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ABSTRACT 

In this study, the influence of magnetic and Aharonov–Bohm (AB) flux fields 

on the magnetic properties of the Titanium Carbide (TiC) diatomic molecule 

at finite temperature is investigated. Using the generalized cosine Yukawa 

potential within the framework of the Nikiforov–Uvarov Functional 

Analysis (NUFA) method, the energy eigenvalue and the corresponding 

energy eigenfunction as well as the partition functions were obtained. Based 

on these, temperature-dependent magnetization, magnetic susceptibility, 

and persistent current were evaluated. The results show that magnetization 

increases with both magnetic field strength and AB flux, but decreases with 

temperature due to enhanced thermal agitation that disrupts magnetic 

dipole alignment. Similarly, magnetic susceptibility and persistent current 

diminish with temperature but exhibit higher magnitudes at stronger field 

intensities. These behaviors are consistent with Curie-like paramagnetism 

and agree with previous findings on related diatomic systems. 

 

 

1 INTRODUCTION  

In quantum mechanics, the Schrödinger Equation (SE) serves as a fundamental second-order 

differential equation that characterizes the behavior of non-relativistic system [1]. Over time, 

various analytical methods have been developed to solve the SE for different physical systems. 

These approaches include the supersymmetric quantum mechanics (SUSYQM) method [2], 

Nikiforov–Uvarov (NU) method [3], formula method [4], ansatz method [5], Qiang–Dong proper 

quantization rule [6, 7], factorization method [8] among others. These techniques have been 

extensively applied to obtain solutions for the SE with various potentials [9-14] including central 

and non-central potentials, in both bound and scattering state problems. 
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Exponential Coulomb (EC) potentials, with or without cosine terms, are particularly significant in 

fields like plasma physics, nuclear physics, condensed matter physics, and atomic physics [15-20]. 

The EC potential, also known as the Screened Coulomb (SC) potential, is expressed as: 

( ) rA
V r e

r

−= −      (1) 

where  is the screening parameter and A  is strength coupling constant. In recent years, 

researchers have focused on solving the Schrödinger equation (SE) under the influence of magnetic 

and Aharonov–Bohm (AB) flux fields in two-dimensional spaces, as demonstrated by [21]. Ikhdair 

and Hamzavi [22] examined the eigensolutions for charged particles confined by harmonic 

oscillators subjected to strong magnetic and AB flux fields, revealing notable modifications in the 

spectral properties. The Dirac equation has also been employed to explore spin and pseudospin 

symmetries in quantum systems influenced by external electromagnetic fields. Additionally, the 

Killingbeck potential was analyzed under similar field conditions using power-series techniques 

by Hamzavi, Ikhdair & Thylwe [23] and Kumar & Chand [24]. Collectively, these investigations 

have significantly advanced the understanding of quantum systems under the effect of magnetic 

and AB flux fields [25, 26]. To the best of our knowledge, no previous study has examined the 

influence of magnetic and AB flux fields on the magnetic properties of the TiC diatomic molecule 

with generalized cosine Yukawa potential. In response to this gap, the aim of this paper is to 

investigate these effects using the generalized cosine Yukawa potential [27] within the NUFA [28] 

method. The study specifically addresses the following research questions: How does the magnetic 

field strength (B) influence the magnetization of the TiC diatomic molecule at finite temperatures? 

What is the effect of the Aharonov–Bohm (AB) flux field (Φ𝐴𝐵) on the magnetization behavior of 

the TiC diatomic molecule? How do temperature variations (through inverse temperature 𝛽 =
1/𝑘𝐵𝑇) affect the magnetization, magnetic susceptibility and persistent current of the TiC diatomic 

molecule? What is the combined influence of magnetic and AB flux fields on the magnetic 

susceptibility and persistent current of TiC? Are the observed magnetic responses of TiC consistent 

with previously reported behaviors in similar diatomic systems, such as TiH? The potential model 

[29] adopted for this study is given as: 

( ) ( )2 coshe

A
V r D e  



−= −    (3) 

or explicitly 

( ) ( )21e

A
V r D e 



−= − +     (4) 

where eD denotes dissociation energy, eA  denotes equilibrium bond length,  denotes screening 

parameter. 

 

2. Nikiforov-Uvarov Functional Analysis (NUFA) Method 

In this section, we briefly introduce Nikiforov-Uvarov Functional Analysis (NUFA) method [28]. 

This method is useful to solve second-order differential equation wave equations of the 

hypergeometry-type: 

 
( ) ( )

( )

( ) ( )

( )
( )

2

2 2
0

d s s d s s
s

ds s ds s

   


 
+ + =     (5) 

where ( )s  and ( )s  are polynomials at most second degree, and ( ) ,s is a first degree 

polynomial. The parametric form of NU method is in the form: 
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( )

( )

( )

( )
( )

2

21 2
1 2 322 2

3 3

1
0

1 1

d s d ss
s s s

ds s s ds s s

  
   

 

−
 + + − + − = − −

 (6) 

where i  and ( )1,2,3i i =  are all paramters. It can be observed in Eq. (6) that the differential 

equation has two singularities at 0s →  and 1,s →  thus it takes the wave function in the form 

( ) ( ) ( )1
v

s s s f s = −     (7) 

Substituting Eq. (7) into Eq. (6) leads to the following equation 

( )
( )

( )
( )2

3 1 3 3 22
1 2 2 2

d f s df s
s s v s

ds ds
     − + + − + +    

2 2

2 2 1 2 2 1
3 2 2

3 3 3 3 3 3

1 1 1 1
1 1 1 1

2 4 2 4
v v

     
  

     

  
         − + + − + − + + + − − − +       

         
  

 

( )
( )

( )
( )

1
3 2 1 3 2 3 3

1 3 3

3

1
1

0
1

v v v v

f s
s s


      

     



 
− + − − + − − + −

 + + =
− 

  

 (8) 

Eq. (8) can be reduced to a Gauss hypergeometric equation if and only if the following functions 

vanished 

( ) 1 31 0    − + − =      (9) 

( ) 1
3 2 1 3 2 3 3

3

1 0v v v v


      


− + − − + − =              (10) 

Thus, Eq. (8) now becomes 

( )
( )

( )
( )2

3 1 3 3 22
1 2 2 2

d f s df s
s s v s

ds ds
     − + + − + +    

2

2 2 1
3 2

3 3 3

1 1
1 1

2 4
v

  
 

  

 
    − + + − + − +   

    
 

 

2

2 2 1

2

3 3 3

1 1
1 1 ( ) 0

2 4
v f s

  


  

 
     + + − − − + =   

    
 

            (11) 

Solving Eqs. (9) and (10) completely give 

( ) ( )( )2

1 1 3

1
1 1 4

2
   = −  − +               (12) 

( ) ( )
2 1

3 1 3 2 3 1 3 2 3 3 2

3 3

1
4

2
v


          

 

  
 = + −  + − + + − 
   

            (13) 

Eq. (11) is the hypergeometric equation type of the form 

( )
( )

( )
( )

  ( )
2

2
1 1 0

d f x df x
x x c a b x ab f x

dx dx
− + + + + − =               (14) 

where ,a  ,b  c  are given as follows 
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2

2 2 1
3 2

3 3 3

1 1
1 1

2 4
a v

  
 

  

 
    = + + − + − +   

    
 

             (15) 

2

2 2 1
3 2

3 3 3

1 1
1 1

2 4
b v

  
 

  

 
    = + + − − − +   

    
 

             (16) 

1 2c  = +                (17) 

Setting either a or b  equal to a negative integer ,n−  the hypergeometric function ( )f s  turns to a 

polynomial of degree .n  Hence, the hypergeometric function ( )f s  approaches finite in the 

following quantum condition i.e. ,a n= −  where 
max0,1,2,3,..... .n n=  

Using the above quantum condition, 

2

2 2 1
3 2

3 3 3

1 1
1 1

2 4
v n

  
 

  

 
    + + − + − + = −   

    
 

             (18) 

2

2 2 1

2

3 3 33

1 1
1 1

2 4

n
v

  


  

   
+ + − + = − − +   

   
             (19) 

Squaring both sides of Eq. (19) and rearrainging, one obtains the energy eigenvalues for the NUFA 

method as 
2 2

2 2 2 2 1

2

3 3 3 33 3

1 1 1
2 1 1 1 0

2 2 4

n n
v v

   
 

    

        
+ + − + + + − + − − − =           

        

   (20) 

By substituting Eqs. (12) and (13) into Eq. (7), one obtains the corresponding wave equation for 

the NUFA method as 

( )
( ) ( )

( )

( ) ( )

( )

2 1
2 3 1 3 2 3 1 3 2 3 3 2

1 1 3 3

3

4
1 1 4

2 2
3 2 11 , , ;s s s F a b c s


          

   

 

 
+ − + + − + + − − + − +

 

= −       (21) 

where  is normalization constant. 

 

3. Solution of the 2D Schrodinger Equation for TiC Diatomic Molecule with 

Generalized Cosine Yukawa Potential 

The Generalized Cosine Yukawa Potential under the influence of magnetic and AB 

flux fields with charged particles can be written in cylindrical coordinates as follows [30]: 

( ) ( ) ( )
2

, , 2 , ,nm

e
i A r z E V r r z

c
    

 
− − = −    
 

            (22) 

where denotes reduced Planck constant, e  denotes charge of the particle,   denotes effective 

mass of the system, c denotes speed of light and nmE  denotes energy level. To indicate the 

magnetic field and the AB-flux field together, we express the vector potential A  as a superposition 

of two terms as 1 2A A A= +  having the azimuthal components and external magnetic field with 

1A B =  and 2 0,A =  where B is the magnetic field. Then, we assume 

2

1 2
ˆ

1

Be
A

e






−

−
=

−
                (23) 
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To represent AB flux, we take 

2
ˆ ˆ

2 2

ABA


 
 


= =                (24) 

Therefore, the total vector potential reads 
2

2
ˆ

1 2

Be
A

e










−

−

 
= + 

− 
              (25) 

To solve the stationary Schrodinger equation, we make ansatz  

( ) ( ) ( )
1 2

, 2 im

nme     
−

=    0, 1, 2,...m =               (26) 

where m  is the magnetic quantum number. Substituting Eqs. (4), (25) and (26) into Eq. (22) and 

using the approximation proposed by Greene and Aldrich [31] given as: 

                                                  
1

𝑟
≈

𝜉

1 − 𝑒−𝜉𝜂
   and   

1

𝑟2
≈

𝜉2

(1 − 𝑒−𝜉𝜂)2
                                      (27) 

and carrying some algebraic expressions, we get a radial 2nd order-like Differential Equation (DE) 

given as follows: 

( )

( )
( )

( )

( ) ( )

( )

( )

( )

2
2

22 2 2 2

2 2

2 2 4 2 2

2 2 2
2 2 2 2 2

2 4 4
1

1 1

01

2 4

1 1 1

nm e

nm nm

E D A m Be
e

e e

m
B e B e

e e e




 

 

  

  

 
 

  



−
−

− −

− −

− − −

 
+ + − 

− − 
  +  =  + −   − − − 

− − −  

           (28) 

where we have defined the following parameters as ,
e

c
 = − 0

2 c

e


 =  and  

0 0

.AB 


 


= =  

For Mathematical simplicity and convenience, we introduce the following dimensionless 

abbreviations: ( )
2 2 2

2

2 2 2 2 2 2

2 4 4 2 1
, , , , ,

4

nm e
nm

E D A m B B B
m

     
 

    
− = = = = = = + −        (29) 

By substituting a new variable s e −=  into Eq. (28), then we can simply write Eq. (28) in the s -

coordinate as follows: 

( ) ( )

( )

( )

( )

( ) ( )

( )
( )

22

22 2

21 1
0

1 1

nm nmnm nm

nm

nm

s sd s d

ds s s ds s s

  




 − + + + − − − 
+ +  = 

− − − +−   

 

                     (30) 

By comparing Eq. (30) with the NUFA method of Eq. (6), we obtain the following 

1 2 3 1,  = = = 1 ,nm = + +
2 2 ,nm = − −  3 ,nm = − + nm = − +  

and 
1 1

2 4
v = + + + + +               (31) 

with Eq. (31), the energy eigenvalue of the Generalized Cosine Yukawa Potential under the 

influence of external magnetic and AB-flux fields is now deduced as: 

( ) ( ) ( )
2

2 0nm nm nmn v n v  − + + − + + + + − + + =             (32) 

Substituting Eqs. (28) into Eq. (32), we obtain 
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 ( )
( ) ( )

( )

2
2 2

2 2

2 2 2 2 2 2 2
2

8 1

1 4
2

2 4 2 2

e

nm e

D A B
m n

E m D A
n

 


   
 

 

  
+ − + − − +      = + − − −  +   

 
 

  

                     (33) 

where ( )
2 2 2

2

2 2 2

1 4 2
,

2

B m B B
m

   


  
 = + + + + +  1, 2, 3,...,m =     and m is the 

magnetic quantum number. By substituting Eq. (29) and Eq. (31) into Eq. (7), we obtain the 

corresponding wave function for the NUFA method as: 

( ) ( ) ( )
1 1

2 4
2 11 , , ;nms Ns s F a b c s




+ + + + +− +
= −              (34) 

where 
nmN is normalization constant.  

( )2 1 , , 2 1;nm nmF v v s    + + + + + − + + + is the hypergeometric function. 

The 3D nonrelativistic energy solutions of Eq. (33) is obtain by setting 𝑚 = ℓ +
1

2
 

( )
( ) ( )

( )

2
2

22 2 2 2

8 1 1
1 1

2 41
2

2 2 1 1
2 1

2 4

e

nm e

D A
n

E D A

n



 


 

  
 − + − + + + + 

+   = − −  
  + + + + 

   

             (35) 

where  is the rotational quantum number. 

 

4. Magnetic Properties of the Generalized Cosine Yukawa Potential for TiC Diatomic 

Molecule 

Since Eq. (33) is obtained, we can proceed to obtain the partition function and other magnetic 

properties of (GCYP) for TiC molecule. The partition function ( )Z   at finite temperature T   

is obtained using the Boltzmann constant factor as [32]: 

( )
0

nmE

n

Z e



−

=

=                (36) 

where 
1

kT
 =  and k  is Boltzmann constant. 

Substituting Eq. (33) into Eq. (36), we have: 

( )

( )

( )

2
2

2

0

n

n

n

Z e

  



  − +  − −   +   

=

=               (37) 

where n  is the vibrational quantum number, 0,1,2,3,..., ,n =    signifies the upper bound 

vibrational quantum number. For simplification and convinience, we have introduced the 

following notations: 

𝛾 =
ℏ2𝜉2

2𝜇
[(𝑚 + 𝜀)2 −

1

4
] − 2𝜉𝐷𝑒𝐴, 𝜆 =

ℏ2𝜉2

2𝜇
, Ω =

8𝜇𝐷𝑒𝐴

ℏ2𝜉
+

𝜅2Β⃗⃗ 2

ℏ2𝜉2
− [(𝑚 + 𝜀)2 −

1

4
] (38) 

The maximum value maxn  can be obtain by setting 0,nmdE
dn

=  
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maxn = −                  (39) 

Replacing the summation in Eq. (37) by an integral, we have: 

( )

( )

( )

2
2

2

0

n

n

Z e dn

  



  − +  − −   +   =                 (40) 

If we set ,n = +  we can re-write the above integral in the form: 

( )
21

2 32

Q
Q Q

Z e d
 

 

 
+ + −  

 



=                 (41) 

On evaluating the integral in Eq. (41), we obtain the partition function of the GCYP for TiC 

molecule in magnetic and AB-flux fields as follows: 

( )

41 11 2
2 22

1 2 3

41 11 2
2 max 2 2 max 2

max max

4
2

Q QQ Q
Erf Q e Erf Q

Q Q Q
e

Q QQ Q
Erf Q n Q e Erf Q n Q

n n

Z
Q

  
 

  


  
   




    − −− −
    − − − + −
     − − − −

    
    − −− −
    − − − − − + + − + −
+ +    
    

=
−

   (42) 

From the obtained partition function of the given system, one can obtain magnetic properties such 

as magnetization at finite temperature ( ) ,M   magnetic susceptibility at finite temperature 

( )m   and persistent current at finite temperature ( )I   defined as follows [29]: 

Magnetization at finite temperature is written as 

( )
( )

( )1 Z
M

Z




  


=


               (43) 

Magnetic susceptibility at finite temperature is written as 

( )
( )

m

M 
 




=


               (44) 

Persistent current at finite temperature is written as 

( )
( )Fe

I
hc







= −


               (45) 

 

RESULTS 

In this section, the graphical analysis for a TiC diatomic molecule is presented. The fitting 

parameters used are based on [33]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Magnetization as a function of   varying with magnetic field, (b) Magnetization as a 

function of   varying with AB field. 
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Figure 2. (a) Magnetic susceptibility as a function of   varying with magnetic field, (b) Magnetic 

susceptibility as a function of   varying with AB field. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Persistent current as a function of   varying with magnetic field, (b) Persistent 

current as a function of   varying with AB field. 

 

DISCUSSION 

The magnetization of the titanium carbide (TiC) diatomic molecule was analyzed as a function of 

inverse temperature 𝛽 = 1/(𝐾𝐵𝑇) under varying magnetic fields B⃗⃗  and Aharonov–Bohm (AB) 

flux fields Φ𝐴𝐵, as shown in Figure 1(a) and Figure 1(b), respectively. At zero magnetic field (B⃗⃗ =
0), the magnetization initially exhibits a sharp increase at very low temperatures and then remains 

nearly constant with further temperature increase. However, for stronger magnetic fields (B⃗⃗ =

5 and B⃗⃗ = 10), the magnetization decreases as temperature increases. Despite this decreasing 

trend, the overall magnitude of magnetization is higher for stronger magnetic fields. Similarly, in 

Figure 1(b), magnetization decreases with increasing temperature for AB flux values of Φ𝐴𝐵 =
0, 5 and 10. As the AB flux increases, the overall magnetization also increases. This decrease in 

magnetization with rising temperature is attributed to enhanced thermal disorder, which disrupts 

the alignment of magnetic dipoles with the external magnetic field. These observations indicate 

that higher magnetic fields or AB flux values enhance overall magnetization, even as the thermal 

disorder reduces alignment at higher temperatures. A similar trend is observed in magnetic 

susceptibility (Figure 2(a) and Figure 2(b)) and persistent current (Figure 3(a) and Figure 3(b)), 

(a) 
(b) 

(a) (b) 
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where both quantities decrease with increasing temperature under varying magnetic and AB flux 

fields. As the field strengths increase, the magnitudes of susceptibility and persistent current also 

increase. This behavior, characterized by a decrease with increasing temperature, is consistent with 

the findings reported by [32] for TiH diatomic molecules. 

 

CONCLUSION 

This study analyzed the magnetic properties of the TiC diatomic molecule under the combined 

influence of magnetic and Aharonov–Bohm flux fields using the generalized cosine Yukawa 

potential within the Nikiforov–Uvarov framework. The findings revealed that increasing the 

magnetic or AB flux field enhances the overall magnetization, magnetic susceptibility and 

persistent current, while rising temperature suppresses these quantities due to thermal disorder. 

These results highlight the significant role of magnetic and AB flux fields in controlling the 

quantum magnetic behavior of TiC. 
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