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ABSTRACT 

A duffing oscillator occurs due to the motion of a body being subjected to a 

nonlinear power, linear sticky damping, and periodic forcing. It reveals the 

oscillations of mechanical systems under the action of a periodic external 

force. This work studies the application of Duffing oscillators, especially in 

damping and chaos theory, and also develops an alternative computational 

method for simulating the Duffing equation. By applying the new homotopy 

perturbation method and computational method, the findings of this study 

extract key elements into a model to make it predictive and interpretative. 

The model is a system with one variable x. x  is the inertia or the second 

time derivative of displacement,  ,,  are parameters, x  is a small 

damping, The numerical simulation shows the phase plots and system time 

series. 

 

1. INTRODUCTION  

Duffing oscillator is a nonlinear second-order differential equation and was named after a German 

Electrical Engineer called Georg Duffing (1861- 1944) in the year 1918. It recently received 

attention due to the variety of their applications in engineering. For example, magneto-elastic 

mechanical systems [15;1;3] nonlinear vibration of beams and plates and fluid flow-induced 

vibration [17] which the nonlinear Duffing equation can follow. The equation explains the motion 

of a damped Oscillator with a more complicated potential than in simple harmonic motion [14]. 

The Duffing oscillator models the behaviour of many practical problems arising in engineering, 

physics, and many real-world applications.  
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Duffing oscillators with third and fifth power nonlinear terms can be found in the modelling of 

free vibrations of a restrained uniform beam with intermediate lumped mass, the nonlinear 

dynamics of slender elastic, the generalized pochhammer- chree (PC) equation, the generalized 

compound Kdv equation in nonlinear wave systems, among others [2]. 

Sunday [16] reported in his work that the Duffing oscillator occurs due to the motion of a body 

being subjected to a nonlinear power, linear sticky damped and periodic powering. It reveals the 

oscillations of mechanical systems under the action of a periodic external force. The problem of a 

nonlinear oscillator was first systematically tackled by Georg Duffing by examining the effects of 

quadratic and cubic stiffness nonlinearities [11]. Meiss [13] concluded that a dynamical system 

consists of an abstract phase space, whose coordinates describe the state at any instant and a 

dynamical rule that specifies the immediate future of all state variables given only the present 

values of those same state variables. Many mechanical systems involve nonlinearity of the Duffing 

type [12], Cveticanin [5] literature shows that the Duffing Oscillator is a dynamical system that 

exhibits chaotic behaviour, but the most recent advances in nonlinear science and theoretical 

physics have focused on the development of efficient methods, these methods include: homotopy 

perturbation method [18;7]. frequency–amplitude formulation [9], energy balance method [6;7], 

coupled homotopy-variational approach [10]. 

Some researchers considered damping when the amplitude of oscillation reduces over time, most 

analytical methods are unable to handle non-conservative oscillators. However, the new homotopy 

perturbation method will be introduced to solve nonlinear and nonhomogeneous differential 

equations that can solve the non-conservative Duffing oscillator problem. Also, this work studies 

the application of Duffing oscillators most especially in damping and chaos theory and similarly 

develops an alternative computational method for simulating the Duffing equation. 

 

2.  Methodology 

The basic idea of the New Homotopy Perturbation method (NHPM) 

The NHPM presented in [4] was used to solve the nonlinear Duffing oscillator equation. This 

method obtained the truncated series solution that coincides with the Maclaurin expansion of the 

exact solution. To improve the accuracy of the series solutions, the Laplace transformation and 

Pade approximant were used to produce the analytical approximate solution with high accuracy. 

Finally, the inverse Laplace transformation was used to get the exact analytical solution.    

( ) ( ) ( ) ( )  ,0)()()()()(),( 00 =−++−= xrfxUNpxpuxuxULPxUH
  (1) 

By applying G-1 to both sides of the equation, we have  
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Where T incorporates the constants of integration and satisfies GT = 0.   

Applying the NHPM,               
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Where ...,, 21 aaao are unknown coefficients, and )...(),(),( 210 xFxFxF  are specific functions, 
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Comparing coefficients of terms with identical powers of P  leads to 
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       𝑝𝑗: 𝑈𝐽(𝑥) =  −𝐺−1𝑁 (𝑈0(𝑥), 𝑈1(𝑥), 𝑈2(𝑥) … . 𝑈𝑗−1(𝑥)),       (8) 

Solving the equation in such a way that 0)(1 =xU   

The Exact solution may be obtained as follows 
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Solving Nonlinear Duffing Equation  
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2

2
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
by L, and L-1 as two-fold integration, using the operator L, it becomes 
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Applying the inverse operator L-1 to both sides of equation and using the initial conditions, 
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Substituting )()(
0

txAtx i

i

i
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=

=  into the equation above and considering the Maclaurin series of 

the excitation term,  
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For sin )(t , the Maclaurin series expansion of sin )(t is derived as  
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Where the series for cos (3 )t simply follows from cos ( t ) series after substitution tx 3→  
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And equating the terms with identical power of A gives; 
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Solving the above equation for )(1 xy leads to the result 
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Which is the partial sum of the Taylor series of the exact solution at .0=x  

 

RESULTS AND DISCUSSION  

Phase portraits 

Figures 1-3 are the results of computational simulations of the nonlinear Duffing oscillator. 

 

Figure 1: Depicts the phase plane solution to the nonlinear Duffing oscillator model for 42.0=  

and the range of time values  1000,0t , with initial condition x1 = x2 =0. 

 

Figure 2: Depicts the time series solution to nonlinear Duffing oscillator model for 42.0=  
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and the range of time values  500,0t , with initial condition x1 = x2 = 0 and the range of time 

values  500,0t , with initial condition x1 = x2 = 0. 

 

Figure 3: Depicts the time series solution to the nonlinear Duffing oscillator model for 70.0=  

and the range of time values  1000,0t , with initial condition x1 = x2= 0. 

 

 

Table 1 Comparison of the present method with the NHPM solution, power series solution, and 

computed solution. 

   Xa        NHPM solution        PSM  solution Computed solution 

0.1000000000 0.9950041653 0.9950041653 0.9950041653 

0.2000000000 0.9800665778 0.9800665778 0.9800665778 

0.3000000000 0.9553364891 0.9553364891 0.9553364891 

0.4000000000 0.9210609940 0.9210609940 0.9210609940 

0.5000000000 0.8775825622 0.8775825618 0.8775825618 

0.6000000000 0.8253356166 0.8253356149 0.8253356148 

0.7000000000 0.7648421950 0.7648421872 0.7648421872 

0.8000000000 0.6967067388 0.6967067093 0.6967067092 

0.9000000000 0.6216100638 0.6216099683 0.6216099681 

1.0000000000 0.5403025794 0.5403023059 0.5403023057 
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Figure 4: Depicts the graph of NHPM solution  

 

 
Figure 5: Depicts the graph of PSM solution  
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Figure 6: Depicts the graph of the COMPUTED solution   

DISCUSSION  

The investigation has been done to solve nonlinear problems with an analytical method which is 

called the New Homotopy Perturbation method to get a better solution in comparison with the 

Power Series method, The New Homotopy Perturbation Method and Computed procedure have 

been done differently by assuming different trial function as the solution of the problem which 

presents simplicity and acceptable accuracy of this method among other analytical methods. From 

Table 1, it is observed that the solution of the method used corresponds to the Computed solution 

and PSM solution with slight error as plotted in Figures 4, 5 and 6. 

CONCLUSION  

The New Homotopy Perturbation Method (NHPM) was used in this study to solve the analytical 

solution of the nonlinear Duffing oscillator equation and compare its results with the Power Series 

Method (PSM) and numerical method (Runge-Kutta, R4). The phase plots, time series graph and 

the line graph have also been shown in the results. The Figures and the related Tables show that it 

is logical to say that NHPM is a very applicable and suitable approach for solving nonlinear 

differential equations with enough efficiency and acceptable accuracy in generating the exact 

solution.  
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