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Abstract 

Dynamical quantities such as energy, pressure-gradient, velocity-profile, make up the 

biomechanics of the human system, and the attenuation induced by localized and 

non-localized infectious diseases causes a malfunction in these quantities. In this 

work, we establish that every living and non-living matter possess vibration, and 

vibration produces wave. Thus Man (host) and the virus or bacteria (parasite) have 

their own independent characteristic vibrations. We first superpose the parasitic wave 

on the host wave and the resultant constitutive carrier wave, is studied using Fourier 

transform method. We used the characteristic variants of the human and parasitic 

vibrations to determine the general influence of localized infectious diseases in the 

human viscoelastic system. It is shown in this work, that SARS and other related 

localized infectious diseases has an incubation period of about 9 to 30 days, 

depending on the nature and circumstances of the host wave under attack. This is 

indicated by several of the spectra, but most importantly the high peak resonance in 

the spectra of the total phase angle, displacements and velocities for lower and higher 

harmonics. Also, it is shown in this work that the effect of SARS or any form of 

localized human infectious diseases become more complicated after about 100 days 

of infection. 
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1.0 Introduction. 
The role of SARS CoV-2 and the influence of some other related localized infectious diseases in the human viscoelastic system 

has in general been poorly understood. There is still no adequate understanding of the formation of the virulent disease and the 

possible cure to it. The SARS pandemic is still among the most pressing health problems in the world today. The Corona Virus 

disease of 2019 (known as COVID-19 is a human infectious disease caused by a novel family of coronavirus-2 called the severe 

acute respiratory syndrome (SARS-CoV-2) [1-2]. 
 

All members of the SARS-CoV-2 have spiky proteins on their surfaces which enable them to hook and penetrate the cells of their 

hosts which could be human or animals. This penetration of the virus into the cells of the host causes an infection in the nose, 

upper throat and lungs [3-4]. Generally, viruses are non-living collection of molecules that needs a host to survive while bacteria 

are living organism that can survive inside and outside the host cell. Therefore, for viruses, once they are inside the cells, they take 

over its metabolism and make copy of themselves over and over and thereby causing adverse effects on the system which is the 

infectious state of the host [5].  
 

Generally, all Human infectious diseases that are caused by bacteria, virus etc, have their own independent biomechanics and their 

effect on the Human system can be classified into two major groups: (i) localized infectious diseases and (ii) non-localized 

infectious diseases. Corona Virus Disease 2019 (COVID-19), Cholera, Leprosy, Gonorrhoea, Tuberculosis, Syphilis, that are 

caused by virus or bacteria are referred to as localized Human infectious diseases. This is because they have a preferred or definite 

region of space which they occupy within the Human biological system.   
 

While non-localized Human infectious diseases such as Human Immunodeficiency Virus (HIV), Acquired Immune deficiency 

Syndrome (AIDS), Measles, Chickenpox, Ebola, Lassa Fever, that are caused by viruses are non-localized Human infectious 

diseases, because they do not have a specific or preferred region of space which they occupy within the Human biological system. 

Thus, the presence of these non-localized infectious diseases is felt everywhere within the Human system. 
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In summary, the whole view of the clinical literature of diseases is that the fatal effect of these diseases stems from the attack they 

make on a person’s immune system. The invading bacteria or virus targets and alters the Human immune system, thereby 

increasing the risk and impact of other infections and diseases. In addition to the claim of the clinical literature of diseases, is that 

there is also a cause (vibration) that gives the bacteria and virus, which causes human infectious diseases, their own intrinsic 

characteristics, dynamic activity and existence. It is not the human system that gives the invading bacteria or virus life and 

existence, since they are living organisms, having their own independent characteristics even before they entered the biological 

system of Man.  
 

The interference of one wave 𝑦2(𝑟, 𝑡) say ‘parasitic wave’ on another wave 𝑦1(𝑟, 𝑡) say ‘host wave’ could cause the ‘host wave’ 

to attenuate to zero if they are out of phase. The decay process of 𝑦1(𝑟, 𝑡) can be gradual, over-damped or critically damped 

depending on the rate in which the amplitude of the resultant wave is brought to rest by the destructive influence of the invading 

parasite. However, the general understanding is that the combination of 𝑦1(𝑟, 𝑡) and 𝑦2(𝑟, 𝑡) would first yield a third stage called 

the resultant wave (𝑟, 𝑡) , before the process of attenuation sets in. In this work, we refer to the resultant wave as the constitutive 

carrier wave CCW and we think this is a better representation. We shall always refer to Man being characterized by the host wave 

𝑦1(𝑟, 𝑡), while we shall refer to bacteria and virus as parasites, again characterized by parasitic wave 𝑦2(𝑟, 𝑡).  

 

Every Human infectious disease has an incubation period or window period. This is the time between original infection with 

parasitic caused-disease and the appearance of detectable antibodies to the disease [6]. The World Health Organization (WHO) 

says it takes about 5 – 6 days from when someone is infected with SARS-CoV-2 for symptoms to show, however it can take up to 

2 – 14 days. Also, for human immunodeficiency virus HIV infection (non-localized infection), the incubation period is normally a 

period of about 14 – 21 days [7-8]. 

The Human cyclic heart contraction generates pulsatile blood flow and latent vibration. Thus, the Human heart is the cause of 

Human vibration. The generated latent vibration is sinusoidal and central in character, that is, it flows along the middle of the 

vascular blood vessels and in the process, it orients the active particles of the blood and sets them into oscillating motion with a 

unified frequency. It is the Human blood that responds to - and transfer the latent vibration generated by the heart with a specified 

wave form round the entire Human system [9]. 

The equation of motion obeyed by the CCW as it propagates along the human blood vessels experiences two major resistive 

factors. Firstly, the resistance poses by the elasticity of the walls of the blood vessels and secondly, the elastic resistance of the 

blood medium. The medium mass and elasticity property determines how fast the carrier wave can travel in the medium. 

Consequently, the differential equation of motion would partly be Newtonian due to the nature of the fluid aspect of the blood and 

non-Newtonian due to the particle constituents of the blood. We can write the differential equation of motion as:  

𝐹 = −𝜂 
𝑑𝑦2

𝑑𝑡
 −𝜇𝑦2      (1.1) 

where  𝜂  is the dynamic viscosity of the human blood which has a unit of 𝑘𝑔𝑚−1𝑠−1, and 𝜇 is the elasticity of the human 

aorta the unit is 𝑘𝑔𝑚−1𝑠−2, while 𝑚 and 𝑣 are the mass and velocity of blood respectively, since 𝑚𝑎𝑠𝑠 𝑚 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝜌 ×
𝑉𝑜𝑙𝑢𝑚𝑒 𝑉, and 𝑣 = 𝑑2𝑦 𝑑𝑡2⁄  then equation (1.1) becomes 
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where 𝑦𝑚 is the maximum value of the CCW which is equal to the instantaneous amplitude when the oscillating phase is 

zero. 
 

There are four attenuating characteristics present in the CCW. If 𝑎, 𝜔, 𝜀, and 𝑘 represent the initial parameters of the host 

wave contained in the CCW, and 𝑏, 𝜔′, 𝜀′, and 𝑘′ the initial characteristics of the parasitic wave contained in the carrier 

wave, therefore, (𝑎 − 𝑏𝜆), (𝜔 − 𝜔′𝜆), (𝜀 − 𝜀′𝜆) and (𝑘 − 𝑘′𝜆) will represent the characteristics of the host wave that 

survives after a given time 𝑡, where 𝜆 is the inbuilt raising multiplier. Thus, the fractional change 𝐹𝐶 and the attenuation 

constant 𝐴𝐶 of the host wave characteristics, which we shall denote as 𝛿 and ξ respectively are:  
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Consequently, in this study, equation (1.4) gives 𝜉 = 0.006404 𝑠−1 for all values of the inbuilt raising multiplier: 𝜆𝑖 (𝑖 =
0 ,1, 2, 3, ⋯ , 𝜆𝑚𝑎𝑥). The information provided in (1.4) is used to compute the various values of the time taken for the CCW 

to attenuate to zero. The maximum time the CCW lasted as a function of the raising multiplier 𝜆 is also calculated from the 

attenuation equation. We adopted a slow varying regular interval for the inbuilt raising multiplier, to ensure that we have a 

clear parameter space that is accessible to our model. Hence, we may also write the equation relating the FC to the time 

[10] as follows: 
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where 𝛾 is the fractional index of any physical system under study and 𝑡 is the decay time. Thus, for Bacteria or virus that is 

localized within the human system, we assume: 𝛾 = 0  𝑜𝑟 1 depending on the nature of the infection.  Also, for non-

localized bacteria or virus within the human system, we assume: 𝛾 = 2 𝑜𝑟 3 which also depend on the nature of the 

infection. Details of the method of computing the various values of the latent characteristic variants of the CCW and the 

raising multiplier 𝜆 can be found in [10].  
 

The maximum value of the multiplier: 𝜆𝑚 = 156.1424 ≅ 157 or 𝜆𝑚 ≅ 158 (including zero) and the total time taken for 

the CCW to decay to zero is: 𝑡 ≅ 22532970 𝑠 =  ≅ 260 𝑑𝑎𝑦𝑠 (8 𝑚𝑜𝑛𝑡ℎ𝑠). To get the common difference between the 

respective terms in days we apply the arithmetic progression equation: 

𝑇𝑛 = 𝑎1 + (𝑛 − 1)𝑑      (1.8) 

where 𝑇𝑛 is the nth term in the sequence, and 𝑇𝑛 = 260 days;  𝑎1 is the first term in the sequence which in this study 𝑎1 =
0, and 𝑑 is the common difference between the terms in the sequence, finally 𝑛 is the number of terms in the sequence. 

Thus, we get: 

260 = 0 + (158 − 1) × 𝑑   →   𝑑 = 1.656    (1.9) 

The time series which is in unit of days becomes: 0, 1.656, 3.312, 4.968, 6.624, ⋯ , 260 𝑑𝑎𝑦𝑠. 
 

This paper is outlined as follows. In section one we gave a brief introduction and theory of the work under study. The 

mathematical theory of the Fourier transform of the constitutive carrier wave is given in section two. The results emerging 

from this study is shown in section three. We discussed the outcome of the results in section four and the work is brought to 

an end by concluding remarks in section five, and this is immediately followed by the lists of references and appendix. 
 

1.1. Research methodology: The characteristics of the host wave and the parasitic wave are identified as 𝑦1(𝑟, 𝑡) and 

𝑦2(𝑟, 𝑡) respectively and thereafter, both waves are superposed on one another. Finally, the behaviour of the  resultant 

constitutive carrier wave CCW is then studied with the help of Fourier transform technique. 
 

2.0 Mathematical theory. 

[9] in their work, assume that the host wave is represented as 𝑦1(𝑟, 𝑡) while the parasitic wave 𝑦2(𝑟, 𝑡), and both waves are 

defined by the following characteristic equations: 

 That 𝑦1(𝑟, 𝑡) represents the host wave or the human latent vibration. The equation which may include; the 

amplitude 𝑎 (𝑚), angular velocity, 𝜔 (𝑟𝑎𝑑/𝑠), wave number 𝑘 (𝑟𝑎𝑑/𝑚), the phase angle 𝜀 (𝑟𝑎𝑑𝑖𝑎𝑛), propagation time 𝑡 

(𝑠), and these quantities shall be the basic characteristics of the host latent vibration. The host wave equation which we may 

write as: 

   trkatry


.cos),(1
     (2.1) 

where the position vector  𝑟 of any particle of blood is defined as: 𝑟 = 𝑟 (cos 𝜀 + sin 𝜀), which is 2D in character and the 

motion of the particles of blood is constant with respect to one axis. 

 That 𝑦2(𝑟, 𝑡) represents the parasitic wave or parasitic latent vibration. The equation which may also include; the 

amplitude 𝑏 (𝑚), angular velocity, 𝜔′ (𝑟𝑎𝑑/𝑠), wave number 𝑘′ (𝑟𝑎𝑑/𝑚), phase angle 𝜀′ (𝑟𝑎𝑑𝑖𝑎𝑛), propagation time 𝑡 (𝑠), 

the inbuilt raising multiplier  , and these quantities shall represent the characteristics of the parasitic latent vibration. The 

parasitic wave we may also write as:                                     

  ''.'cos),(2  trkbtry


    (2.2) 

where the position vector  𝑟 of the parasite in the human blood is defined as: 𝑟 = 𝑟 (cos (𝜀′𝜆) + sin (𝜀′𝜆)). 

 The constitutive carrier wave CCW ),( try


 which is the resultant of the superposition of the parasitic wave on 

the host wave, is given by the equation:  

𝑦(𝑟, 𝑡) =  𝑦1(𝑟, 𝑡) + 𝑦2(𝑟, 𝑡)     (2.3)     

   )'()'(cos)(2)(),( 2222  tbabatry       

 )()'(cos tEtrkc  
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     (2.4) 
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The above equation (2.4) is the constitutive carrier wave CCW necessary for our study. It is this equation that governs the 

biomechanics of the coexistence of two interfering vibrations within a given system. The combine wave number 𝑘𝑐
⃗⃗⃗⃗⃗ and the 

position vector 𝑟  of any particle of the fluid in two-dimensional space is defined as: )sin(cos)'(   rkkrkc


, 

the phase angle: )'(   and 𝑟 ≅  0.015 𝑚 is taken to be the approximate radius of the human aorta since the 

heart is the source of human vibration.  The total phase angle of the CCW is given by:  
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2.1 The characteristic angular velocity 𝒁(𝒕) of the CCW. 

The characteristic angular velocity of the CCW is found by differentiating (2.5) with respect to time, so that                                                                        
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The characteristic angular velocity of the CCW has the dimension of 𝑟𝑎𝑑/𝑠. 
 

2.2. The characteristic angular acceleration 𝑸(𝒕) of the CCW. 

Also, to determine the group angular acceleration 𝑄(𝑡), we need to vary the characteristic total phase velocity 𝑧(𝑡) with 

respect to time 𝑡. When this is done, we get: 
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Hence 𝑄(𝑡) is the characteristic angular acceleration of the CCW and it is measured in 𝑟𝑎𝑑/𝑠2. Consequently, we can use 

the Fourier transform method.to convert the classical equation (2.4) to an equation in the frequency-time domain. The 

Fourier transform in this case states that: 
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where the amplitudes, 𝐴0, 𝐴𝛼 and 𝐵𝛼, are the usual Euler coefficients which are defined as follows: 
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In this study we take the period 𝜏 of the human heart as; 𝜏(𝜔 − 𝜔′𝜆) = 2𝜋. The integration of the various amplitudes given 

by the Euler coefficients yields two independent physical quantities: the displacement (𝑚) and the velocity component 

(𝑚/𝑠). Hence the displacement and velocity components of 𝐴0 are separately given by the equations: 
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where we have used the fact that sin(−𝑥) = −sin𝑥 (odd and anti-symmetric function) and cos  (−𝑥) = cos𝑥 (even and 

symmetric function). Also, the displacement component of the Euler coefficient A  is: 
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The displacement component of (2.15) has the dimension of 𝑚𝑒𝑡𝑟𝑒𝑠 𝑚. Again, the velocity component of A  from the 

transform of the CCW is given by: 
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Again, the displacement component of the Euler coefficient B  from the transform of the CCW is: 
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and the dimension of the displacement component is 𝑚𝑒𝑡𝑟𝑒𝑠 𝑚. While the velocity component of B  from the transform 

of the CCW is given by: 
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Also, (2.18) has the dimension of 𝑚𝑒𝑡𝑟𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑, 𝑚/𝑠. The displacement component of the transformed CCW is 

therefore, the combination of terms, 𝐴0, 𝐴𝛼 and 𝐵𝛼 in (2.13), (2.15) and (2.17) respectively and substituting them into (2.9). 

After a careful substitution and arrangement, we get:  

 
   

 



















 




)0()'(

)0(.sin'cos)(2)(

4

'
)'.,(

2222

Z

Erkbaba
tyF

c











    

   
  








 

)()'(

)(2.sin)'(2cos)(2)( 2222





Z

Erkbaba c


  

   
 












 







1
)0()'()1(

)0()1(.sin'cos)(2)(

4

)'(
2222










Z

Erkbaba c


 

    
 






)()'()1(

)(2)1(.sin)'(2cos)(2)( 2222





Z

Erkbaba c



 

   
 






)0()'()1(

)0()1(.sin'cos)(2)( 2222

Z

Erkbaba c






 

    
 











 

)()'()1(

)(2)1(.sin)'(2cos)(2)( 2222





Z

Erkbaba c


              

  )('(cos tEt    

   
 












 







1
)0()'()1(

)0()1(.cos'cos)(2)(

4

)'(
2222










Z

Erkbaba c


 

    
 






)()'()1(

)(2)1(.cos)'(2cos)(2)( 2222





Z

Erkbaba c



 

    
 






)()'()1(

)(2)1(.cos)'(2cos)(2)( 2222





Z

Erkbaba c


 

   
 











 

)0()'()1(

)0()1(.cos'cos)(2)( 2222

Z

Erkbaba c






   

  )('(sin tEt                       (𝑚/𝑠)     (2.19) 

In order to have a common summation in the harmonic frequency part of (2.19), we invoke into it the trigonometric identity 

(see appendix). Therefore, the displacement component of the CCW becomes: 
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Equation (2.20) represents the displacement of the CCW as the time progresses and the dimension is 𝑚𝑒𝑡𝑟𝑒𝑠 𝑚. Also, the velocity 

component of the transformed CCW is the combination of velocities terms, 𝐴0, 𝐴𝛼 and 𝐵𝛼 in (2.14), (2.16) and (2.18) respectively and 

substituting them into (2.9). After a careful substitution and arrangement, we get: 
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Again, in order to have a common summation in the harmonic frequency part of (2.21), we invoke into it the trigonometric 

identity (see appendix).  The velocity component of the CCW therefore becomes: 
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        (𝑚/𝑠)  (2.22) 

Equation (2.22) represents the velocity of the CCW as the time progresses and the dimension is  𝑚/𝑠.  
 

3.0 Presentation of results. 

Table 3.0.     Summary of the calculated values of the latent characteristic’s variants (latent vibration) of the constitutive 

carrier wave CCW 𝑦(𝑟, 𝑡); Results obtained from the work of [10]. 

The component characteristic values of the constitutive carrier wave CCW 𝒚(𝒓, 𝒕). 

Amplitude 

(𝑚) 

Angular velocity 

(𝑟𝑎𝑑/𝑠) 

Phase angle 

(𝑟𝑎𝑑) 

Wave number 

(𝑟𝑎𝑑/𝑚) 

𝑎 𝑏 𝜔 𝜔′ 𝜀 𝜀′ 𝑘 𝑘′ 

1.4624 × 10−5 9.3658 × 10−8 7.5408 0.04829 1.618 0.01036 156.1424 1.00 

The maximum value of the multiplier: 𝜆𝑚 = 156.1424 ≅ 157 in the interval:  𝜆 = 0, 1, 2, 3, ⋯ , 158 (including 

zero). The total time taken for the CCW to decay to zero: 𝑡 ≅ 22532970 𝑠 ≅ 260 𝑑𝑎𝑦𝑠 (8 𝑚𝑜𝑛𝑡ℎ𝑠) in the 

interval: 𝑡 = 0, 1.656, 3.312, 4.968, 6.624, ⋯ , 260 𝑑𝑎𝑦𝑠 and the attenuation constant: ξ = 0.006404 𝑠−1. 
 

          
Fig. 3.1. Spectrum of the displacement of the host wave 𝑦1(𝑟, 𝑡)                Fig. 3.2. Spectrum of the displacement of the parasitic wave 𝑦2(𝑟, 𝑡)  
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Fig. 3.3 Spectrum of the total phase angle 𝐸(𝑡) of the                                                 Fig. 3.4. Spectrum of only the oscillating phase 
                constitutive carrier wave CCW.         cos(𝑘𝑟 − (𝜔 − 𝜔′𝜆)𝑡 − 𝐸(𝑡) of the CCW. 

         
Fig. 3.5. Spectrum of the maximum amplitude oscillating                        Fig. 3.6. Spectrum of the CCW including the oscillating phase: 

𝐴(𝑡) when the oscillating phase is zero.                          𝑦 = 𝐴(𝑡) cos(𝑘𝑟 − (𝜔 − 𝜔′𝜆)𝑡 − 𝐸(𝑡)). 
                                                         

    
      Fig. 3.7. Spectrum of the characteristic angular   Fig. 3.8. Spectrum of the characteristic group 
                        velocity 𝑍(𝑡) of the CCW.                    acceleration 𝑄(𝑡) of the CCW. 
 

    
  Fig. 3.9. Fundamental displacement component         Fig. 3.10. Fundamental velocity component 

                     𝐴0 of the CCW for 𝛼 = 1                   𝐴0  of the CCW for 𝛼 = 1. 
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Fig. 3.11. Spectrum of the first harmonic              Fig. 3.12. Spectrum of the first harmonic velocity 
             displacement 𝛼 = 1 of the CCW.                        𝛼 = 1 of the CCW. 
                                    

    
Fig. 3.13. Shows the sum of the first 5 lower harmonic          Fig. 3.14. Shows the sum of the higher harmonic  
displacements; the sum component of 𝐴∝ and 𝐵∝    Displacements; the sum component of 𝐴∝ and 𝐵∝          
                  𝛼 = 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5     𝛼 = 𝛼20 + 𝛼50 + 𝛼100 + 𝛼120 + 𝛼158         
         Colour code: 𝛼 = 1 (blue), 𝛼 = 2 (brown),    Colour code: 𝛼 = 1 (blue), 𝛼 = 2 (brown), 
  𝛼 = 3 (gray),  𝛼 = 4 (gold) and 𝛼 = 5 (omo blue).    𝛼 = 3 (gray),  𝛼 = 4 (gold) and 𝛼 = 5 (omo blue). 
 

    
Fig. 3.15. Shows the sum of the first 5 lower harmonic   Fig. 3.16. Shows the sum of the first 5 lower harmonic  

velocities, the sum of  𝐴∝ and       velocities, the sum of  𝐴∝ and 𝐵∝  
𝛼 = 𝛼20 + 𝛼50 + 𝛼100 + 𝛼120 + 𝛼158     𝐵∝ 𝛼 = 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5 
Colour code: 𝛼 = 1 (blue), 𝛼 = 2 (brown),      Colour code: 𝛼 = 1 (blue), 𝛼 = 2 (brown), 
𝛼 = 3 (gray),  𝛼 = 4 (gold) and 𝛼 = 5 (omo blue).    𝛼 = 3 (gray),  𝛼 = 4 (gold) and 𝛼 = 5 (omo blue). 
     
2.0. Discussion of results. 

Fig. 3.1 shows that the displacement of the host wave has equal oscillating amplitudes and irregular frequency as it propagates from the source. That 
means, for a healthy person, one free from infectious disease, the amplitude is stable as it propagates with time.  However, in Fig. 3.2, because of the 

inbuilt multiplier, the amplitude of the displacement of the parasitic wave increases as it spreads from the source. That means, the multiplier increases the 

characteristic variants of the parasitic wave in the CCW with time. 
 

It is shown in Fig. 3.3 that the amplitude of the 𝐸(𝑡) of the CCW is initially zero and undistorted as it initially spreads from the source. This shows that the 

effect of the infectious disease caused bacteria or virus, is not felt within this period. However, after 24 days of infection the total phase angle makes a 

significant amplitude of 1.5434 𝑟𝑎𝑑𝑖𝑎𝑛, that means, the effect of the infectious disease will start manifesting after 24 days of infection. 

The spectrum of only the oscillating phase of the CCW is shown in Fig. 3.4.  The spectrum shows a significant curvature between 14 – 66 days with more 
of oscillating frequency in the negative phase. Thus, the oscillating phase responds to the influence of the infectious disease within this interval and 

thereafter it propagates with almost equal amplitude before coming to rest after 260 days. 
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The spectrum of the oscillating amplitude 𝐴(𝑡) shown in Fig. 3.5 reveals an obvious phase separation after 14, 39 and 49 days of infection. Then the 

amplitude rapidly attenuates after 91 days to zero. Also, the spectrum of the CCW shown in Fig. 3.6 has a significant curvature between 14 and 66 days 

with more of oscillating frequencies in the negative phase. That shows that the CCW is responding to the influence of the infectious disease within this 
interval and thereafter it propagates with increase amplitude in the positive phase before coming to rest after 260 days. 
 

The amplitude of the characteristic angular velocity 𝑍(𝑡) shown in Fig. 3.7 increases steadily in the negative phase with significant peaks and distorted 

frequency before it comes to rest. Also, in Fig. 3.8 the amplitude of the characteristic angular acceleration 𝑄(𝑡) increases steadily with distorted frequency 

as it propagates from the source. 
 

Fundamental displacement and velocity component 𝐴0 of the CCW for 𝛼 = 1 are both shown in Fig. 3.9 and 3.10 respectively. The fundamental 

displacement from the transformed CCW show a quadratic curvature with negative intercept while the fundamental velocity has a cubic curvature with 
zero intercept. 
 

The spectra of the first harmonic displacement and velocity (𝛼 = 1) of the CCW are both shown in Figs. 3.11 and 3.12 respectively. The spectrum of the 
first harmonic displacement reveals a curvature between 0 and 66 days after infection with more of distorted frequencies in the negative phase of 

oscillation. While the spectrum of the first harmonic velocity shows a curvature between 28 and 66 days after infection with more of distorted frequencies 

in the negative phase of oscillation. However, while the subsequent attenuation in the displacement is slow and gradual, the velocity rapidly attenuates to 
zero. 
 

As shown in Figs. 3.13 and 3.14 respectively, the sum of the harmonic displacements for both lower and higher values of the harmonic frequency mode 𝛼 
show unusual constriction in the spectra after about 100 days. Thereafter, the amplitude regroups with increased value before they are finally brought to 
rest. 
 

In Fig. 3.15 and 3.16 the sum of the harmonic velocities for both lower and higher values of the frequency mode 𝛼 show similar behaviour with that of the 

displacement. Thus, for the sum of the lower harmonic velocities the spectrum shows unusual significant peak after about 24 days with velocity amplitude 

of -0.001247 𝑚/𝑠. While the sum of the higher harmonic velocities shows significant peak after about 29 days, with velocity amplitude of about 7.3174 ×
10−6 𝑚/𝑠. Thereafter, the spectra amplitude of both harmonic velocities decreases steadily to zero. 

 

5.0 Conclusion. 

It is revealed in this study, that several of the physical dynamic characteristics of the human vibration which is governed by the host wave, responds to the 

attacking influence of infectious diseases at different times. Hence, all localized human infectious diseases either caused by Bacteria or virus have an 
incubation period. The incubation period is the time between original time of infection and the appearance of detectable antibodies to the virus. 

Conversely, the incubation period is the time it takes the human system to respond to the manifestation of the interference of a strange body which is 

destructive in nature. It is shown in this work, that SARS and other related localized human infectious diseases has an incubation period of about 9 to 30 
days, depending on the nature and circumstances of the host system under attack. This is indicated by several of the spectra, but most importantly the high 

peak resonance in the spectra of the lower and higher harmonic velocities. Also, it is shown that SARS or any form of localized human infectious diseases 
becomes more complicated after about 100 days of infection. Dynamical quantities such as energy, pressure-gradient, velocity-profile, make up the 

biomechanics of the Human system. Consequently, the attenuation induced by infectious diseases eventually causes a malfunction in these quantities 

which constitutes the human physiology. It is the gradual attenuation in the dynamical quantities which eventually leads to a general loss of signal or a 
situation often referred to as ‘death’ of the host system if the situation is not controlled. Consequently, the essence of this study is that, if the vibration of 

any material thing is known, then its characteristics can be predicted, altered and possibly destroyed by anti-vibratory components.  
 

Appendix 

The Vector representation of the superposition of the host wave 𝑦1(𝑟, 𝑡) and the parasitic wave 𝑦2(𝑟, 𝑡) which yields a resultant wave 

𝑦(𝑟, 𝑡) or the constitutive carrier wave CCW. 
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Fig. A 1: Represents the human ‘host wave’
1y

 
and the HIV ‘parasitic wave’ 

2y   after the interference. The superposition of both waves 

1y and 2y is represented by the carrier wave displacement y . It is clear that from the geometry of the figure:

;;180180
00

   ;180
0

   and    . The amplitude of the host wave 1y , parasitic wave 2y  and 

the CCW y , are not linear but they oscillate at a given frequency.  

 

Appendix I: 2 sin 𝐴 cos 𝐵 = sin(𝐴 + 𝐵) + sin(𝐴 − 𝐵); 2 cos 𝐴 sin 𝐵 = sin(𝐴 + 𝐵) − sin(𝐴 − 𝐵); 2 cos 𝐴 cos 𝐵 = cos(𝐴 + 𝐵) +
cos(𝐴 − 𝐵); 2 sin 𝐴 sin 𝐵 = cos(𝐴 − 𝐵) − cos(𝐴 + 𝐵). 

Appendix II: sin(𝐴 + 𝐵) = sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵 ; sin(𝐴 − 𝐵) = sin 𝐴 cos 𝐵 − cos 𝐴 sin 𝐵; cos(𝐴 + 𝐵) = cos 𝐴 cos 𝐵 −
sin 𝐴 sin 𝐵; cos(𝐴 − 𝐵) = cos 𝐴 cos 𝐵 + sin 𝐴 sin 𝐵 
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