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1 INTRODUCTION

Cemeteries are increasingly recognized as potential sources of soil and groundwater contamination
due to the release and migration of decomposition products, particularly in shallow groundwater
environments [1]. Although flowing surface water is generally less susceptible to contamination,
subsurface systems may retain or transmit leachates depending on local hydrogeological
conditions. As urban areas expand and burial grounds become embedded within residential
settings, the need to understand subsurface impacts has become more critical. Near-surface
geophysical methods have proven effective for groundwater investigations, offering non-invasive
approaches to mapping aquifer geometry, confining layers, and zones of altered subsurface
conductivity associated with contamination [2], [3].
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In contrast to direct hydrochemical sampling which is costly, intrusive, and often restricted in
burial environments electrical and electromagnetic surveys provide continuous spatial coverage
and improved interpretability, making them suitable for cemetery studies.

Previous research across Europe, Africa, and other regions reports elevated concentrations of ions,
organic compounds, and microbial contaminants in groundwater near cemeteries, though
contamination levels vary with soil permeability, burial density, and depth to the water table [4],
[10], [24], [28], [31]. High-permeability sandy formations and shallow unsaturated zones have
been particularly associated with enhanced leachate migration [30], [31]. In Nigeria, studies from
Benin City and other urban centers indicate that wells situated near cemeteries often exceed WHO
limits for heavy metals and bacteriological parameters, highlighting persistent risks to groundwater
quality [40], [41], [44]. Geophysical investigations, especially electrical resistivity tomography
(ERT), have further identified low-resistivity anomalies that correlate with leachate-impacted
zones [42], [43].

Despite these advances, significant gaps remain. Many studies rely solely on point-based water
quality assessments or shallow resistivity imaging without integrating multiple geophysical
techniques or considering deeper lithological controls on contaminant transport. As a result, spatial
patterns of leachate migration and their interaction with groundwater flow systems remain poorly
constrained, particularly in Nigerian urban cemeteries.

This study addresses these gaps by employing an integrated geophysical approach combining
VLF-EM profiling and 2D electrical resistivity imaging to map subsurface structures and delineate
potential contaminant pathways within a major cemetery in Benin City. Through this multi-method
investigation, the research aims to enhance understanding of cemetery-related impacts on the
subsurface environment and provide evidence to support improved groundwater protection and
environmental management.

2. MATERIALS AND METHODS

2.1 STUDY AREA

The study was conducted in Benin City, the capital of Edo State, located in the Mid-Western region
of Nigeria (Figure 1). The city lies between latitudes 6°20"—6°58"N and longitudes 5°35"-5°41"E.
Edo State is bordered by Kogi State to the north, Ondo State to the west, and Delta State to the
east and south. Benin City falls within the Sub-Humid Tropical Zone, with an average temperature
of approximately 27°C and annual rainfall exceeding 2000 mm [32].

Benin City experiences two main seasons: a wet season from March to October and a dry season
from November to February. Seasonal rainfall variations are influenced by the Inter-Tropical
Discontinuity (ITD), with peaks in July and September, separated by a brief “August Break.” The
dry season corresponds to minimal precipitation, primarily in December and January. Prevailing
winds are dominated by the tropical maritime air mass, supplemented by the tropical continental
air mass. Monthly rainfall is typically highest between May and October [33].
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Figure 1: Study Area Map Showing Benin City with Four Local Government Areas.

2.2 Geophysical Surveys

An integrated geophysical approach combining Very Low Frequency Electromagnetic (VLF-EM)
profiling and Electrical Resistivity Tomography (ERT) was employed to delineate subsurface
structures and potential contaminant pathways within the cemetery.

An integrated geophysical approach combining Very Low Frequency Electromagnetic (VLF-EM)
profiling and Electrical Resistivity Tomography (ERT) was employed to delineate subsurface
structures and identify potential contaminant migration pathways within the study area. This
approach is consistent with geoforensic and environmental applications in which electromagnetic,
electrical, and radar methods have been used to detect buried materials and map conductive
anomalies associated with anthropogenic processes (e.g., [34]). In this study, VLF-EM and ERT
were applied to characterize conductive plumes and evaluate the movement of contaminants from
the lateritic surface layer into the underlying sandy formation.

2.2.1 VLF-EM Survey

The VLF-EM method was adopted as a preliminary reconnaissance tool due to its rapid acquisition
capability and sensitivity to conductive structures such as fractures, faults, and leachate-impacted
zones (e.g., [35]). Unlike active EM systems that require an artificial transmitter, the VLF approach
utilizes signals from existing radio transmitters operating between 15 and 25 kHz (e.g., [36]).
These signals induce secondary electromagnetic fields within the subsurface, enabling the
detection of conductive anomalies.

A) Data Acquisition

A preliminary survey was conducted using an ABEM WADI VLF receiver along sixteen (16)
parallel traverses, each measuring 100 m in length. The traverses were oriented in the east—west
direction, with 2 m spacing between profiles and 5 m station intervals. The instrument recorded
both the real and imaginary components of the VLF response, providing the basis for identifying
near-vertical and inclined conductive bodies for subsequent detailed investigation.

B) Data Processing and Interpretation

Processing involved filtering the real and imaginary components using the MATLAB-based
MGUI software. Filtered real-component contour maps were generated in Surfer 11.0, and 2D
VLF pseudosections were produced using KHFFILT. Interpretation relied on the combined
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assessment of the filtered real values where positive peaks indicated conductive features and the
pseudosections, which highlighted shallow conductive anomalies. These anomalies were
interpreted as potential leachate plumes, consistent with both field observations and geochemical
evidence.

2.2.2 Electrical Resistivity Tomography (ERT)

Following the reconnaissance survey, detailed subsurface imaging was performed using Electrical
Resistivity Tomography. The dipole—dipole array configuration was selected for its high
sensitivity to lateral resistivity contrasts, making it particularly effective for detecting horizontal
discontinuities and mapping laterally extensive conductive zones associated with contaminant
transport (e.g., [37]). Although less sensitive to vertical variations, the array offers superior lateral
resolution, which is essential in identifying plume geometry and boundaries.

2.2.3 Inversion and Modeling

ERT data were inverted using the standard resistivity inversion software RES2DINV to produce
two-dimensional (2D) subsurface models. Measured resistivity values were converted into
apparent resistivity distributions, allowing the identification of conductive zones associated with
leachate infiltration. These models facilitated the interpretation of plume geometry, spatial extent,
and potential migration pathways.

3. RESULTS AND DISCUSSION

3.1 VLF-EM Survey Results

The VLF-EM survey provided an initial reconnaissance of subsurface conductive features within
the cemetery. Given the presence of unmarked graves, this step was crucial to delineate both
marked and unmarked burial sites, allowing targeted Electrical Resistivity Tomography (ERT)
profiling in areas with higher probabilities of conductive anomalies.

Filtered real components of the VLF-EM data were processed and visualized in Surfer 11.0,
generating color-shaded contour maps for each traverse. Conductive zones appeared as blue
(negative values), while resistive zones appeared as red (positive values). Simultaneous plotting
of filtered real and imaginary components in MATLAB (MGUI) improved the interpretative
accuracy by highlighting sharp, localized positive peaks typical of near-surface conductive bodies,
including leachate plumes and buried metallic objects (Figures 2—6).

Karous—Hjelt (KHFFILT) filtered pseudosections emphasized shallow conductors and guided the
selection of representative anomalies for subsequent ERT surveys (Figure 7). Conductive zones
were inferred to represent either geologic conductors (clayey or saturated layers) or anthropogenic
features (leachate plumes or metallic inclusions).
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Figure 2: VLF Map for Second Cemetery
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Figure 3: VLF Curve Interpretations for Second Cemetery, Profile 2
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Figure 4: VLF Curve Interpretations for Second Cemetery, Profile 5

SECOMND CEMETERY VERY LOW FREQUEMCY - ELECTROMAGHETIC CURVE OF PROFLET
I

10 = T I I
: [ Filtered Real |
| ------ Filtered |maginary |
5
o - | e :j'{’.\'\ S e e L
i 7k JEA —— : >
7 ~ 1 MIEVIiEEE
g ” 7 2
/ b
-10 ]Il. .
i
-15
-20 JI(JII
\\ /f
7
_300 10 20 30 40 50 B0 7O 20 20 100
Distance{m)
Karous-Hjelt filtering
2ND CEMETERY VLF LINE7 IMAGE
-5 2 " " M
;| ¢
= 1s . - v - - N v .
o 20 40 60 B0 100

Distance (m)

-60 -50 -40 -30 -20 -10 o 10
Real component, unnormalized

Figure 5: VLF Curve Interpretations for Second Cemetery, Profile 7
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Figure 6: VLF Curve Interpretations for Second Cemetery, Profile 14
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Figure 7: Predicted conductive zones Location Map for the Cemetery

3.2 ERT Survey Results
ERT profiles were positioned to intersect VLF-EM-identified anomalies, ensuring full coverage

of suspected leachate plumes. A uniform 5 m inter-electrode spacing provided adequate resolution
for capturing the depth, lateral extent, and geometry of conductive zones. The ERT data were
systematically indexed, georeferenced, and correlated with VLF-EM anomalies for integrated

interpretation (Figure 8).
179



lyere and Tuaboboh - Journal of NAMP 71, (2025) 173-186

SECOND CEMETERY 2D ELECTRICAL RESISTIVITY IMAGING SURVEY LOCATION BASE MAP
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Figure 8: Electrical Imaging Survey Base Map of the cemetery

3.2.1 Resistivity Characteristics

Surface materials consisted predominantly of lateritic soil and laterite, with resistivity ranges of
120-750 Qm and 800-1500 Qm, respectively [35]. These low-permeability soils slow leachate
migration, whereas leachate-saturated zones exhibit reduced resistivity, typically between 1-120
Qm.

ERT models revealed conductive zones corresponding to VLF-EM anomalies:

e ERTI1-L2: Two plumes (ERT1-L2-PL1 and PL2) with resistivities of 96 Qm. PL1 extends
4.13-7.99 m depth (vertical 3.86 m, horizontal 7.3 m). PL2 extends 2.65-7.99 m (vertical
5.34 m, horizontal 10.1 m) (Figure 9).

e ERT2-L5: One plume (ERT2-L2-PL) with resistivity 91 Qm, located 2.20-5.71 m depth,
vertical and horizontal extents 3.51 m and 3.70 m, respectively (Figure 10).

e ERT3-L7: Conductive zone (ERT3-L7-PL) with resistivity 103 Qm, 4.62—7.99 m depth,
vertical 3.37 m, horizontal 5.0 m (Figure 11).

e ERTA4-L14: Partial plume observed between 42.5-52.5 m, top at 7.99 m depth, consistent
with VLF-EM pseudosection (Figure 12).

The spatial correlation between VLF-EM and ERT results confirms that the low-resistivity zones
are consistent with leachate-saturated pathways, supporting the integrated geophysical approach
for identifying potential contaminant migration.
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Figure 9: 2D Geo-electrical Image of the Cemetery, Profile ERT1-L2
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Figure 10: 2D Geo-electrical Image of the Cemetery, Profile ERT2-L5
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DISCUSSION

The combined VLF-EM and ERT surveys effectively delineated conductive anomalies, interpreted
as leachate plumes originating from burial sites. VLF-EM provided rapid detection of near-surface
conductive features, while ERT accurately quantified their depth, geometry, and lateral extent.
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Resistivity values within the range of 1-120 Qm align with literature reports for leachate-impacted
soils [39], supporting the interpretation of these zones as contamination pathways rather than
natural lithological variability. The integration of these methods reduced interpretative uncertainty
and allowed more precise subsurface delineation.

Limitations include the inability to chemically verify plume composition without soil or water
sampling. Nonetheless, the methodology provides a cost-effective, non-invasive means to map
potential contaminant migration, particularly in sensitive environments like cemeteries. The study
highlights the value of integrated geophysical techniques for environmental monitoring, with
implications for groundwater protection in urban areas.

CONCLUSION

This study demonstrates the effectiveness of integrating Very Low Frequency Electromagnetic
(VLF-EM) and Electrical Resistivity Tomography (ERT) methods for assessing subsurface
contamination in cemetery environments. The combined geophysical approach enabled the
identification, mapping, and delineation of conductive leachate plumes at the Second Cemetery,
Benin City, providing detailed insights into their spatial distribution, depth, vertical extent, and
resistivity characteristics.

Resistivity values ranging from 1 Qm to 120 Qm, in areas with minimal clay content, were
interpreted as indicative of leachate-contaminated zones. These anomalies are attributed to the
decomposition of buried human remains and associated funerary materials. The observed
heterogeneity in conductivity suggests variable contaminant concentrations, with some plumes
extending toward the underlying sandy strata, posing potential risks to groundwater quality.

The findings underscore the importance of situating boreholes at depths exceeding 40 m in the
study area to minimize contamination risks from near-surface plume migration. Overall, the results
confirm that the integrated VLF-EM and ERT approach provides a cost-effective, non-invasive,
and reliable method for monitoring cemetery-induced pollution. The study also generates critical
baseline data to support environmental protection, groundwater management, and urban planning.
This research highlights the growing relevance of environmental geoforensics in Nigeria,
demonstrating its successful application in evaluating contamination processes associated with
burial and decomposition activities in urban cemetery settings.
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