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ABSTRACT 

Linear Multistep Methods are widely used to obtain numerical solutions of 

ordinary differential equations. However, generating these methods 

manually can be computationally challenging, time-consuming, and prone 

to errors. Existing mathematical software’s lacks the flexibility to efficiently 

automate the derivation of Linear Multistep Methods. This paper introduces 

a web-based tool designed to address these limitations by automating the 

generation of LMMs of first and second derivative methods using 

interpolation and collocation techniques. The tool enhances computational 

efficiency, saves time, and simplifies the process of solving ODEs. The 

backend of the tool is developed in Python using the FASTAPI framework. 

The frontend, built with React, provides a dynamic and responsive interface 

for user interaction. This architecture’s integration of Python and React 

highlights the advantages of combining a powerful computational backend 

with an intuitive frontend. The effectiveness of the tool is demonstrated by 

successfully generating well-known Linear Multistep Methods. 

  

1. INTRODUCTION  

Numerical methods are algorithms used for approximating solutions to mathematical  problems 

by performing finite sequences of arithmetic operations. In the context of solving ordinary 

differential equations (ODEs), differential equations (ODEs), numerical methods provide 

discrete approximations of the solution by iteratively computing values at specific points. These 

methods can be broadly categorized into single-step and multi-step methods [1]. Single-step 

methods, such as Euler's method and Runge-Kutta methods, compute the solution at the next 

step using only the information from the current step. In contrast, Linear Multistep Methods 

(LMMs) use information from multiple previous steps to determine the next value. LMMs are 

derived by expressing the numerical solution as a linear combination of past solution values and, 

in some cases, their derivatives [2]. 
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This allows LMMs to achieve higher accuracy without requiring additional function evaluations 

at each step, making them computationally efficient. 

LMMs can be categorized into explicit and implicit methods. Explicit methods compute the next 

solution value directly from known previous values, while implicit methods involve solving an 

equation to obtain the next value, often requiring iterative techniques such as Newton's method 

[3]. Common examples of LMMs include Adams-Bashforth (explicit) and Adams-Moulton 

(implicit) methods. Another important class of LMMs is the Backward Differentiation Formula 

(BDF), which is particularly useful for stiff ODEs [4]. 

An LMM typically takes the following form: 

∑ 𝛼𝑖 𝑦𝑛+𝑖

𝑘

𝑗=1

= ∑ 𝛽𝑖 𝑓(𝑡𝑛+𝑖, , 𝑦𝑛+𝑖)

𝑘

𝑖=0

                                 (1)       

 

where 𝛼𝑖 and 𝛽𝑖 are coefficients, ℎ is the step size, 𝑦𝑛+𝑖 represents solution points, and 𝑓 is the 

function defined by the ODE. 

Hybrid LMMs extend traditional LMMs by incorporating off-step points (i.e., points within a 

single step interval) into their formulation [5]. This inclusion allows for increased accuracy and 

better stability properties [6]. The general form of a hybrid LMM is: 

∑ 𝛼𝑖 𝑦𝑛+𝑖

𝑘

𝑗=1

 + ∑ 𝛾𝑗  𝑦𝑛+𝜃𝑗

𝑚

𝑗=1

 =  ℎ ∑ 𝛽𝑖 𝑓(𝑡𝑛+𝑖, , 𝑦𝑛+𝑖)

𝑘

𝑖=0

 + ℎ ∑ 𝛾𝑓 (𝑡𝑛+𝜃𝑗
, , 𝑦𝑛+𝜃𝑗

)

𝑚

𝑗=0

         (2) 

Where 𝑦𝑛+𝜃𝑗
 and 𝑓 (𝑡𝑛+𝜃𝑗

, 𝑦𝑛+𝜃𝑗
) are the values and derivatives evaluated at fractional step points 

𝜃𝑗  within the interval [1]. Hybrid LMMs provide a flexible approach that combines the efficiency 

of multistep methods with the enhanced accuracy often associated with single-step methods [ 2].  

Block method generates independent solution at selected grid points without overlapping. It is 

less expensive in terms of number of function evaluation compared to predictor corrector method, 

moreover it possesses the properties of Runge Kutta method for being self-starting and does not 

require starting values. Some of the authors that proposed block method are: [7,8,9,10] 

 

Creating hybrid LMMs in symbolic or numerical computing tools like Maple, Mathematica, and 

MATLAB poses several challenges: 

1.  Complexity in Coefficient Derivation: 

Hybrid LMMs require the derivation of additional coefficients for off-step points, increasing 

the algebraic complexity compared to standard LMMs. 

2. Error Constant and Order derivation: 

Verifying the order and error constants for hybrid LMMs involves symbolic computations that 

can become cumbersome, especially for higher-order methods. 

3. Customizability: 

Most symbolic tools are not tailored for hybrid LMMs, requiring manual coding or 

modifications to generic LMM templates, which is error-prone and time-consuming. 

Objectives 

i. Develop a tool that automatically derives Linear Multistep Methods using interpolation 

and collocation, thereby reducing manual computation errors and saving time. 

ii. Integrate Modern Web Technologies: Combine a Python backend (built on FASTAPI) with 

a dynamic React frontend to create an interactive, responsive user interface for inputting 

parameters and viewing results. 
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iii. Improve Usability and Accessibility: Design the tool so that users can easily generate, 

download, or render the outputs in LaTeX format, making advanced numerical methods 

more accessible to a wide range of users. 

iv. Validate the Tool’s Effectiveness: Demonstrate the tool’s reliability by successfully 

generating established Linear Multistep Methods, proving its practical value for 

researchers and practitioners in numerical analysis. 

The significance of the proposed web-based tool lies in its ability to address critical challenges 

associated with the generation of Linear Multistep Methods (LMMs) for solving ordinary 

differential equations (ODEs). These challenges include the computational complexity, time 

consumption, and potential for manual errors inherent in traditional methods. The tool’s 

contributions can be summarized as follows: 

1. Automation of Numerical Method Derivation  2. Enhanced Computational 

Efficiency. 3. User Accessibility and Scalability 4. Reproducibility and Standardization 

5. Time-Saving and Practical Utility 6. Advancement in Numerical Methods  

This paper presents the development of a web-based tool for generating Linear Multistep Methods 

(LMMs) of first and second derivative methods. The tool features a robust Python backend built 

using FASTAPI and an interactive frontend implemented with the React framework. It employs 

interpolation and collocation techniques to derive LMMs, streamlining the process of solving 

ordinary differential equations (ODEs). This integration of modern web technologies and 

advanced numerical methods offers researchers and practitioners an efficient and user-friendly 

platform for automated LMM generation. 

 

2. Theoretical Analysis 

2.1 Mathematical Techniques 

The mathematical technique for generating numerical methods functions utilizes interpolation 

and collocation of power series approximate solutions, combined with a matrix inversion 

approach, to derive a continuous hybrid linear multistep method. This method is subsequently 

evaluated at selected grid points to formulate a continuous block method within the framework 

of Linear Multistep Methods (LMMs). The incorporation of interpolation ensures that the 

approximate solution smoothly aligns with known values, while collocation guarantees that the 

derived method satisfies the given differential equation at specific points. The matrix inversion 

technique plays a crucial role in solving the system of equations that arise from these conditions, 

facilitating the development of a stable and accurate numerical scheme.  Below is a detailed 

explanation of the key techniques used. A lot of contributions have been made by many prominent 

researchers. To mention a few [11,12, 13, 14, 15, 16], and so on. These researchers utilized 

collocation and interpolation technique applied on power series approximation to obtained linear 

multistep methods 

 

2.1.1 Interpolation 

Interpolation involves approximating a continuous function by constructing a polynomial (or 

another type of function) that passes through a given set of discrete data points. This technique 

is widely used to estimate intermediate values, and its accuracy depends on the choice of 

interpolation nodes and the degree of the polynomial. Methods such as Lagrange and barycentric 

interpolation are popular because they offer straightforward implementations and can achieve 

high accuracy when the data is well-behaved [17].  

• Inputs are used to construct a system of equations based on function values. 
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• Polynomial Construction: For each interpolation point  𝑥𝑖, the power series 𝑥𝑖
𝑗
  is evaluated 

for increasing powers j. This forms rows in the matrix where coefficients correspond to 

polynomial terms. 

Interpolation ensures that the polynomial satisfies the function's values at specified points 

[10], helping construct the continuous form of the method. 

 

2.1.2 Collocation: 

Collocation is a technique used to solve differential equations by enforcing that the approximate 

solution satisfies the equation exactly at a finite number of selected points—called collocation 

points. By converting a continuous problem into a discrete one, collocation methods reduce the 

differential equation to a system of algebraic equations. This approach is especially useful for 

boundary value problems and is often combined with interpolation methods to create spectral 

and finite element methods, ensuring both accuracy and stability [18]. 

When generating Linear Multistep Methods (LMMs), interpolation is used to construct an 

approximation of the solution and its derivatives over an interval, while collocation is 

employed to ensure that the differential equation holds at selected fractional points within 

that interval. This combination not only simplifies the derivation of LMMs but also 

enhances their computational efficiency and accuracy [1]. To impose conditions on 

derivatives of the approximating polynomial to align it with the differential equation. 

• First Derivative Collocation: Points in first derivatives points enforce conditions on the 

first derivative using   symbolic differentiation. 

• Second Derivative Collocation: Points in second derivatives points enforce conditions on 

the second derivative. 

Collocation ensures that the polynomial's derivatives adhere to the system's behaviour, 

ensuring accuracy and stability. 

 

2.2     Implementation Workflow 

1 Input Handling: The function accepts interpolation, first derivative, and second derivative 

points as inputs. These points are used to construct a unified list of all evaluation points.  

2 Matrix Construction: A symbolic matrix is constructed based on the power series 

representation of the function and its derivatives. Special cases (e.g., zero points) are 

handled explicitly to avoid singularities. 

3 Symbolic Inversion: The matrix is inverted symbolically to compute the coefficients of the 

polynomial approximation. 

4 Continuous Method Construction: The coefficients are combined with the power series to 

construct the continuous form of the method. 

5 Discrete Methods Generation: The continuous method is evaluated at specific points to 

generate discrete methods for interpolation, first derivatives, and second derivatives. 

  

2.2.1 Implementation Details 

The implementation of the architecture describe is done using Python, leveraging its powerful 

libraries for symbolic computation, matrix operations, and efficient handling of data structures. 

Below are the details of the programming languages, libraries, and frameworks used [19]. 

1) Python: 

• Python programming language is chosen for its versatility, readability, and extensive 

ecosystem of libraries. 

• It provides an excellent platform for both symbolic and numerical computations, making 

it ideal for this architecture. 
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2) Libraries and Frameworks 

• SymPy: SymPy is a Python library for symbolic mathematics. It allows exact 

computation of derivatives, expansions, and inverses. It uses for Constructing and 

manipulating symbolic matrices. Performing symbolic differentiation to compute 

derivatives of the power series. Expanding and simplifying mathematical expressions 

[20]. Key functions used: 

• sp.diff(): For symbolic differentiation. 

• sp.expand(): For expanding symbolic expressions. 

• matrix.inv(): For computing the inverse of symbolic matrices. 

• Python Standard Library: Modules like copy are used for efficient data handling and 

manipulation. For example, copy.deepcopy() is utilized to create independent copies 

of lists. 

 

2.3 Development Methodology 

2.3.1  Workflow Steps 

1)  Input Initialization 

Interpolation Points (𝒊𝒑): 

These are the discrete points at which the function values are known or will be approximated. 

The interpolation points form the basis for constructing a polynomial (or other basis functions) 

that approximates the continuous function.   

Collocation Points for First Derivatives (𝒅𝒑): 

 These points are selected such that the first derivative of the approximating function is forced 

to match the derivative of the target function at these locations. This ensures that the 

approximation not only fits the function values but also aligns with its slope, enhancing 

accuracy.   

Collocation Points for Second Derivatives (𝒈𝒑):  

Similarly, these points are chosen to enforce that the second derivative of the approximating 

function agrees with that of the target function. This additional condition is particularly 

important when higher-order accuracy is desired, or when the underlying differential equation 

involves second derivatives. 

Define variables 

𝑖𝑝, 𝑑𝑝, and 𝑔𝑝: These variables represent the interpolation points, first derivative collocation 

points, and second derivative collocation points, respectively. They are the primary inputs to 

the system, and their selection can significantly affect the accuracy and stability of the 

resulting numerical method. A check is performed to determine if `𝑔𝑝` (the collection of 

second derivative collocation points) is non-empty. If it contains points, a flag is set to indicate 

that second derivative conditions must be included in the method construction. This flag helps 

in dynamically adjusting the subsequent matrix construction and coefficient calculation steps. 

2) Matrix Construction 

Initialize Matrix:  An empty matrix of size 𝑛 × 𝑛 is created, where 𝑛 is the total number of 

conditions imposed. This total is the sum of the number of interpolation points (𝑖𝑝), first 

derivative collocation points (𝑑𝑝), and (if applicable) second derivative collocation points 

(𝑔𝑝). 

Populate the Matrix: Loop through the matrix rows: Each row corresponds to one of the 

imposed conditions (function value, first derivative, or second derivative).   

Interpolation Rows: For interpolation, the matrix rows are populated with the powers of the 

interpolation points. For example, for a polynomial approximation, each row consists of  
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1, 𝑥𝑖+𝑗, 𝑥𝑖+𝑗
2 , … , 𝑥𝑖+𝑗

𝑛−1 where 𝑥𝑖+𝑗 is an interpolation point. 𝑖 is the current step and 𝑗 is the 

future step. 

First Derivative Rows: For collocation of the first derivative, the rows are filled with the 

derivatives of the basis functions evaluated at the first derivative collocation points.   

Second Derivative Rows:  Similarly, if second derivative conditions are required (i.e., the 

𝑔𝑝 list is non-empty), rows are populated with the second derivatives of the basic functions 

evaluated at those points. 

Special cases (such as zero or near-zero values) must be handled explicitly to avoid numerical 

instabilities or inaccuracies in the matrix. For instance, if a collocation point is at a singularity 

or a point where the derivative is not well-behaved, the algorithm may need to adjust the row 

entries or apply a specific numerical remedy. 

3) Matrix Inversion 

Once the matrix is constructed, the next step is to compute its inverse. This inversion is critical 

because it provides the coefficients that link the discrete conditions (values and derivatives) 

to the continuous approximating function. 

Singular Matrix Check: 

Before attempting the inversion, the determinant of the matrix is checked. A zero determinant 

indicates that the matrix is singular (non-invertible), which means that the chosen 

interpolation/collocation points or basis functions do not lead to a unique solution.  If the 

matrix is found to be non-invertible, the method should return an error message, prompting 

the user to re-examine the input points or the formulation. 

4) Generate Grids 

The process involves creating symbolic representations for the function  𝑦𝑖+𝑗, its first 

derivative 𝑓𝑖+𝑗 and its second derivative 𝑔𝑖+𝑗. These symbols correspond to the values at the 

interpolation and collocation points and are crucial for constructing a general form of the 

solution. 

Combine into a Single Vector: Once the symbolic representations are defined, they are 

combined into a single vector. This vector represents all the conditions that the continuous 

method must satisfy. By consolidating these symbols, one obtains a unified framework that 

will be used to compute the coefficients in the next step. 

5) Continuous Method Construction 

The inverse matrix computed earlier is multiplied by the grid vector. This operation yields the 

coefficients that will weigh the contribution of each basis function (or term in the power 

series) in the continuous approximation. 

6) Power Series Construction: 

Form the Series: Using the total number of points 𝑛, a power series is constructed. Each term 

in the series corresponds to a basis function scaled by the computed coefficient. 

Combine with Coefficients: The final continuous method is obtained by multiplying the 

constructed power series by the vector of coefficients derived from the matrix inversion. This 

operation integrates the discrete conditions into a single continuous representation. 

7) Generation of Methods 

Interpolation Methods are generated by evaluating the continuous method at points that are 

in the collocation points but not present in the interpolation points. 

First derivative Collocation methods are generated by differentiating the continuous method 

with respect to the independent variable. Then evaluating the differentiate continuous 

method at points that are in the second derivative collocation points and interpolation points 

but not present in the first derivative collocation points. 
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Second derivative Collocation methods are generated by differentiating the continuous 

method with respect to the independent variable twice. Then evaluating the differentiate 

continuous method at points that are in the first derivative collocation points and 

interpolation points but not present in the second derivative collocation points. 

8) Output Results 

Create and return results containing a message (Success or error). 

9) Flow of Execution 

Input Initialization → Point Evaluation, Matrix Construction → Matrix Inversion, Grid 

Generation → Continuous Method, Generate Methods (Interpolation, Derivative)  

 

2.3.2 Technology Stack 

1) Frontend: React.js. 

The choice of React.js for the frontend of the described system is a strategic one, aligning 

with the project's goals of providing a dynamic, responsive, and user-friendly interface. 

Here’s a list of why React.js is suitable for this tool: 

Component-Based Architecture 2. Dynamic and Responsive UI 3. Integration with Backend 

APIs 4. Flexibility for LaTeX Rendering 5. Scalability and Performance 6. Developer 

Productivity 7. Future-Proofing 

2) Backend: Python 

Python is an excellent choice for implementing robust computational logic, especially for a 

tool designed to automate mathematical computations like deriving Linear Multistep Methods 

(LMMs). Here's how Python supports this: 

1. Comprehensive Libraries for Computation (NumPy, SymPy, SciPy).  2. Flexibility and 

High-Level Abstractions 3. Robustness and Error Handling 4. High Performance with 

Optimization Techniques 5. Interfacing with Other Systems 6. Scalability for Mathematical 

Workflows 

7. Integration with APIs 8. Support for Advanced Mathematical Techniques 9. Community 

and Ecosystem 

 

RESULTS AND DISCUSSION 

 

3.1 Front-End Interface: 

 
3.2  Test LMMs 
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To validate the software ability to generate numerical method. Note that ‘𝑓’ stands for the first 

derivative collocation points and ‘g’ stands for the second derivative collocation points in the 

methods generated. The software will used to generate 8 BLOCK LMMs found in literature.  

 

1. Implicit Euler method 2. Trapezoidal rule 3. Simpson’s ODE Solver [21] 4. Two-step Block 

Adams-Moulton Method [22] 5. Hybrid Linear Multistep method [23] 6. Hybrid Linear 

Multistep method [24] 7. Falkner Hybrid Block Methods [25] 8. Hybrid Linear Multistep 

method [26]. 

 

3.3 Results  

1. In generating implicit Euler implicit method, the interpolation points are “0” while the 

collocation point is “1” for first derivative collocation. It was generated in 0.382 

seconds. 

 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦𝑛+0 = −𝑓(𝑛+0)ℎ + 𝑦𝑛+1}       (3) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑓𝑛+1 = 𝑓𝑛+0}       (4) 

 

Eq. (3) is Euler’s implicit method generated by the LMM generator. 

2. In generating Trapezoidal rule, the interpolation point is “0” while the collocation points 

are “0,1” for first derivative collocation. It was generated in 0.539 seconds. 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦𝑛+1 =
𝑓(𝑛+0)ℎ

2
+

𝑓𝑛+1ℎ

2
+ 𝑦𝑛+0}      (5) 

 Eq. (4) is trapezoid’s method generated by the LMM generator. 

3. In generating Simpson’s ODE Solver, the interpolation points are “0,1” while the 

collocation points are “0,1,2” for first derivative collocation only. It was generated in 

0.654 seconds. 

 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦𝑛+1 =
5𝑓𝑛+0ℎ

12
+

2𝑓(𝑛+1)ℎ

3
−

𝑓𝑛+2ℎ

12
+ 𝑦𝑛+0}    (6) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦𝑛+2 =
𝑓𝑛+0ℎ

3
+

4𝑓(𝑛+1)ℎ

3
−

𝑓𝑛+2ℎ

3
+ 𝑦𝑛+0}    (7) 

Eq. (5) and Eq. (7) is Simpson’s ODE Solver generated by the LMM generator. 

This result agrees with Simpson’s ODE Solver Method found in literature. 

4. In generating Two-step Block Adams-Moulton Method, the interpolation points are 

“0,1” while the collocation points are “0,1,2” for first derivative collocation only. It was 

generated in 0.419 seconds. 

 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦𝑛+0 = −
5𝑓𝑛+0ℎ

12
−

2𝑓(𝑛+1)ℎ

3
+

𝑓𝑛+2ℎ

12
+ 𝑦𝑛+1}   (8) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦𝑛+2 = −
𝑓𝑛+0ℎ

12
+

2𝑓(𝑛+1)ℎ

3
+

5𝑓𝑛+2ℎ

12
+ 𝑦𝑛+1}   (9) 

Eq. (8) and Eq. (9) Two-step Block Adams-Moulton Method generated by the LMM 

generator. This result agrees with Two-step Block Adams-Moulton Method found in 

literature. 

 

5. In generating hybrid Linear Multistep method [23], the interpolation points is “0,1” 

while the collocation points are for first derivative collocation is none and second 

derivative collocation is “0,
3

2
, 1, 2”. It was generated in 2.612 seconds. 
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{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦
𝑛+

3

2

=
𝑔(𝑛+0)ℎ2

24
+

13𝑔𝑛+1ℎ2

32
+

𝑔𝑛+2ℎ2

32
−

5𝑔
𝑛+

3
2

ℎ2

48
− 𝑦𝑛+0 +

3𝑦𝑛+1

2
}  (10) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦𝑛+2 =
𝑔(𝑛+0)ℎ2

12
+

5𝑔𝑛+1ℎ2

6
+

𝑔𝑛+2ℎ2

12
− 𝑦𝑛+0 + 2𝑦𝑛+1}   (11) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑓𝑛+0 = −
89𝑔(𝑛+0)ℎ

360
−

31𝑔𝑛+1ℎ

60
−

11𝑔𝑛+2ℎ2

120
+

16𝑔
𝑛+

3
2

ℎ

45
−

𝑦𝑛+0

ℎ
+

𝑦𝑛+1

ℎ
}  (12) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑓𝑛+1 =
31𝑔(𝑛+0)ℎ

360
+

13𝑔𝑛+1ℎ

20
+

3𝑔𝑛+2ℎ

40
−

14𝑔
𝑛+

3
2

ℎ

45
−

𝑦𝑛+0

ℎ
+

𝑦𝑛+1

ℎ
}  (13) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑓
𝑛+

3

2

=
33𝑔(𝑛+0)ℎ

2880
+

427𝑔𝑛+1ℎ

480
+

47𝑔𝑛+2ℎ

960
−

7𝑔
𝑛+

3
2

ℎ

360
−

𝑦𝑛+0

ℎ
+

𝑦𝑛+1

ℎ
}  (14) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑓𝑛+2 =
31𝑔(𝑛+0)ℎ

360
+

49𝑔𝑛+1ℎ

60
+

29𝑔𝑛+2ℎ

120
−

16𝑔
𝑛+

3
2

ℎ

45
−

𝑦𝑛+0

ℎ
+

𝑦𝑛+1

ℎ
}  (15) 

 

Eq. (11) to Eq. (15) is the Hybrid Linear Multistep method of [23] generated by the 

LMM generator. This result agrees with [23] results. 

6. In generating hybrid Linear Multistep method [24], the interpolation points are “0,1” 

while the collocation points are “0,
1

4
,

3

4
, 1” for first derivative collocation and second 

derivative collocation. It was generated in 8.795 seconds. 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦𝑛+0 =
−6𝑓𝑛+0ℎ

378
−

61𝑓𝑛+1ℎ

378
−

64𝑓
𝑛+

1
4

ℎ

180
−

64𝑓
𝑛+

3
4

ℎ

180
−

𝑔𝑛+0ℎ2

140
+

𝑔𝑛+1ℎ2

140
−

𝑔
𝑛+

1
4

ℎ2

315
+𝑦𝑛+1}  

(16) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦
𝑛+

1

4

=
−411𝑓𝑛+0ℎ

7168
−

1125𝑓𝑛+1ℎ

7168
−

177𝑓
𝑛+

1
4

ℎ

896
−

303𝑓
𝑛+

3
4

ℎ

896
−

279𝑔𝑛+0ℎ2

71680
+

489𝑔𝑛+1ℎ2

71680
−

633𝑔
𝑛+

1
4

ℎ2

17920
+

423𝑔
𝑛+

3
4

ℎ2

17920
+ 𝑦𝑛+1}         (17) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦
𝑛+

3

4

=
−857𝑓𝑛+0ℎ

193536
−

20135𝑓𝑛+1ℎ

193536
−

11𝑓
𝑛+

1
4

ℎ

24192
−

3413𝑓
𝑛+

3
4

ℎ

24192
−

23𝑔𝑛+0ℎ2

71680
+

233𝑔𝑛+1ℎ2

71680
−

289𝑔
𝑛+

1
4

ℎ2

161280
−

160𝑔
𝑛+

3
4

ℎ2

161280
+ 𝑦𝑛+1}         (18) 

 

Eq. (17) to Eq. (18) is the hybrid Linear Multistep method of [24] generated by the 

LMM generator. This result agrees with [24] results. 

7. In generating Linear Multistep method [25], the interpolation points are “1” while the 

collocation points are “1” for first derivative collocation and “0,1,2”second derivative 

collocation. It was generated in 0.419 seconds. 

 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦𝑛+0 = −𝑓𝑛+1ℎ +
𝑔𝑛+0ℎ2

8
+

5𝑔𝑛+1ℎ2

12
−

𝑔𝑛+2ℎ2

24
+ 𝑦𝑛+1}  (19) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦𝑛+2 = 𝑓𝑛+1ℎ −
𝑔𝑛+0ℎ2

24
+

5𝑔𝑛+1ℎ2

12
+

𝑔𝑛+2ℎ2

8
+ 𝑦𝑛+1}  (20) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑓𝑛+0 = 𝑓𝑛+1 −
5𝑔𝑛+0ℎ

12
−

2𝑔𝑛+1ℎ

3
+

𝑔𝑛+2ℎ

12
}    (21) 
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{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑓𝑛+2 = 𝑓𝑛+1 −
𝑔𝑛+0ℎ

12
+

2𝑔𝑛+1ℎ

3
+

5𝑔𝑛+2ℎ

12
}    (22) 

Eq. (19) to Eq. (22) Hybrid Linear Multistep methods of [25] generated by the LMM 

generator. It was generated in 0.419 seconds. 

8. In generating hybrid Linear Multistep method [26], the interpolation points are “0” 

while the collocation points are “0,
1

4
,

2

4
,

3

4
, 1” for first derivative collocation and second 

derivative collocation. It was generated in 1.109 seconds. 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦
𝑛+

1

4

=
251𝑓𝑛+0ℎ

2880
−

19𝑓𝑛+1ℎ

2880
−

11𝑓
𝑛+

1
2

ℎ

120
+

323𝑓
𝑛+

1
4

ℎ

1440
+

53𝑓
𝑛+

3
4

ℎ

1440
+ 𝑦𝑛+0}  (23) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦
𝑛+

1

2

=
29𝑓𝑛+0ℎ

360
−

𝑓𝑛+1ℎ

360
−

1𝑓
𝑛+

1
2

ℎ

15
+

31𝑓
𝑛+

1
4

ℎ

90
+

1𝑓
𝑛+

3
4

ℎ

90
+ 𝑦𝑛+0}   (24) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦
𝑛+

3

4

=
27𝑓𝑛+0ℎ

320
−

3𝑓𝑛+1ℎ

320
−

9𝑓
𝑛+

1
2

ℎ

40
+

51𝑓
𝑛+

1
4

ℎ

160
+

21𝑓
𝑛+

3
4

ℎ

160
+ 𝑦𝑛+0}   (25) 

{𝑚𝑒𝑡ℎ𝑜𝑑: 𝑦𝑛+1 =
7𝑓𝑛+0ℎ

90
−

7𝑓𝑛+1ℎ

90
−

2𝑓
𝑛+

1
2

ℎ

15
+

16𝑓
𝑛+

1
4

ℎ

45
+

16𝑓
𝑛+

3
4

ℎ

45
+ 𝑦𝑛+0}   (26) 

  

Eq. (19) to Eq. (22) is the hybrid Linear Multistep methods of [26] generated by the 

LMM generator.  

 

3.4 User testing 

 

Summarized feedback from potential users, such as students and researchers. 

Positive Feedback: 

The tool is praised for its intuitive and user-friendly interface, making LMM derivation 

accessible without requiring advanced programming skills. Its automation significantly reduces 

the time and effort compared to manual methods. Being web-based, it offers easy accessibility 

without installation or licensing requirements. The LaTeX output feature is especially 

beneficial for researchers incorporating results into academic papers. Students find it valuable 

for learning and visualizing LMM derivation. Additionally, researchers appreciate its 

computational efficiency and scalability, supported by the Python backend and FASTAPI 

framework. 

Constructive Feedback: 

1.  Learning Curve for New User   2. Limited Customization   3. Internet Dependency 4. 

 Integration with Other Tools 

 

 CONCLUSION 

The web-based tool is designed to automate the generation of Linear Multistep Methods 

(LMMs) of first and second derivative methods for solving ordinary differential equations 

(ODEs), addressing the limitations of traditional mathematical software. Its purpose is to 

simplify the derivation process, enhance accessibility, improve computational efficiency, and 

support education and research. Overall, the tool offers an efficient, accessible, and user-

friendly solution for automating LMM derivation, benefiting both educational and research 

applications. The address of the web-based tool for the generation of LMM is 

“https://lmmgenerator.com/GenerateMethod” 
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