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Abstract 
 

There has been dramatic progress in the development of electron correlation 

techniques for the accurate treatment of atomic structures and energies of molecules.  

In this study, we consider a theoretical exact method for obtaining the ground-state 

energies of two interacting electrons on a one-dimensional four sites lattice system. 

We first applied the extended Hubbard model with nearest and next-nearest 

neighbour to act on the various electron sites available to the two electrons four sites 

lattice. The application of the Hubbard model on the electron states produced an

1616 eigen value matrix which was solved by analytical exact diagonalization. The 

results of the ground-state energies from the theoretical exact method are compared 

with the ones obtained from the analytical exact diagonalization. The results 

compared favourably with one another. It is established here that there is a strong 

correlation between the two electrons at high negative values of the Coulomb 

interaction strength 𝑼/𝟒𝒕. It is also shown in this study that the −𝒕 + 𝑼 + 𝑽extended 

Hubbard model is a better model to study correlation process and the ground-state 

energies it produced is minimum compared to the other forms of the Hubbard model. 

 
Keywords: Electron correlation, Hubbard model, Coulomb interaction strength, density-density interaction, ground-

state energies and total energies.  
 

1.0 Introduction 

In recent years, the Hubbard model has been subject to a renewed attention because of its relevance for High-𝑇𝑐 

superconductivity, quantum antiferromagnetism, and ferromagnetism. Thus playing a central role in theoretical 

investigations of strongly correlated systems. In its simplest form the Hubbard model consists of a single-band tight-

binding Hamiltonian, 𝑡, plus a periodic, on-site interaction term, 𝑈, which accounts for the dominant part of the Coulomb 

repulsion experienced by the electrons [1].  

With the inclusion of long-range (non-local) part of the potential 𝑉 the off-site terms and additional kinetic hopping term 𝑡′, 
we obtain an extended Hubbard model. To what extent the inclusion of the off-site terms relevant to the description and 

understanding of strongly correlated systems is still a matter of current debate in the literature, and the general issue is a 

difficult one [2]. 

Exact diagonalization is usually a very simple method for solving finite-size matrix, it does not necessarily require any 

computer. But what happens when we now increase the number of lattice sites? The problem becomes complicated as the 

dimension of the Hilbert space, and consequently the size of the matrix, increase exponentially with the number of sites 𝑁. 

In this case even for writing the matrix elements of a 2𝑁 × 2𝑁 square matrix, the computational time and memory required 

is prohibitive [3].  

At present, there is no method that allows the general solution of a generic many-body Hamiltonian with a computational 

efforts scaling polynomial with the system size 𝑁. The complexity of the many-body problem is exponential, and this is the 

main reason why strong correlation is a difficult task. 

The purpose of this preliminary paper is to present a theoretical exact diagonalization of a two electrons four-site lattice 

system. This is a semi-quantitative method for solving electron correlation and its bearing on the ground state energy as we 

move from finite-size lattice to a more complex higher lattice sites. This preliminary report will therefore provide a means 

of solving the ground state energies with ease without writing down the much complicated matrix. 
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The many-body problem constitutes the quantum mechanical of a system with a large number of mutually interacting 

particles. The essence of the many-body problem involving the correlated motions of particle, that is, the response of the 

other particles in the system to the motion of a given particle. [4]. There are many examples of physical phenomena that 

originate from the correlated motion of electrons. The simplest example is of Van der Waals forces between neutral atoms 

[5]. When two atoms are brought close together, the electronic charge cloud of one atom interacts with the charge cloud of 

the other so that the electrons avoid each other. 

The correlated motion of the electrons produces fluctuating dipole moments on each atom that attract each other with a 

potential that depends on the distance between them. Another example is an exciton in a semiconductor [6]. An exciton is 

formed by the correlated motion of an electron in the conduction band and a hole in the valence band that allow the 

particles to bind together into a complex. 

The study of strongly correlated systems is becoming a subject of increasing interest due to the realistic possibility that in 

many physical materials, such as High-𝑇𝑐 superconductors, strong correlations between electrons may lead to an 

unexpected physical behaviour, that cannot be explained within the conventional schemes, such as, for instance, mean-field 

or Fermi liquid theory [7]. 

Since electrons are negatively charged particles there is a repulsive Coulomb interaction between them. The strength of 

these interactions between two electrons on one site is denoted by the local interaction strength. The study on the Hubbard 

model has been one of the most attractive fields in solid-state physics and the effect of electron correlations in the model 

has been investigated by using various methods [8] and [9]. 

Since electrons are fermions we cannot have more than one electron per site, which means the term only gives a 

contribution if there are two electrons on one site. This is exactly what we would expect for the interaction. Electrons in the 

Hubbard model can hop from their original site to another site. This event is called hopping and causes the electrons to be 

more delocalised over the lattice [10]. 

The various terms in the Hubbard Hamiltonian influence the localisation of the electrons differently.  In order to see what 

the effects of the different terms are, it is insightful to consider a system with only four lattice sites. For simplicity we will 

ignore the correlations caused by the fermionic properties of the electrons (the exchange hole interactions) [11]. 

This paper is outlined as follows. In section one, we gave a brief introduction of the work under study. The mathematical 

formulation of the theoretical work is given in section two. The results emerging from this study is shown in section three. 

We discussed the outcome of the results in section four and the work was brought to an end by concluding remark in 

section five and this is immediately followed by the lists of references. 
 

2.0. Presentation of Results. 

Table 2.0: Results of analytical exact diagonalization of matrix (4.6) using arbitrary values of the           Coulomb 

interaction strength 𝑈/4𝑡 between the two-interacting electrons four sites system. 
Variation in the interaction strength Total Energy 𝐸 

Analytical exact diagonalization values AEDV 

 

𝑈/4𝑡 
 

𝑉/4𝑡 
 

𝑡′/4𝑡 
Model  I 

−𝑡 − 𝑡′ + 𝑈 

Model II 

−𝑡 + 𝑈 

Model III 

−𝑡 − 𝑡′ + 𝑈 + 𝑉 

Model IV 

−𝑡 + 𝑈 + 𝑉 

50.00 -0.1 -0.01 -2.7666 -2.8482 -2.9694 -3.0566 

45.00 -0.1 -0.01 -2.7685 -2.8504 -2.9714 -3.0590 

40.00 -0.1 -0.01 -2.7708 -2.8531 -2.9740 -3.0619 

35.00 -0.1 -0.01 -2.7738 -2.8566 -2.9772 -3.0656 

30.00 -0.1 -0.01 -2.7778 -2.8612 -2.9815 -3.0705 

25.00 -0.1 -0.01 -2.7834 -2.8676 -2.9875 -3.0773 

20.00 -0.1 -0.01 -2.7916 -2.8771 -2.9963 -3.0874 

15.00 -0.1 -0.01 -2.8052 -2.8927 -3.0109 -3.1041 

10.00 -0.1 -0.01 -2.8316   -2.9232 -3.0392 -3.1363 

5.00 -0.1 -0.01 -2.9054 -3.0076 -3.1176 -3.2250 

0.00 -0.1 -0.01 -3.8400 -4.0000 -4.0450 -4.2050 

-0.01 -0.1 -0.01 -3.8501 -4.0101 -4.0546 -4.2146 

-0.05 -0.1 -0.01 -3.8917 -4.0516 -4.0941 -4.2540 

-0.10 -0.1 -0.01 -3.9470 -4.1065 -4.1464 -4.3060 

-0.15 -0.1 -0.01 -4.0060 -4.1649 -4.2022 -4.3613 

-0.20 -0.1 -0.01 -4.0690 -4.2270 -4.2617 -4.4200 

-0.25 -0.1 -0.01 -4.1362 -4.2930 -4.3250 -4.4822 

-0.30 -0.1 -0.01 -4.2077 -4.3629 -4.3923 -4.5482 

-0.35 -0.1 -0.01 -4.2837 -4.4371 -4.4639 -4.6182 
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-0.40 -0.1 -0.01 -4.3644 -4.5156 -4.5398 -4.6922 

-0.45 -0.1 -0.01 -4.4498 -4.5984 -4.6203 -4.7703 

-0.50 -0.1 -0.01 -4.5401 -4.6858 -4.7053 -4.8528 

-0.55 -0.1 -0.01 -4.6352 -4.7778 -4.7950 -4.9396 

-0.60 -0.1 -0.01 -4.7352 -4.8744 -4.8893 -5.0309 

-0.65 -0.1 -0.01 -4.8400 -4.9755 -4.9885 -5.1267 

-0.70 -0.1 -0.01 -4.9496 -5.0813 -5.0923 -5.2269 

-1.00 -0.1 -0.01 -5.7002 -5.8064 -5.8091 -5.9194 

-1.50 -0.1 -0.01 -7.2226 -7.2915 -7.2893 -7.3617 

-2.00 -0.1 -0.01 -8.9429 -8.9879 -8.9854 -9.0327 

-2.50 -0.1 -0.01 -10.7649 -10.7957 -10.7937 -10.8259 

-3.00 -0.1 -0.01 -12.6428 -12.6648 -12.6634 -12.6864 

-3.50 -0.1 -0.01 -14.5542 -14.5706 -14.5696 -14.5866 

-4.00 -0.1 -0.01 -16.4870 -16.4995 -16.4989 -16.5119 

 

Table 2.1:  Comparison of the calculated analytical exact diagonalization values (AEDV) and the theoretical exact values 

(TEV) of the total energies 𝐸 for the various extended Hubbard models. 
Coulomb 

interaction 

strength 

 

𝑈/4𝑡 
 

Total Energy 𝐸 
 Two electrons interaction on a one dimensional four sites lattice system 

Model  I 

−𝑡 − 𝑡′ + 𝑈 

Model II 

−𝑡 + 𝑈 

Model III 

−𝑡 − 𝑡′ +𝑈 + 𝑉 

Model IV 

−𝑡 + 𝑈 + 𝑉 

AEDV TEV AEDV TEV AEDV TEV AEDV TEV 

50.00 -2.7666 -2.7598 -2.8482 -2.8482 -2.9694 -2.9692 -3.0566 -3.0514 

45.00 -2.7685 -2.7620 -2.8504 -2.8504 -2.9714 -2.9714 -3.0590 -3.0536 

40.00 -2.7708 -2.7648 -2.8531 -2.8532 -2.9740 -2.9742 -3.0619 -3.0564 

35.00 -2.7738 -2.7683 -2.8566 -2.8567 -2.9772 -2.9778 -3.0656 -3.0600 

30.00 -2.7778 -2.7731 -2.8612 -2.8615 -2.9815 -2.9826 -3.0705 -3.0648 

25.00 -2.7834 -2.7797 -2.8676 -2.8681 -2.9875 -2.9893 -3.0773 -3.0715 

20.00 -2.7916 -2.7897 -2.8771 -2.8781 -2.9963 -2.9994 -3.0874 -3.0816 

15.00 -2.8052 -2.8064 -2.8927 -2.8947 -3.0109 -3.0162 -3.1041 -3.0984 

10.00 -2.8316   -2.8395 -2.9232 -2.9279 -3.0392 -3.0497 -3.1363 -3.1319 

5.00 -2.9054 -2.9378 -3.0076 -3.0262 -3.1176 -3.1490 -3.2250 -3.2312 

0.00 -3.8400 -3.8391 -4.0000 -4.0000 -4.0450 -4.0444 -4.2050 -4.2041 

-0.05 -3.8917 -3.9416 -4.0516 -4.1025 -4.0941 -4.1469 -4.2540 -4.3066 

-0.10 -3.9470 -4.0490 -4.1065 -4.2099 -4.1464 -4.2544 -4.3060 -4.4141 

-0.15 -4.0060 -4.1614 -4.1649 -4.3223 -4.2022 -4.3667 -4.3613 -4.5264 

-0.20 -4.0690 -4.2787 -4.2270 -4.4396 -4.2617 -4.4838 -4.4200 -4.6435 

-0.25 -4.1362 -4.4006 -4.2930 -4.5615 -4.3250 -4.6057 -4.4822 -4.7654 

-0.30 -4.2077 -4.5271 -4.3629 -4.6880 -4.3923 -4.7321 -4.5482 -4.8918 

-0.35 -4.2837 -4.6580 -4.4371 -4.8189 -4.4639 -4.8628 -4.6182 -5.0225 

-0.40 -4.3644 -4.7931 -4.5156 -4.9540 -4.5398 -4.9978 -4.6922 -5.1575 

-0.45 -4.4498 -4.9322 -4.5984 -5.0931 -4.6203 -5.1367 -4.7703 -5.2964 

-0.50 -4.5401 -5.0751 -4.6858 -5.2360 -4.7053 -5.2794 -4.8528 -5.4391 

-0.55 -4.6352 -5.2216 -4.7778 -5.3825 -4.7950 -5.4257 -4.9396 -5.5854 

-0.60 -4.7352 -5.3714 -4.8744 -5.5323 -4.8893 -5.5754 -5.0309 -5.7351 

-0.65 -4.8400 -5.5244 -4.9755 -5.6853 -4.9885 -5.7282 -5.1267 -5.8879 

-0.70 -4.9496 -5.6803 -5.0813 -5.8413 -5.0923 -5.8839 -5.2269 -6.0436 

-1.00 -5.7002 -5.7001 -5.8064 -5.8570 -5.8091 -5.8867 -5.9194 -6.0456 

-1.50 -7.2226 -7.47721 -7.2915 -7.6341 -7.2893 -7.6623 -7.3617 -7.8212 

-2.00 -8.9429 -9.3437 -8.9879 -9.5007 -8.9854 -9.5278 -9.0327 -9.6868 

-2.50 -10.7649 -11.2568 -10.7957 -11.4138 -10.7937 -11.4401 -10.8259 -11.5991 

-3.00 -12.6428 -13.1962 -12.6648 -13.3532 -12.6634 -13.3789 -12.6864 -13.5379 

-3.50 -14.5542 -15.1517 -14.5706 -15.3087 -14.5696 -15.3341 -14.5866 -15.4931 

-4.00 -16.4870 -17.1178 -16.4995 -17.2748 -16.4989 -17.2999 -16.5119 -17.4588 
 

3.0 Discussion of Results 

From table 2.0 the behaviour of the hopping kinetic energy is very easy to explain. As 𝑈/4𝑡 increases positively, more 

hopping occurs, so the expectation value )(  ji CC for kinetic hopping terms increases. When 𝑈/4𝑡 itself decreases 

negatively then the hopping kinetic energy terms decrease, and this increases the tendency of the two electrons to come 

together or to be restricted to one site. The amount of doubly occupied sites increases for higher negative /4𝑡 . This means 

that the potential energy also increases. 
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It is also shown in the table that the total energies consistently decreases negatively as the Coulomb interaction strength 

𝑈/4𝑡 is made to decrease and the values of the energies are non- degenerate. For positive higher U/4t electrons can have 

enough kinetic energy to doubly occupy a site. The −𝑡 + 𝑈 + 𝑉 has the least non degenerate energy values while the −𝑡 −
𝑡′ + 𝑈 model has the highest non degenerate energy values. Thus it may be decided that the −𝑡 + 𝑈 + 𝑉 model is a better 

model to discuss the mechanics of electron correlations, since it produced the minimum energy and hence the minimum 

potential energy. 

Table 2.1 provides the comparison of the values obtained from the analytical exact diagonalization and the theoretical exact 

calculations. The results compared favourably with one another particularly in the positive regime of the Coulomb 

interaction strength 𝑈/4𝑡. The trend of non-degeneracy in the total energies, the consistent negative increase in the total 

energies of the two interacting electrons as 𝑈/4𝑡 is decreased, is the same for the various models we applied in this study. 
 

4.0  Research Methodology 

We first applied the extended Hubbard model to act on the various electron states available to the two electrons four sites 

lattice. The application of the Hubbard model generated a 1616  eigenvalue matrix which was solved by analytical exact 

diagonalization. Thereafter we formulated the theoretical exact approach which was patterned after the result of two 

electrons two-site system. 
 

4.1 Mathematical Theory 

The Hamiltonian corresponding to the extended Hubbard model is given by: 












   









ji

ji

ji

ji chCCtchCCtH ....

 

 


ji

ji

i
ii

nnVnnU ji

          (4.1) 

where 𝑡 is the amplitude of a nearest- neighbour NN hopping energy term, 𝑡′ is the amplitude of a next -nearest- neighbour 

(NNN) hopping energy term while 𝑈 is the usual Hubbard on-site interaction. The 𝐶𝑖𝜎
+  or 𝐶𝑗𝜎 is the creation or annihilation 

operator of electron with spin 𝜎 and the summation ji  runs over nearest-neighbour NN pairs and ji runs over next-

nearest-neighbour NNN pairs. The  ij CCch .  is the hermitian conjugate and the inclusion makes the dynamical 

quantities real, the term 𝑈 in the Hamiltonian accounts for the dominant part of the Coulomb repulsion, 
 ii

nn is the on-

site occupation number operator and ji nn  is the nearest neighbour occupation number operator, finally, jiV  is  nearest 

neighbour (NN) density-density interaction. 






otherwise

neighboursarenearestjandiifV
Vij

0
      (4.2) 

Let us also define the amount of particles on site 𝑖 as



iii nnn  and 




jjj nnn so that we show the 

following: 




jijijijijjiiji nnnnnnnnnnnnnn )()(
                   

(4.3) 








,

ji nnnn ji

                                                                                         

(4.4) 

We also know that 0
 jjjjiiii

nnnnnnnn
 
and since we cannot have two electrons with the same 

spin on one site, also the Hubbard model does not account for parallel spin of electrons. The Hamiltonian effectively 

annihilates an electron on its original site and creates an electron on another site. The amount of energy gained by this 

delocalisation of the electrons is given by the hopping amplitude 𝑡. 
 

4.2. The Ground State Energies of the Two Interacting Electrons by Analytical Exact Diagonalization. 

From the geometry of the two electrons four sites system we can write the summary of the Hilbert space available to the 

two-electron eigenstates, and this information is provided in the table below. 
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Table 4.0: Information derived from the geometry of the two electrons four sites lattice sites. 
Lattice separation  𝑙 between the 

two electrons 

Pair wave 

function 

i  

Number of different 

electronic states at lattice 

separation 𝑙 

ii   

Representative pair electronic 

states 

 ii ,  and  ji ,  𝑖 Actual separation 

distance 

 

1 

 

0 

 

0  

 

4 
 1,1 ,  2,2  

 3,3 ,  4,4  

 

 

2 

 

 

𝑎 

 

 

1  

 

 

8 

 2,1 ,  2,1  

 3,2 ,  3,2  

 4,3 ,  4,3  

 1,4 ,  1,4  

 

3 

 

2𝑎 

 

2  

 

4 
 3,1  ,  3,1  

 4,2  ,  4,2  

 There are a total of 16 

electron eigen states 

 

 

When the Hubbard model given by (4.1) is used to act on the various electron states provided in Table 2.0, i.e.,
H  =

1, 2, 3, ⋯ , 16 we shall get an eigen value problem of the form: 0 XIA


 . But for a non-trivial solution 0 IA 

provided 0X


. Hence we get the following matrix. 

)5.4(

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

000000002020

000000002020

000000000202

000000000202

00002000200

00080002000

00020020000

00200200000

00000200200

00002002000

00020002000

00200020000

22000000000

00220000000

22000000000

00220000000

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1













































































































































































































X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

tttttt

tttttt

tttttt

tttttt

ttVtttt

ttVsttt

tttVttt

tttVttt

tttVttt

tttVttt

ttttVtt

ttttVtt

ttttttU

ttttttU

ttttttU

ttttttU

A

 

Also the constraint jiji   must be duly followed. The above generic eigenvalue matrix can be simplified by dividing 

through it by 𝑡 and with further algebraic rearrangement for the purpose of simplicity we realize: 
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The reader should note that for the purpose of clarity and convenience we have used tUu 4/  (Coulomb interaction 

strength), tVv 4/ (NN density- density interaction strength) and tts 4/  (NNN hopping interaction strength). In 

this study, we used several arbitrary values of u to determine the total energy of the two interacting electrons with fixed 

attractive values of 1.0v and 01.0s . Although, the choice of these values is not unique but depends on the 

individual researcher. The analytical exact diagonalization of the above 16 × 16 matrix will produce the total energies and 

the corresponding eigenvectors for each arbitrary 𝑢. However, because of lack of space we are prohibited from presenting 

the eigenvectors in this paper. 
 

4.3. Theoretical Exact Calculation of the Ground State Energies of the Two Interacting Electrons. 

In this section, analytically we shall derive the equation that would give the total energy of two interacting electrons in one 

dimensional four-site system without using or passing through the lengthy analytical approach. This theoretical formulation 

is based on the choice of arbitrary values that we subscribed for the relevant variables in this study. The table below shows 

the theoretical exact calculation of two – electrons in one dimensional 1D lattice four – site.  

The theoretical calculation we have done in this study is actually derived from the known exact calculation of two electrons 

interaction on one dimensional two sites lattice system. We used 𝛼 to denote the complementary value of the total energies 

for some interval𝛿 of positive values of 𝑢, while for the negative values of 𝑢, depending on the given interval 𝛿 we used 𝛽 

to complement the equation to produce the total energies. This iteration was done for several types of the extended Hubbard 

model: (i) −𝑡 − 𝑡′ + 𝑈 (where 𝑉 = 0), (ii)  −𝑡 + 𝑈 (where 𝑡′ = 𝑉 = 0), (iii) −𝑡 − 𝑡′ + 𝑈 + 𝑉 and (iv)−𝑡 + 𝑈 + 𝑉 (where 

𝑡′ = 0). 

Table 4.1: Theoretical Exact Calculation of the Total Energy 𝑬 for 2 – Electrons on a 1D 4 – Lattice System. (model 

I: −𝒕 − 𝒕′ + 𝑼) 

Number of 

lattice site 

Interval 

𝛿 = 𝑈1 − 𝑈2 

Positive values of the Coulomb interaction strength 𝑈/4𝑡 
The extended Hubbard model: −𝑡 − 𝑡′ + 𝑈 
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3599.1  for interval of 5 ranging from [5, 50] 

 

[0, -0.70] 

𝛿 = −0.05 

Negative values of the Coulomb interaction strength 𝑈/4𝑡 
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9095.0  for interval of -0.05 ranging from [0, -0.70] 

[-1, -4] 

𝛿 = −0.5 
4258.0  for interval of -0.5 ranging from [-1, -4] 

 
Journal of the Nigerian Association of Mathematical Physics Volume 65, (October 2022– August 2023 Issue), 199 – 206 



205 
 

Theoretical Exact Calculation…                        Akpata and Enaibe                                J. of NAMP 
 

 

Table 4.2: Theoretical Exact Calculation of the Total Energy 𝑬 for 2 – Electrons on a 1D 4 – Lattice  System. (model 

II: −𝒕 + 𝑼) 

Number of 

lattice site 

Interval 

𝛿 = 𝑈1 − 𝑈2 

Positive values of the Coulomb interaction strength 𝑈/4𝑡 
The Hubbard model: −𝑡 + 𝑈 
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Negative values of the Coulomb interaction strength 𝑈/4𝑡 
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1  for interval of -0.05 ranging from [0, -0.70] 

[-1, -4] 

𝛿 = −0.5 
5143.0  for interval of -0.5 ranging from [-1, -4] 

 

Table 4.3: Theoretical Exact Calculation of the Total Energy 𝑬for 2 – Electrons on a 1D 4 – Lattice System. (model 

III: −𝒕 − 𝒕′ + 𝑼 + 𝑽) 

Number of 

lattice site 

Interval 

𝛿 = 𝑈1 − 𝑈2 

Positive values of the Coulomb interaction strength 𝑈/4𝑡 
The extended Hubbard model: −𝑡 − 𝑡′ + 𝑈 + 𝑉 
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9072.0  for interval of -0.05 ranging from [0, -0.70] 

[-1, -4] 

𝛿 = −0.5 
4156.0  for interval of -0.5 ranging from [-1, -4] 

 

Table 4.4: Theoretical Exact Calculation of the Total Energy 𝑬 for 2 – Electrons on a 1D 4 – Lattice System. (model 

IV: −𝒕 + 𝑼 + 𝑽) 

Number of 

lattice site 

Interval 

𝛿 = 𝑈1 − 𝑈2 

Positive values of the Coulomb interaction strength 𝑈/4𝑡 
The extended Hubbard model: −𝑡 + 𝑈 + 𝑉 
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9971.0  for interval of -0.05 ranging from [0, -0.70] 

[-1, -4] 

𝛿 = −0.5 
5051.0  for interval of -0.5 ranging from [-1, -4] 

  

5.0 Conclusion 

This is a preliminary report that provides a theoretical exact method of calculating the groundstate energies of two 

interacting electrons on a one dimensional four sites lattice system. This method in theory and practice can be generally  
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extended to solve the groundstate of two electrons interaction on 𝑛 −dimensional lattice sites without going through the 

rigours of analytical computation and this approach will also eventually minimize computational errors. The first thing to 

notice is that all energies are negative and non-degenerate. This arises from the fact that the electron energy levels are 

defined relative to the Fermi energy. 
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