 

Est. 

Coef 

0.956 0.029 0.046 0.013 1050.6 24.79 0.436 

(0.51) 

2.319 

(0.938) 

0.9784 

102.106 0.0805 5 

Std. 

Error 

0.283 0.046 0.019 .0016 

p-

value 

0.002 0.000 0.019 0.437 

GRE Est. 

Coef 

0.578 0.036 0.007 -0.004      0.1403 6 

Std. 

Error 

0.326 0.006 0.003 0.015 

GRE

W1 

Est. 

Coef 

0.732 0.031 0.008 0.014      0.0253 4 

Std. 

Error 

0.338 0.007 0.003 0.024 

GRE

W2 

Est. 

Coef 

0.694 0.029 0.008 -0.004      0.0249 3 

Std. 

Error 

0.328 0.006 0.003 0.015 

GRE

W3 

Est. 

Coef 

0.879 0.031 0.005 0.005      0.0060 1 

Std. 

Error 

0.260 0.004 0.002 0.005 

ORE Est. 

Coef 

0.761 0.034 0.005 0.016      0.5744 10 

Std. 

Error 

0.429 0.007 0.004 0.015 

ORE

W1 

Est. 

Coef 

0.887 0.029 0.007 0.033      0.7679 11 

Std. 

Error 

0.409 0.008 0.004 0.024 

ORE

W2 

Est. 

Coef 

0.849 0.027 0.007 0.012      0.7143 12 

Std. 

Error 

0.402 0.007 0.003 0.015 

ORE

W3 

Est. 

Coef 

0.930 0.030 0.005 0.013      0.0062 2 
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Std. 

Error 

0.276 0.004 0.002 0.005 

Source:  Computer Output. 

Table 4 shows the summary of results obtained from passenger car mileage data regression 

analysis using the proposed and existing regression estimators. 

i. The use of OLS estimation method shows that the data set has no multicollinearity 

problem since 𝑉𝐼𝐹 = 6.778 < 10 but there is heteroscedasticity problem as white test 

equal to 14.41 (p < 0.05). 

ii. Correcting for heteroscedasticity alone with OLSW1, OLSW2 and OLSW3. The 

OLSW3performs better than OLS estimator and the rest. The MSE (Mean square error) 

of OLSW3 (0.0805) is less than MSE of OLS (0.1868), OLSW1 (0.1697) and OLSW2 

(0.1639). Although, OLSW3 introduced multicollinearity problem in the data set with 

VIF value of 24.79 which is greater than 10. 

iii. Correcting for heteroscedasticity and multicollinearity problems using existing and 

proposed estimators. The most efficient estimator is GREW3 (MSE = 0.0060) followed 

by OREW3 (MSE = 0.0062) which are better than OLS (MSE = 0.1869). All these are 

presented in Table 4 and graphically presented in Figure 13. 

 

Figure 13: Mean Square Error of the estimators with Passenger Car Mileage Data 

DISCUSSION OF FINDINGS 

The results presented in Figures 1 through 6 reveal that as the sample size increases, the mean 

square error (MSE) of the estimators generally decreases. However, some estimators' MSEs 

converge to zero, as shown in Figures 1, 3, 4, and 5, except for a specific case of heteroscedasticity 

in the form of (1 + X)2, illustrated in Figure 2. As the error variance increases, the MSE of the 

estimators also rises, which positively influences the performance of the estimators. The graphical 

patterns of the MSEs of the estimators are similar across different error variances. Counting the 

number of times each estimator exhibits the minimum MSE across five (5) types of 

heteroscedasticity and five (5) error variance levels, Table 1 was compiled. The maximum 

frequency is 25, so the estimator with a frequency closer to 25 is considered better. 
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From Table 1, ORERW is the best estimator because it has the highest frequency across all sample 

sizes, except when n = 15, where OLSRW performs better. Additionally, GRERW is close to the 

best estimator when the sample size is between 15 and 20, or between 250 and 500. Overall, the 

top three estimators based on MSE are ORERW, OLSRW, and GRERW. Figure 6 shows their 

frequency counts at different sample sizes. Simulated results, shown in Figures 7 through 12, also 

present MSE under various sample sizes and error variances, assuming different but unknown 

heteroscedasticity structures. As the sample size increases, the MSE of the estimators generally 

decreases. However, some estimators' MSEs converge to the same value, as seen in Figures 7, 8, 

10, and 11, except for the specific heteroscedasticity structure of (1 + X)2. 

As error variance increases, so does the MSE of the estimators, which impacts their performance. 

Table 2 summarizes the frequency with which each estimator produces the minimum MSE across 

five (5) unknown heteroscedasticity structures and five (5) levels of error variance. With a 

maximum frequency of 25, the closer an estimator's frequency is to 25, the better it is. From Table 

2, GRE (Generalized Ridge Estimator) is the best when n ≤ 20. For n = 30, GREW1 and OLSW1 

perform equally better than the OLS estimator. OREW1 is the best for n = 50, and OREW2 

performs best when the sample size is between 100 and 500. In general, the top six estimators in 

terms of MSE are OREW2, OREW1, GREW3, GRE, OLSW1, and GREW1. Their frequency 

counts at different sample sizes are shown in Figure 12. 

CONCLUSION        

The pursuit of understanding the true nature of the heteroscedasticity problem is essential for 

obtaining the most efficient parameter estimates. This study tackles the challenges that 

heteroscedasticity presents in linear regression models, especially when multicollinearity is 

present, by introducing new weighted ridge estimators. The study demonstrates their efficacy in 

addressing these issues under various conditions of heteroscedasticity and sample sizes. 

Simulation results show that the ORERW estimator is optimal when the type of heteroscedasticity 

is known, effectively correcting for specific heteroscedasticity patterns, while the OREW2 

estimator is the most efficient when the nature of heteroscedasticity is unknown. The GREW3 and 

OREW3 estimators also outperform existing methods in practical applications. These results 

highlight the robustness of the proposed estimators in delivering reliable parameter estimates and 

minimizing mean square error. 

Thus, it is therefore recommended that in adoption of these new estimators, researchers and 

practitioners are encouraged to adopt the proposed ORERW and OREW2 estimators in studies 

involving linear regression models with heteroscedasticity and multicollinearity. Further research 

on the nature of heteroscedasticity should be done by making efforts to accurately identify the true 

nature of heteroscedasticity in datasets, as this enhances estimator performance. Software 

implementation by incorporating these estimators into statistical software packages would promote 

their accessibility and practical application across diverse disciplines. Extension to other 

regression models through future studies should explore the adaptation of these estimators to 

nonlinear and mixed-effects regression models to expand their utility. 

Policy implications of this study suggest that academic and professional training programs should 

include modules on advanced regression techniques, focusing on the limitations of traditional OLS 

methods and the advantages of robust alternatives like weighted ridge estimators. Policy 

frameworks in research and data-driven decision-making should emphasize the adoption of robust 

statistical methods to ensure the accuracy and reliability of findings, particularly in contexts where 

data exhibits heteroscedasticity. Investments in statistical research and the development of tools 
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like the proposed estimators should be prioritized to enhance data analysis capabilities in critical 

sectors, including economics, healthcare, and environmental studies. Regulatory bodies like 

Chattered Institute of Statisticians of Nigeria (CISON), National Bureau of Statistics (NBS) and 

research institutions should establish guidelines for the application of advanced regression 

techniques to ensure methodological consistency and improve the quality of analytical outcomes. 
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