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ABSTRACT 

The response behavior of a damped shear beam resting on Vlasov 

foundation when traversed by moving load travelling at constant velocity is 

investigated in this study. The governing equations are coupled second 

order partial differential equations. The Finite Fourier integral transform 

technique was adopted to reduce the governing the motion of this class of 

dynamical problem to sequence of coupled second order ordinary 

differential equations. Thereafter, the simplified equations of the beam-load 

system were then solved by Laplace transformation. The solution obtained 

was analyzed to obtain the conditions under which resonance will take place 

and speeds at which this may occur. Also, the displacement response for the 

dynamical problem was calculated for various values time t and the effects 

of pertinent structural parameters on the response of prestressed shear 

beam when under the action of the moving load were presented in plotted 

curves. 

1. INTRODUCTION  

The dynamic behavior of elastic beams subjected to moving loads is a subject of paramount 

importance in engineering and applied mechanics [1-10]. Such studies find relevance in diverse 

fields, including transportation infrastructure, mechanical systems, and structural engineering. 

Beams resting on subgrades are importance components in a wide range of industrial applications 

such as bridges, decking slabs and road ways.  In these applications, such structures are repeatedly 

exposed to dynamic loads serving as essential components where they are often required to carry 

loads such as vehicles, trains, or moving machinery. Generally, the response of an elastic beam to 

dynamic loads is essential for ensuring the safety, reliability, and durability of the structures and 

systems they support. The concept of moving loads has long been studied in the context of 

structural dynamics [11-15].  
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Early research focused on static loading conditions, which simplified the analysis but overlooked 

the dynamic interactions that arise when loads traverse the beam at finite speeds. Moving loads 

induce time-dependent variations in the stress, strain, and displacement fields of the beam, which 

can lead to phenomena such as resonance, vibration amplification, and dynamic instability. These 

effects are particularly critical for high-speed applications, such as railway bridges and high-speed 

conveyors, where the interaction between the load velocity and the natural frequencies of the beam 

becomes significant. Also, elastic beams, characterized by their ability to undergo both bending 

and shear deformations, are widely used in structural designs due to their flexibility and capacity 

to withstand various types of loading [16]. When loads move on a structure, the dynamic behavior 

of these beams depends on several factors, including the load velocity, the beam's material and 

geometric properties, and the boundary conditions which are pivotal in understanding and 

predicting their behavior under various loading conditions. Additionally, external influences such 

as damping, foundation interactions, and environmental conditions can further complicate the 

response. A damped shear beam resting on a Vlasov foundation provides a particularly interesting 

case due to the complex interactions between the beam's internal properties and the foundation's 

support characteristics. The shear beam theory serves as a fundamental approach to analyzing 

beams subjected to dynamic loads. Unlike the Euler-Bernoulli beam theory, which assumes pure 

bending, the shear beam model incorporates transverse shear deformations, making it more 

suitable for short and thick beams. Timoshenko [17] first introduced the concept of shear 

deformation in beam theory, laying the groundwork for advanced dynamic analyses. Later 

refinements, such as those by Cowper [18], incorporated rotary inertia and more accurate shear 

deformation effects, improving the prediction of dynamic responses. These foundational theories 

form the basis for understanding the behavior of beams in dynamic scenarios, particularly when 

supported on elastic foundations. On the other hand, the inclusion of damping in dynamic analysis 

significantly enhances the realism of models. Rayleigh [19] introduced proportional damping 

models, while Caughey and O’Kelly [20] developed more generalized theories. Modern studies, 

such as those by Liu, et al. [21], focus on the application of viscous and hysteretic damping models 

to beams and Ogunbamike [22] determines the effect of a simply supported beam subjected to 

partially distributed loads and with damping due to resistance to the transverse displacement. In a 

recent development, the effects of viscous damping and damping due to strain resistance is 

investigated by Ogunbamike [23].  He used the generalized finite integral transform and the Struble 

asymptotic techniques to solve the beam problem. It will be recalled that, in the context of shear 

beams, damping does not only influence natural frequencies but also dictates the amplitude decay 

of oscillations, crucial for applications in seismic and vibration isolation systems. The 

incorporation of damping mechanisms which can arise from material properties, structural 

interfaces, or external devices, into these beams accounts for energy dissipation during dynamic 

loading, which is vital for reducing vibrations and enhancing structural stability [24, 25]. However, 

the behavior of shear beams when subjected to dynamic loads on elastic foundations, such as 

Vlasov foundations, becomes complex and requires advanced analytical techniques. The Vlasov 

foundation model is a popular model for representing the behavior of elastic foundations due to its 

ability to capture the effect of foundation stiffness and damping in a dynamical system.  In this 

paper, the dynamic behavior of shear beams on Vlasov foundations has been studied to predict the 

response of shear beams under different loading conditions. 

2. Problem Statement  

The equations governing transverse displacement of shear beam on elastic foundation and under 

the action of moving load are based on the following assumptions. 
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 (a) The beam is homogeneous at any cross - section (prismatic) and material is linearly elastic. 

 (b) The principal plane is the x - y plane. 

 (c) There is an axis of the beam that undergoes no extension or contraction. The x- axis is located 

along this neutral axis. 

 (d) Plane section remains plane after bending but are no longer normal to the longitudinal axis.  

 (e) The effect of Shear deformation is considered. 

 (f) The beam is simply supported end condition. 

  (g) The applied moving load is concentrated. 

  (h) The prestressed and foundation parameters are all linear. 

 

3. Mathematical formulation of the problem 

The governing equations of motion describing the transverse translation ),( txV and angular rotation 

ɸ(𝑥, 𝑡) of a finite damped shear beam resting on Vlasov foundation and subjected to moving load 

travelling at constant velocity are second order simultaneous partial differential equations given 

by   
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where M  is the mass per unit length of the beam,


K is the shear correction factor, G is the shear 

parameter of the beam, A is the cross-sectional area of the beam, N is the axial force, E is the 

Young’s modulus of elasticity of the beam material, I is the moment of inertia, EI is the flexural 

stiffness / rigidity, x is the spatial coordinate, t is the time coordinate, ),( txF  is the foundation 
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It is remarked here that the beam under consideration is assumed to have simple support at both 

ends 𝑥 =  0 𝑎𝑛𝑑 𝑥 =  𝑙. Thus, boundary conditions are given as  

0
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Substituting equations (3) and (4) into (1), after some simplifications and re-arrangements 

equations (1) and (2) become 
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3. Solution procedures 

 The shear beam investigated in the present study is uniformly finite.  In order to obtain analytical 

solution of the initial boundary value problem in equations (10) and (11), we used the method of 

finite Fourier transformation. That is  
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is used. Thus, equations (12) and (14) when substituted into the governing equations (10) and 

(11) accordingly and after some simplifications and rearrangements yield 
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Hence, equations (17) and (18) are now the fundamental equations governing the motion of a 

finite shear beam on bi-parametric elastic foundation with the moving load travelling at a 

constant velocity.  Now, solving equations (16) and (17) simultaneously, it is straight forward to 

show that 
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The equation (19) is subjected to Laplace transformation defined as 
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where s is the Laplace parameter. After simplification and rearrangement, one obtains the simple 

algebraic equation given by 
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which is further simplified to give 
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At this point, in order to obtain the Laplace inversions of equation (23), the following 

representations are made                   
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The Laplace inversion (23) is the convolution of 𝑓(s) and 𝑔(s) defined by 
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Using (13), we have 
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which represents the transverse displacement to moving load of damped shear beam.  

Similarly, in view of (15), we have 
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which represents the angular displacement to moving load of damped shear beam.  

4. Comments on the closed-form solution 

In this section, discussion of the analytical solution is based on transverse displacement only. It 

important to determine the condition under which resonance will take place. The effects of 

resonance in a dynamical system is of a great concern in engineering design and engineering 

analysis. Resonance takes place when the motion of the vibrating system becomes unbounded. 

That is, the point at which transverse displacement of an elastic beam increase without limit. In 

actual practice, when this happens, the structure would collapse as the intensive vibration causes 

cracks or permanent deformation in the vibrating structures. It is clearly seen from equation (31) 

that the beam on bi-parametric elastic foundation with a moving load is considered in this study 

will reach a state of resonance whenever 

                01  =              (32)  

   02  =                                       (33) 

The critical velocity which is the velocity at which resonance takes place can be deduced from the 

conditions (32) and (33) respectively 
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5. Numerical Simulation and Discussion of Result  

The uniform damped shear beam of length mL 98.12= , is considered and the load travel with 

constant velocity smV /128.8= , moment of inertia 7/22,1087698.2
3

==
−

I , the damping 

coefficient 30000 =C and the linear density of the beam mkg /291.2758= . The values of footing 

stiffness K   and shear coefficient G  are varied between 3
/0 mN and 37

/104 mN and the values of 

axial force N  are varied between N0 and N
8

104 . The transverse displacement V of the beam is 

calculated and plotted against time t for various values of axial force N and footing stiffness K , 

shear coefficient G  and load position 𝑥. The results are as shown on the various graphs given 

below.  

In Figure 1, the displacement of a simply supported uniform damped shear beam under a uniformly 

distributed load travelling at constant velocity for various values of axial force N  and for fixed 

values of other parameters is investigated. The graph shows that as the value of axial force N  

increases, the deflection of the beam decreases noticeably. 

The flexure of a simply supported uniform damped shear beam to moving load travelling at 

constant velocity for various values of footing stiffness K is presented in Figure 2. It is observed 

that for fixed values of other parameters, higher value of footing stiffness K reduces the transverse 

displacement of the vibrating beam considerably. 

In the same vein, similar graph is plotted against various values of time t in Figure 3 for a simply 

supported uniform damped shear beam under moving load travelling at constant velocity for varied 

values of shear coefficient G  and for fixed values of other parameters. It is clearly noted that the 

deflection of the beam decreases significantly with increase in the value shear coefficient G . The 

response of a simply supported uniform damped shear beam subjected to moving load travelling 

at constant velocity for varied values of the load position coordinate x and for fixed values of other 

parameters is displayed in Figure 4. It is evident from the figure that the dynamic deflection at the 

mid-span of the beam is very large compare to other load positions. Figure 5 shows the comparison 

of the effects of Winkler foundation and Vlasov foundation on the transverse displacement of a 

damped shear beam when under the action of moving load travelling at constant velocity. Clearly 

shown, the deflection displacement of shear beam on Winkler foundation is greater than that of 

the Vlasov foundation. Likewise, Figure 6 displays the comparison of the effects of Winkler 

foundation and Vlasov foundation on the angular displacement of a simply supported uniform 

damped shear beam when under the action of moving load travelling at constant velocity. 

Interestingly, similar result is also obtained.  The angular displacement of shear beam on Winkler 

foundation is higher than that of the Vlasov foundation. 
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Figure 1: The response of a damped shear beam under the action of moving load for various values 

of axial force N and for  

fixed values of other parameters.    

 

Figure 2:  The response of a damped shear beam under the action of moving load for various 

values of footing stiffness K and for fixed values of other parameters.s.    

  

Figure 3: The response of a damped shear beam under the action of moving load for various values 

of shear modulus G and for fixed values of other parameters.    
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Figure 4: The response of a damped shear beam under the action of moving load for various values 

of load position x and for fixed values of other parameters.    

 

Figure 5: Comparison of the effects of Winkler foundation and Vlasov foundation on the transverse 

displacement of a damped shear beam subjected to moving load. 

 

 

 

 

 

 

 

 

 

Figure 6: Comparison of the effects of Winkler foundation and Vlasov foundation on the angular 

displacement of a damped shear beam subjected to moving load 



Ogunbamike et al. - Journal of NAMP 70, (2025) 33-44 

43 
 

Conclusion 

This paper investigates the dynamic behavior of a damped shear beam resting on bi-parametric 

elastic foundation when under the moving load. The governing equations are coupled second order 

partial differential equations. Solution procedure, involving finite Fourier transform technique and 

Laplace transformation in conjunction with convolution theory is used to obtain the solution of the 

coupled second order partial differential equations describing the motion of the beam-load system. 

Detailed analyses are performed to investigate the effect of some pertinent structural parameters 

such as axial force N , footing stiffness K , Shear coefficient G   and load position x on dynamic 

deflection of the beam. It is evident from the plotted curves that the presence of these structural 

parameters contributes immensely to the stability of the beam when traversed by the travelling 

load. The study shows that the deflection of the beam reduces significantly with increased axial 

force, shear coefficient and stiffness of the foundation. Also, it shows that the dynamic deflection 

at the mid-span of the beam is very large compare to other load positions. The study further 

compares the effects of Winkler foundation and Vlasov foundation respectively on the transverse 

displacement and angular displacement of a simply supported uniform damped shear beam when 

under the action of moving load travelling at constant velocity. Consequently, the study further 

established the conditions under which the beam-load system will experience resonance 

phenomenon and the speeds at which this may occur. 
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