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ABSTRACT 

Human African Trypanosomiasis (HAT), a neglected tropical disease 

transmitted by tsetse flies, remains a health issue in sub-Saharan Africa. 

This study develops a seven-compartment mathematical model that includes 

human and vector dynamics, along with relapse mechanisms. The model's 

consistency is confirmed through boundedness and positivity analysis. 

Equilibrium points are calculated, and stability is discussed. The 

transmission potential via the basic reproduction number, R₀ was derived. 

An optimal control framework integrates three strategies: public awareness, 

regular screening and treatment, and vector control with insecticide traps. 

Using Pontryagin’s Principle, cost-effective approaches are identified to 

reduce infections. Simulations show that combined interventions effectively 

lower HAT prevalence, with relapse management preventing resurgence. 

The findings highlight the importance of coordinated, timely strategies and 

relapse-aware healthcare, providing valuable insights for policymakers to 

implement resource-efficient measures for HAT elimination 

1. INTRODUCTION  

Trypanosomiasis, also known as sleeping sickness in humans and Nagana in animals, is an 

infectious disease caused by protozoan parasites of the genus Trypanosoma, transmitted primarily 

by the tsetse fly which appears mostly in sub-Saharan Africa. Human African Trypanosomiasis 

(HAT) is one of the neglected tropical diseases (NTD). It is a vector-borne parasitic disease. The 

pathogenic parasites are transmitted to humans and animals through the bite of infected tsetse flies, 

which have acquired their infection from humans and animals that harbor the pathogenic parasite. 

Trypanosomiasis has a long history as a disease that has claimed many lives, particularly during 

the era of slave trade and over centuries. However, Sir David Brace, a Scottish pathologist, made 

a significant breakthrough in 1894 by identifying and discovering the causative agent of the disease 

in Uganda as Trypanosoma Brucei during an investigation into a disease outbreak. 
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Mathematical modeling is a crucial tool in epidemiology, enabling researchers to understand and 

predict the spread of diseases, evaluate intervention strategies, and inform public health policy 

decisions. The basic framework for studying the spread of infectious diseases using the SIR 

(Susceptible-Infected-Recovered) model was first proposed and used by [1]. Subsequently, other 

researchers introduced, developed, and analyzed additional compartments to fit specific diseases. 

For example, the SEIR (Susceptible-Exposed-Infected-Recovered) model was developed for 

diseases with a latency period, such as HIV Hethcote [2], and dynamical studies have been 

conducted for COVID-19 epidemic models Ayoade and Ibrahim (2022). 

[3] and [4], evaluated the effectiveness of containment measures and many others, including 

(Peter, O. J., Ibrahim, M. O., Edogbanya, H. O., Oguntolu, F. A., Oshinubi & Ibrahim, A. A., 

.Lawal, 2021), [6], [7] and [8]. 

Many researchers have extensively investigated the causes, effects, and possible control strategies 

for Human African Trypanosomiasis (HAT). The World Health Organization (WHO) has set 

ambitious targets to eliminate both gambiense (gHAT) and rhodesiense (rHAT) forms of the 

disease by 2030 through elimination of transmission (EoT). Despite significant progress, more 

efforts are needed to model Trypanosomiasis with optimal control strategies in Africa. Be- low are 

several notable contributions from various authors in this field: [9] constructed and assessed a 

comprehensive compart- mental framework integrating tsetse flies, Human, cattle and wildlife, 

along- side diverse disease control strategies. Each population has several compartments with the 

variables, Sj(t), Ej(t), Ij(t), and Rj(t), where j = c, h, w represents the number of susceptible, exposed, 

infected and recovered host at time t, such that the total population of each host is equivalent to 

Nj(t) = Sj(t) + Ej(t) + Ij(t) + Rj(t). The vector population is divided into three classes such as at time 

t, there are Susceptible Sv(t), Exposed Ev(t), and Infected Iv(t). 

Thus, the total vector population is Nv(t) = Sv(t) + Ev(t) + Iv(t). Their study aimed to evaluate the 

efficacy of various HAT control approaches in mitigating disease burdens within communities 

characterized by human-cattle-wildlife interactions. Employing optimal control theory, they 

identified a synergistic blend of control strategies capable of minimizing both human and cattle 

infections over time while optimizing implementation costs. 

[10] and [11] both analyzed the transmission dynamics of (HAT) and determine optimal control 

strategies that are both effective in combating the disease and cost-effective. The research 

evaluated the impact of education campaigns, treatment, and insecticide use on reducing the 

transmission of HAT in African communities. They employed mathematical modeling techniques 

and cost-effectiveness analysis; the study seeks to provide insights into the most efficient strategies 

for eliminating HAT while considering the associated costs and resource allocation. 

Numerous studies have proposed improved control strategies for HAT, yet the disease continues 

to pose a significant health threat to humans and livestock, negatively impacting economic 

development in Africa. 

[12], formulate and analyze mathematical models for the spread of Human African 

Trypanosomiasis. The study utilized an ordinary differential equation framework to obtain the 

basic reproductive number (𝑅0). He also used optimal control model to evaluate the effectiveness 

of various intervention strategies such as treatment, vector control and public health education in 

reducing the disease’s prevalence and transmission using Pontryagin’s principle. He used 

numerical simulation to highlight interaction between these strategies. 
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Building on the work of [12], our study introduces a relapse response into the mathematical model, 

enhancing its realism. Furthermore, we conduct numerical simulations within an optimal control 

framework. The findings show that combining multiple intervention strategies substantially lowers 

𝑅0, while targeted relapse treatments help prevent disease resurgence. 

The paper is structured as follows: Section 2 presents a general description of the model 

formulation, positivity and boundedness of the solution, disease- free and endemic equilibrium 

points and basic reproduction number. Section 3 focuses on the stability analysis of local disease-

free equilibrium state. In Section 4 we considered the optimal control model and provides 

numerical simulations of the model using a set of data. Finally, Section 5 discusses the findings 

and presents the conclusions. 

2.0 Material and Methods 

2.1 Model formulation 

A mathematical model that describes the effect of vector-borne diseases on hosts and vectors was 

developed by dividing the total human population into four compartments: Susceptible human 

class 𝑆ℎ(𝑡), Exposed human class 𝐸ℎ(𝑡), Infected human class 𝐼ℎ(𝑡), and treated human class 

𝑇ℎ(𝑡). The total vector population is divided into three compartments: Susceptible vector class  

𝑆𝑉(𝑡), Exposed vector class 𝐸𝑉(𝑡), and Infected vector class 𝐼𝑉(𝑡). Let 𝑁ℎ(𝑡) represent the total 

populations of host-humans at time t, and 𝑁𝑉(𝑡)represent the total populations of vectors-tsetse 

flies at time t. Table 1 shows the details of the other parameters used in the schematic diagram of 

the model (figure 1). 

 

Figure 1: Schematic diagram of the model transmission dynamics 

𝑑𝑺𝒉

𝑑𝑡
= 𝛬ℎ + 𝛾ℎ𝑇ℎ − 𝛽ℎ𝑆ℎ 𝐼𝑣 − 𝜇ℎ𝑆ℎ
𝑑𝑬𝒉

𝑑𝑡
= 𝛽ℎ𝑆ℎ 𝐼𝑣 − (𝜎ℎ + 𝜇ℎ)𝐸ℎ

𝑑𝑰𝒉

𝑑𝑡
= 𝜎ℎ𝐸ℎ − (𝜌ℎ + 𝛿ℎ + 𝜇ℎ)𝐼ℎ
𝑑𝑻𝒉

𝑑𝑡
= 𝜌ℎ𝐼ℎ − (𝛾ℎ + 𝜇ℎ)𝑇ℎ

𝑑𝑺𝒗

𝑑𝑡
= 𝛬𝑣 − 𝛽𝑣𝑆𝑣 𝐼ℎ − 𝜇𝑣𝑆𝑣

𝑑𝑬𝒗

𝑑𝑡
= 𝛽𝑣𝑆𝑣 𝐼ℎ − (𝜎𝑣 + 𝜇𝑣)𝐸𝑣
𝑑𝑰𝒗

𝑑𝑡
= 𝜎𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣 }

 
 
 
 
 

 
 
 
 
 

                (1) 
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Table 1: Notation and description of variables and parameters 

Notation Description of variables and parameters 

𝑆ℎ(𝑡) Number of susceptible humans at time t 

𝐸ℎ(𝑡) Number of exposed humans at time t 

𝐼ℎ(𝑡) Number of infectious humans at time t 

𝑇ℎ(𝑡) Number of treated humans at time t 

𝑆𝑣(𝑡) Number of susceptible tsetse flies at time t 

𝐸𝑣(𝑡) Number of exposed tsetse flies at time t 

𝐼𝑣(𝑡) Number of infectious tsetse flies at time t 

𝑢1(𝑡) Effect of public awareness and educating the population at time t 

𝑢2(𝑡) Regular screening of the population at risk and prompt treatment of infected 

individuals at time t 

𝑢3(𝑡) The impact of vector control using insecticide-treated traps at time t 

Λℎ Recruitment rate of human population 

𝛬𝑣 Recruitment rate of tsetse fly population 

𝛿ℎ Disease-induced death 

𝜇ℎ Natural death rate of human population 

𝜇𝑣 Natural death rate of tsetse fly population 

𝛽ℎ Rate at which susceptible humans get bitten by an infected tsetse fly 

𝛽𝑣 Rate at which susceptible tsetse flies get a blood meal from an infected person 

𝜎ℎ Rate at which the exposed human gets infected 

𝜎𝑣 Rate at which the exposed tsetse fly gets infected 

𝜌ℎ Rate at which the infected get medical attention as outpatients or hospitalized 

𝛾ℎ Rate at which treated human loss immunity and returns to the susceptible class 

 

𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑇ℎ                 

(2) 

𝑁𝑣 = 𝑆𝑣 + 𝐸𝑣 + 𝐼𝑣                  

(3)    

Invariant Region of the Model 

By adding the system of equations (1), we have: 

𝑑𝑵𝒉

𝑑𝑡
=

𝑑𝑺𝒉

𝑑𝑡
+
𝑑𝑬𝒉

𝑑𝑡
+
𝑑𝑰𝒉

𝑑𝑡
+
𝑑𝑻𝒉

𝑑𝑡
= 𝛬ℎ − (𝛿ℎ+𝜇ℎ)𝑁ℎ              

(4) 

and 

 
𝑑𝑵𝒗

𝑑𝑡
=

𝑑𝑺𝒗

𝑑𝑡
+
𝑑𝑬𝒗

𝑑𝑡
+
𝑑𝑰𝒗

𝑑𝑡
= Λ𝑣 − 𝜇𝑣𝑁𝑣                

(5) 
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Theorem 1  

The basic dynamic features of these model equations (1) has solutions which are contain in the 

feasible region 

Ω = Ωℎ × Ω𝑣 for all t > 0 

Proof 

Let  

Ω = (𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑇ℎ, 𝑆𝑣, 𝐸𝑣 , 𝐼𝑣)𝜖ℜ+
7                 

(6) 

with non-negative initial conditions using the differential inequality theorem, [13] on equation (4). 

In the absence of the disease induced death in the human population, equations (4) becomes, 

𝑑𝑵𝒗

𝑑𝑡
≤ 𝛬ℎ − 𝜇ℎ𝑁ℎ                  

(7) 

It follows that  

0 ≤ 𝑁ℎ ≤
𝚲𝒉

𝜇ℎ
,                   

(8) 

hence 

Λℎ − 𝜇ℎ𝑁ℎ ≥ 𝐾𝑒−𝜇ℎ𝑡                  

(9) 

Where 𝐾 is the constant  

Similarly, for the vector population equation (5) becomes, 

Λ𝑣 − 𝜇𝑣𝑁𝑣 ≥ 𝐾𝑒−𝜇𝑣𝑡                

(10) 

Where 𝐾 is the constant  

Therefore, all feasible solutions of the human and vector of the system model are in the regions: 

Ωℎ = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑇ℎ)𝜖ℜ+
4 : 𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑇ℎ ≥ 0,𝑁ℎ ≤ 𝛬ℎ − 𝜇ℎ𝑁ℎ}           

(11) 

Ω𝑣 = {(𝑆𝑣, 𝐸𝑣, 𝐼𝑣)𝜖ℜ+
3 : 𝑆𝑣, 𝐸𝑣, 𝐼𝑣 ≥ 0, 𝑁𝑣 ≤ 𝛬𝑣 − 𝜇𝑣𝑁𝑣}            

(12) 

Thus, the feasible set of the model is given by 

Ω = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑇ℎ, 𝑆𝑣, 𝐸𝑣, 𝐼𝑣)𝜖ℜ+
7 : 𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑇ℎ, 𝑆𝑣, 𝐸𝑣, 𝐼𝑣 ≥ 0;𝑁ℎ ≤

𝚲𝒉

𝜇ℎ
, 𝑁𝑣 ≤

𝚲𝒗

𝜇𝑣
}        

(13) 
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Which is a positively invariant (i.e. solutions remain positive for all time, t) and the model 

is well pose and biologically meaningful. 

2.2 Positivity and Boundedness of the solutions 

In this subsection, we show the positivity and boundedness of system equation (1) above. 

Lemma 1 

Let the initial data be 

{(𝑆ℎ(0), 𝐸ℎ(0), 𝐼ℎ(0), 𝑇ℎ(0), 𝑆𝑣(0), 𝐸𝑣(0), 𝐼𝑣(0)) ≥ 0}ϵΩ      

Then, the solution set  

{𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑇ℎ(𝑡) + 𝑆𝑣(𝑡) + 𝐸𝑣(0) + 𝐼𝑣(𝑡)} of the system (1) is positive for all 

𝑡 > 0. 

 

proof 

From the system of equation (1) above, we solve the following 
𝑑𝑺𝒉

𝑑𝑡
= 𝛬ℎ + 𝛾ℎ𝑅ℎ − 𝛽ℎ𝑆ℎ 𝐼𝑣 − 𝜇ℎ𝑆ℎ ≥ 𝛬ℎ − 𝜇ℎ𝑆ℎ            

(14) 
𝑑𝑺𝒉

𝑑𝑡
≥ 𝛬ℎ − 𝜇ℎ𝑆ℎ                

(15) 
𝑑𝑺𝒉

𝑑𝑡
+ 𝜇ℎ𝑆ℎ ≥ Λℎ                

(16) 

using integrating factor, we have 
𝑑

𝑑𝑡
(Sℎ𝑒

μℎ𝑡) ≥ Λℎ𝑒
μℎ𝑡                    

(17) 

Sℎ(𝑡)𝑒
𝑒μℎ𝑡 ≥

Λℎ

μℎ
𝑒μℎ𝑡 + 𝐶                

(18) 

Sℎ(𝑡) ≥
Λℎ

μℎ
+ 𝐶𝑒−μℎ𝑡                

(19) 

Hence substituting 𝑡 = 0, we have 

Sℎ(0) ≥
Λℎ

μℎ
+ 𝐶 => 𝐶 ≤ Sℎ(0) −

Λℎ

μℎ
              

(20) 

Which gives,  

Sℎ(𝑡) ≥
Λℎ

μℎ
+ (Sℎ(0) −

Λℎ

μℎ
)𝑒μℎ𝑡 > 0              

(21) 

From equation (1) also, 
𝑑Eℎ

𝑑𝑡
=  𝛽ℎ𝑆ℎ 𝐼𝑣  − (𝛼ℎ + 𝜇ℎ)𝐸ℎ ≥ −(𝛼ℎ + 𝜇ℎ)𝐸ℎ            

(22)  

∫
𝑑Eℎ

𝑑𝑡
≥ −∫(𝛼ℎ + 𝜇ℎ)𝑑𝑡               

(23)  

Integrating gives: 

Eℎ(𝑡) ≥ Eℎ(0)𝑒
−(𝛼ℎ+𝜇ℎ)𝑡 > 0               

(24) 

Similarly, from equation (1) we have  



Dotia et al. - Journal of NAMP 70, (2025) 179-192 

185 

Iℎ(𝑡) ≥ Iℎ(0)𝑒
−(𝜌ℎ+𝜇ℎ)𝑡 > 0               

(25)  

Tℎ(𝑡) ≥ Tℎ(0)𝑒
−(𝛾ℎ+𝜇ℎ)𝑡 > 0               

(26) 

S𝑣(𝑡) ≥
Λ𝑣

μ𝑣
+ (S𝑣(0) −

Λ𝑣

μ𝑣
)𝑒μ𝑣𝑡 > 0              

(27)   

E𝑣(𝑡) ≥ E𝑣(0)𝑒
−(𝛼𝑣+𝜇𝑣)𝑡 > 0               

(28) 

I𝑣(𝑡) ≥ I𝑣(0)𝑒
−𝜇𝑣𝑡 > 0                

(29) 

Therefore, all the solutions of the system of equations (1) are positive for all 𝑡 > 0. 

 

2.3 Equilibrium Points of the Model 

At equilibrium, we have  
𝑑Sℎ

𝑑𝑡
=

𝑑Eℎ

𝑑𝑡
=

𝑑𝐼ℎ

𝑑𝑡
=

𝑑Tℎ

𝑑𝑡
=

𝑑S𝑣

𝑑𝑡
=

𝑑E𝑣

𝑑𝑡
=

𝑑𝐼𝑣

𝑑𝑡
= 0             

(30) 

2.3.1 HAT-Free Equilibrium State 

Let  

(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑇ℎ, 𝑆𝑣, 𝐸𝑣, 𝐼𝑣) = (𝑆ℎ
0, 𝐸ℎ

0, 𝐼ℎ
0, 𝑇ℎ

0, 𝑆𝑣
0, 𝐸𝑣

0, 𝐼𝑣
0)            

(31) 

 

To find the HAT-free equilibrium (HAT-FE) of the given system of differential equations, 

we set the whole compartment to zero and since the HAT-free equilibrium there are no 

infected individuals. we set Eℎ = 𝐼ℎ = E𝑣 = I𝑣 = 0 and then solve for the remaining 

compartments. 

Therefore, the system (1) becomes 

(𝑆ℎ
0, 𝐸ℎ

0, 𝐼ℎ
0, 𝑇ℎ

0, 𝑆𝑣
0, 𝐸𝑣

0, 𝐼𝑣
0) = (

Λℎ

μℎ
, 0,0,0,

Λ𝑣

μ𝑣
, 0,0)             

(32) 

2.3.2 HAT-Endemic Equilibrium State 

Let  

(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑇ℎ, 𝑆𝑣, 𝐸𝑣, 𝐼𝑣) = (𝑆ℎ
∗ , 𝐸ℎ

∗ , 𝐼ℎ
∗ , 𝑇ℎ

∗, 𝑆𝑣
∗, 𝐸𝑣

∗, 𝐼𝑣
∗)            

(33) 

 and  

A1 = (𝛼ℎ + 𝜇ℎ), A2 = (𝜌ℎ + 𝛿ℎ + 𝜇ℎ), A2 = (𝛾ℎ + 𝜇ℎ)  𝑎𝑛𝑑 A4 = (𝛼𝑣 + 𝜇𝑣) 

Then, 

(𝑆ℎ
∗ , 𝐸ℎ

∗, 𝐼ℎ
∗ , 𝑇ℎ

∗, 𝑆𝑣
∗, 𝐸𝑣

∗, 𝐼𝑣
∗) = (

𝐴1𝜇𝑣

𝛽ℎ𝜎𝑣
,
(Λ𝑣𝛽𝑣𝜎ℎ−𝜇𝑣𝐴2𝐴3)𝐴2

𝜎ℎ𝛽𝑣𝐴2𝐴3
,
Λ𝑣𝛽𝑣𝜎ℎ−𝜇𝑣𝐴2𝐴3

𝛽𝑣𝐴2𝐴3
,
𝛾ℎ(Λ𝑣𝛽𝑣𝜎ℎ−𝜇𝑣𝐴2𝐴3)

𝜇ℎ(𝜎𝑣𝛽ℎ𝜇𝑣𝐴1)
,

𝐴2𝐴3

𝜎ℎ𝛽𝑣
,
(Λℎ𝛽ℎ𝜎𝑣−𝜇ℎ𝜇𝑣𝐴1)𝜇𝑣

𝜎𝑣𝛽ℎ𝜇𝑣𝐴1
,
Λℎ𝛽ℎ𝜎𝑣−𝜇ℎ𝜇𝑣𝐴1

𝛽ℎ𝜇𝑣𝐴1

)       

(34) 

 

2.4 The Basic Reproduction Number 

The basic reproduction number, commonly represented as 𝑅0, is a fundamental concept in 
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mathematical epidemiology that provides insight into the potential spread of an infectious disease. 

This threshold parameter is crucial for deter- mining whether an infection will establish itself 

within a population or fade away. 

The computation of 𝑅0 can be performed using the next-generation matrix approach, a method 

initially introduced by [14] and subsequently refined by[15]. The basic reproduction number serves 

as a key factor in assessing the stability of the disease-free equilibrium (DFE). Specifically, when 

𝑅0 < 1 the DFE is locally asymptotically stable, implying that the disease will not persist in the 

population. Conversely, if  𝑅0 > 1, the DFE becomes unstable, allowing for the potential spread 

of the infection (see Hethcote, 2000). 

Mathematically, R0 is defined as the spectral radius (i.e., the dominant eigen- value) of the matrix 

product 𝐹𝑉−1, expressed as: 

𝑅0 = 𝜌(𝐹𝑉
−1)                 

(35) 

where 𝜌 denotes the spectral radius. 

𝑓𝑖(𝑥) = (

𝛽ℎ𝑆ℎ𝐼𝑣
0

𝛽𝑣𝑆𝑣𝐼ℎ
0

)                

(36) 

𝑉𝑖(𝑥) = (

𝐴1𝐸ℎ
−𝜎ℎ𝐸ℎ + 𝐴2Iℎ

𝐴4𝐸𝑣
−𝜎𝑣𝐸𝑣 + 𝜇𝑣𝐼𝑣

)               

(37) 

 

 

 

0 0 0

0 0 0 0
(38)

0 0 0

0 0 0 0

h h

v v

S

F
S





 
 
 =
 
 
 

1

2

4

0 0 0

0 0
(39)

0 0 0

0 0

h

v v

A

A
V

A



 

 
 
− =
 
 

− 

1

1 2 21

4

1

1
0 0 0

1
0 0

(40)
1

0 0 0

1
0 0

h

v

v v

A

A A A
V

A

A





 

−

 
 
 
 
 
 =
 
 
 
 
 
 
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1

1

1 4 2

0

0 0 0
(42)

0

0 0 0

h h v h h

v v

v v h v v

S S

A

FV I
S S

A A A

  


 




  




−

 
− 

 
 −

− =  
 −
 
 

− 

 

Hence 

0

0

1 2 4

1 2 4

2

1 2 4

(43)

,

(44)

v h v h v h v

v

h v h v h v

h v

A A A S S
R

A A A

At DFE

R
A A A

    



   

 

=

 
=

 

 

2.5 Stability Analysis 

2.5.1 Local Stability of Disease-Free Equilibrium Point 

Theorem 2 

The disease-free equilibrium point is said to be locally asymptotically stable if all the 

eigenvalues of the Jacobian matrix at the DFE are negative (R0 < 1) otherwise it is unstable. 

Proof: The Jacobian matrix of the system of equation is: 

1

2

3

4

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

( ) 0 0 0 0 0 0 (45)

0 0 0 0 0

0 0 0 0

0 0 0 0 0

h v h h h

h v h h

v v v h v

v v v h

v v

I S

I A S

A

J E A

S I

S I A

  

 

  

 

 



− − − 
 

− − 
 −
 

= − 
 − − −
 

− − 
 − 

 

while at disease-free equilibrium (DFE), all infected compartments (such as 𝐼ℎ 𝑎𝑛𝑑 𝐼𝑣) are zero, 

which will simplify the Jacobian matrix as: 

1

2

0

3

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

( ) 0 0 0 0 0 0 (46)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

h h h

h h

v v v

v v

v v

S

A S

A

J E A

S

S A

 



 



 

− − 
 

− 
 −
 

= − 
 − −
 

− 
 − 

 

Reducing the matrix (46) to upper triangular matrix and the characteristic equation gives 

1

1

1 4 2

0 0

0 0 0 0
(41)

0 0

0 0 0 0

h h v h h

v v

v v h v v

S S

A

FV
S S

A A A

  

 

  
−

 
 
 
 

=  
 
 
 
 
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1

2

0

3

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

( ) 0 0 0 0 0 0 0 (47)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

h h h

h h

v

v

S

A S

A

J E I A

A

  

 



 

 



 

− − −

− −

− −

− = − − =

− −

− −

− −

 

The determinant of equation (47) gives: 

( )( )( )( )( )( )( )1 1 2 2 3 3 4 5 4 6 7 0 (48)h v vA A A A         − − − − − − − − − − − − − − =  

Which gives: 

1 2 1 3 2 4 3 5 6 4 7 (49)h v vor A or A or A or or A or         = − = − = − = − = − = − = −  

Therefore, 

1 2 1 3 2 4 3 5 6 4 7, , , , , , (50)h v vA A A A         = − = − = − = − = − = − = −  

1 2 3 4 5 6 7, , , , , , 0         

Since all the eigenvalues of 𝐽(𝐸0) of the disease-free equilibrium are negative, it shows that the 

DFE is locally asymptotically stable. 

3.0      Optimal Control Formulation 

We are examining a system composed of seven nonlinear optimal control models. In this 

framework, U₁(t) represents efforts to increase public awareness and educate the population, 

aiming to reduce the number of susceptible individuals. U₂(t) corresponds to regular screening of 

at-risk populations and providing prompt treatment to infected individuals. Lastly, U₃(t) involves 

the use of insecticide-treated nets to help control the spread of the disease. 

𝑑𝑺𝒉

𝑑𝑡
= 𝛬ℎ + 𝛾ℎ𝑇ℎ − (1 − 𝑢1) 𝛽ℎ𝑆ℎ 𝐼𝑣 − 𝜇ℎ𝑆ℎ
𝑑𝑬𝒉

𝑑𝑡
= (1 − 𝑢1)𝛽ℎ𝑆ℎ 𝐼𝑣 − (𝜎ℎ + 𝜇ℎ)𝐸ℎ

𝑑𝑰𝒉

𝑑𝑡
= 𝜎ℎ𝐸ℎ − (𝜌ℎ + 𝛿ℎ + 𝜇ℎ + 𝑢2)𝐼ℎ

𝑑𝑻𝒉

𝑑𝑡
= (𝜌ℎ + 𝑢2)𝐼ℎ − (𝛾ℎ + 𝜇ℎ)𝑇ℎ

𝑑𝑺𝒗

𝑑𝑡
= 𝛬𝑣 − (1 − 𝑢1)𝛽𝑣𝑆𝑣 𝐼ℎ − 𝜇𝑣𝑆𝑣

𝑑𝑬𝒗

𝑑𝑡
= (1 − 𝑢1)𝛽𝑣𝑆𝑣 𝐼ℎ − (𝜎𝑣 + 𝜇𝑣)𝐸𝑣
𝑑𝑰𝒗

𝑑𝑡
= 𝜎𝑣𝐸𝑣 − (𝜇𝑣 + 𝑢3)𝐼𝑣 }

 
 
 
 
 

 
 
 
 
 

             (51) 

we define the objective function as  

𝐽 = min
(𝑢1,𝑢2,𝑢3)

∫ (
1

2
𝜔1𝑢1

2 +
1

2
𝜔2𝑢2

2 +
1

2
𝜔3𝑢3

2 + 𝑐1𝑆ℎ + 𝑐2𝐼ℎ + 𝑐3𝐸𝑣 + 𝑐4𝐼𝑣)
𝑡1
𝑡0

      (52) 

Subject to the state equations above, with appropriate state initial conditions. 𝑡0is the initial time 

and 𝑡1 is the terminal time. The constant terms 𝑤1, 𝑤2, 𝑤3,𝑐1, 𝑐2, 𝑐3, 𝑐4 represent the weight 

constants. The terms  
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𝜔1𝑢1
2 , 𝜔2𝑢2

2, 𝜔3𝑢3
2 are the costs associated with public awareness and educating individuals, 

Regular screening of the population at risk with prompt treatment of infected individuals and 

impact of vector control using insecticide-treated traps respectively. The control set is defined as: 

𝑈 = {(𝑢1, 𝑢2, 𝑢3)|0 ≤ 𝑢1 ≤ 𝑢1𝑚𝑎𝑥, 0 ≤ 𝑢2 ≤ 𝑢2𝑚𝑎𝑥 , 0 ≤ 𝑢3 ≤ 𝑢3𝑚𝑎𝑥}        (53)  

Pontryagin’s Principle will be used to determine the necessary and sufficient conditions for our 

optimal control problem to hold. The principle transforms equations (51) into a pointwise 

minimization problem of the Hamiltonian (H) with respect to the control variables 𝑢1, 𝑢2𝑎𝑛𝑑 𝑢3. 

𝐻 =
1

2
𝜔1𝑢1

2 +
1

2
𝜔2𝑢2

2 +
1

2
𝜔3𝑢3

2 + 𝑐1𝑆ℎ + 𝑐2𝐼ℎ1 + 𝑐3𝐸𝑣 + 𝑐4𝐼𝑣 + 𝜆1(𝛬ℎ + 𝛾ℎ𝑇ℎ − (1 − 𝑢1) 𝛽ℎ𝑆ℎ 𝐼𝑣 −

 𝜇ℎ𝑆ℎ) + 𝜆2((1 − 𝑢1)𝛽ℎ𝑆ℎ 𝐼𝑣  − (𝜎ℎ + 𝜇ℎ)𝐸ℎ) + 𝜆3(𝜎ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝜏ℎ + 𝑢2)𝐼ℎ) + 𝜆4((𝜌ℎ +
𝑢2)𝐼ℎ − 𝛾ℎ + 𝜇ℎ)𝑇ℎ) + 𝜆5(𝛬𝑣 − (1 − 𝑢1)𝛽𝑣𝑆𝑣 𝐼ℎ − 𝜇𝑣𝑆𝑣) + 𝜆6((1 − 𝑢1)𝛽𝑣𝑆𝑣 𝐼ℎ − (𝜎𝑣 + 𝜇𝑣)𝐸𝑣) +
𝜆7(𝜎𝑣𝐸𝑣 − (𝑢3 + 𝜇𝑣)𝐼𝑣)          (54)  

Where 𝜆𝑖 , 𝑖 = 1,2,3, … . ,7 are the adjoint variables.        

Theorem 4 

Given optimal controls 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡) and solutions 𝑆ℎ
∗ , 𝐸ℎ

∗ , 𝐼ℎ
∗ , 𝑇ℎ

∗, 𝑆𝑣
∗, 𝐸𝑣

∗, 𝐼𝑣
∗ of system that 

optimize 𝐽(𝑢𝑖) over 𝑢, then there exist adjoint variables 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7 satisfying: 
𝑑𝜆1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆ℎ
, 

𝑑𝜆2

𝑑𝑡
= −

𝜕𝐻

𝜕𝐸ℎ
, 

𝑑𝜆3

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼ℎ
,  

𝑑𝜆4

𝑑𝑡
= −

𝜕𝐻

𝜕𝑇ℎ
,        

𝑑𝜆5

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆𝑣
, 

𝑑𝜆6

𝑑𝑡
= −

𝜕𝐻

𝜕𝐸𝑣
,   

𝑑𝜆7

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼𝑣
 

𝑑𝜆1

𝑑𝑡
= 𝜆1((1 − 𝑢1)𝛽ℎ𝐼𝑣 + 𝜇ℎ) − 𝜆2(1 − 𝑢1)𝛽ℎ𝐼𝑣−𝑐1           

(55) 
𝑑𝜆2

𝑑𝑡
= 𝜆2(𝛼ℎ + 𝜇ℎ) − 𝜆3𝛼ℎ              (56) 

𝑑𝜆3

𝑑𝑡
= 𝐶2+𝜆3(𝜎ℎ𝐸ℎ − 2(𝜏ℎ + 𝑢2)𝐼ℎ − 𝛿ℎ − 𝜇ℎ) + 𝜆4(𝜏ℎ + 𝑢2) − 𝜆5(1 − 𝑢1)𝛽𝑣𝑆𝑣+𝜆6(1 −

𝑢1)𝛽𝑣𝑆𝑣                      

(57) 
𝑑𝜆4

𝑑𝑡
= −𝜆4(𝛾ℎ + 𝜇ℎ) + 𝜆1𝛾ℎ              (58) 

𝑑𝜆5

𝑑𝑡
= 𝐶3 − 𝜆5((1 − 𝑢1)𝛽𝑣𝐼ℎ + 𝜇ℎ) + 𝜆6(1 − 𝑢1)𝛽𝑣𝐼ℎ           

(59) 
𝑑𝜆6

𝑑𝑡
= −𝜇𝑣𝜆6 + 𝜎𝑣𝜆7               (60) 

𝑑𝜆7

𝑑𝑡
= 𝑐4 − 𝜆1(1 − 𝑢1)𝛽ℎ𝑆ℎ + 𝜆2(1 − 𝑢1)𝛽ℎ𝑆ℎ − (𝑢3 + 𝜇𝑣)𝜆7         (61) 

And with transversality conditions: 

𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 𝜆5 = 𝜆6 = 𝜆7 = 0                  (62) 

And the optimal control 𝑢∗that satisfies the optimality conditions: 
𝜕𝐻

𝜕𝑢𝑖
= 0, 𝑖 = 1,2,3 

𝑢1
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (

𝛽ℎ𝑆ℎ𝐼𝑣(𝜆2−𝜆1)

𝜔1
) , 1}             

(63) 

𝑢2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (

𝛽𝑣𝑆𝑣𝐼ℎ(𝜆7−𝜆6)+𝐼ℎ1(𝜆3−𝜆4)

𝜔2
) , 1}            

(64) 

𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (

𝜆1𝐼𝑣

𝜔3
) , 1}              (65) 
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4.0 Numerical Simulation  

In this section, we'll look at some real-world examples to better understand how different control 

strategies—both used individually and combined—can influence the outcomes of our model. We'll 

begin with starting values such as 𝑆ℎ(0) = 900, 𝐸ℎ(0) = 50, 𝐼ℎ(0) = 30, 𝑅ℎ(0) = 15, 𝑆𝑣(0) =
1500, 𝐸𝑣(0) = 500, and 𝐼𝑣(0) = 300. To make the results easier to grasp, we've included visual 

graphs below that illustrate how the model behaves under different scenarios. 

 
Figure 2: The dynamics of susceptible vector with and without control 

 

This plot of susceptible vectors vividly illustrates HAT dynamics over time—with and without 

control measures—and highlights how timely interventions can dramatically curb transmission 

compared to an uncontrolled outbreak. 

  
Figure 3: Dynamics of exposed vector combine with control 

 

This graph effectively illustrates the impact of control when a community is exposed to HAT 

outbreak, this show that with proper control efforts, outbreaks can be managed more efficiently 

compared to when it is without control. 

 

Figure 4: The dynamics of infected human with and without control 
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This graph of the infected human population highlights how control measures alter HAT’s 

trajectory—demonstrating that, with well-designed interventions, the disease can be contained far 

more rapidly and effectively than during an uncontrolled outbreak. 

.  

Figure 5: The dynamics of infected tsetse fly with and without control 

This plot of infected vector population shows the impact of control on the spread of HAT in the 

population, show that with proper control strategies, HAT spread can be more easily and efficiently 

controlled compared to when it the disease spreads without control. 

 
Figure 6: The dynamics of treatment combine with control 

This graph depicting the effect of treatment with control measures in human population, this can 

effectively slow down the spread and accelerate the elimination of HAT, compared to scenarios 

without intervention. 

 

CONCLUSION 

The findings from our model highlight the predictable dynamics of Human African 

Trypanosomiasis (HAT) transmission between humans and tsetse flies. The boundedness and 

positivity of the solution were discussed to show that the model is mathematically consistent and 

biologically meaningful. The equilibria points (HAT-free and HAT-endemic equilibrium) were 

calculated. Stability analysis identifies HAT-free and endemic equilibria, with the basic 

reproduction number R0 derived to assess transmission potential. The optimal control frame- work 

was introduced to the model. From our analysis, we discovered that the intervention strategies: 

public awareness, regular screening and prompt treatment, and effective vector control are 

essential to reducing the disease burden. However, the rapid loss of immunity after recovery points 

to a critical need for long-term solutions, particularly vaccine development. The plots and the 

analysis results establish that strategically timed, integrated approaches such as public awareness, 

regular screening and prompt treatment, prioritizing vector reduction, and relapse- aware 
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healthcare prove most effective. This study provides good insights for policymakers, advocating 

for adaptive, resource efficient strategies and research interventions to protect vulnerable 

populations and move toward the eventual elimination of HAT. 
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