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Article history: In this study, the influence of magnetic and Aharonov—Bohm (AB) flux fields
Received  xxxxx on the magnetic properties of the Titanium Carbide (TiC) diatomic molecule
Revised ~ XXXxX at finite temperature is investigated. Using the generalized cosine Yukawa

Accepted  XxxXXx

Available online xxoc  POtential within the framework of the Nikiforov—Uvarov Functional

Analysis (NUFA) method, the energy eigenvalue and the corresponding

Ah;im\?ig%hm energy eigenfunction as well as the partition functions were obtained. Based
(AB) flux field, on these, temperature-dependent magnetization, magnetic susceptibility,
Titanium Carbide and persistent current were evaluated. The results show that magnetization
(TiC), increases with both magnetic field strength and AB flux, but decreases with
Generalized Cosine temperature due to enhanced thermal agitation that disrupts magnetic
Yukawa Potential, dipole alignment. Similarly, magnetic susceptibility and persistent current
Magnetic field, diminish with temperature but exhibit higher magnitudes at stronger field
Magnetization, intensities. These behaviors are consistent with Curie-like paramagnetism
Magnetic and agree with previous findings on related diatomic systems.

Susceptibility,
Persistent Current

1 INTRODUCTION

In quantum mechanics, the Schrddinger Equation (SE) serves as a fundamental second-order
differential equation that characterizes the behavior of non-relativistic system [1]. Over time,
various analytical methods have been developed to solve the SE for different physical systems.
These approaches include the supersymmetric quantum mechanics (SUSYQM) method [2],
Nikiforov—Uvarov (NU) method [3], formula method [4], ansatz method [5], Qiang—Dong proper
quantization rule [6, 7], factorization method [8] among others. These techniques have been
extensively applied to obtain solutions for the SE with various potentials [9-14] including central
and non-central potentials, in both bound and scattering state problems.

“Corresponding author: IBRAHIM NUHU
E-mail address: nuhuphysics@unimaid.edu.ng
https://doi.org/10.60787/jnamp.vol71n0.606
1118-4388© 2025 INAMP. All rights reserved

139


mailto:nuhuphysics@unimaid.edu.ng
https://doi.org/10.60787/jnamp.vol71no.606
https://nampjournals.org.ng/

Ibrahim et al. - Journal of NAMP 71, (2025) 139-150

Exponential Coulomb (EC) potentials, with or without cosine terms, are particularly significant in
fields like plasma physics, nuclear physics, condensed matter physics, and atomic physics [15-20].
The EC potential, also known as the Screened Coulomb (SC) potential, is expressed as:
V(r):—ée‘“r (1)

where « is the screening parameter and A is strength coupling constant. In recent years,
researchers have focused on solving the Schrodinger equation (SE) under the influence of magnetic
and Aharonov—Bohm (AB) flux fields in two-dimensional spaces, as demonstrated by [21]. Ikhdair
and Hamzavi [22] examined the eigensolutions for charged particles confined by harmonic
oscillators subjected to strong magnetic and AB flux fields, revealing notable modifications in the
spectral properties. The Dirac equation has also been employed to explore spin and pseudospin
symmetries in quantum systems influenced by external electromagnetic fields. Additionally, the
Killingbeck potential was analyzed under similar field conditions using power-series techniques
by Hamzavi, Ikhdair & Thylwe [23] and Kumar & Chand [24]. Collectively, these investigations
have significantly advanced the understanding of quantum systems under the effect of magnetic
and AB flux fields [25, 26]. To the best of our knowledge, no previous study has examined the
influence of magnetic and AB flux fields on the magnetic properties of the TiC diatomic molecule
with generalized cosine Yukawa potential. In response to this gap, the aim of this paper is to
investigate these effects using the generalized cosine Yukawa potential [27] within the NUFA [28]
method. The study specifically addresses the following research questions: How does the magnetic
field strength (B) influence the magnetization of the TiC diatomic molecule at finite temperatures?
What is the effect of the Aharonov—Bohm (AB) flux field (®,45) on the magnetization behavior of
the TiC diatomic molecule? How do temperature variations (through inverse temperature § =
1/kgT) affect the magnetization, magnetic susceptibility and persistent current of the TiC diatomic
molecule? What is the combined influence of magnetic and AB flux fields on the magnetic
susceptibility and persistent current of TiC? Are the observed magnetic responses of TiC consistent
with previously reported behaviors in similar diatomic systems, such as TiH? The potential model
[29] adopted for this study is given as:

V(r)=-2D, ée"f” cosh(&n) (3)
n
or explicitly
V(r)= —Deé(1+e‘25”) (4)
n

where D, denotes dissociation energy, A=, denotes equilibrium bond length, & denotes screening
parameter.

2. Nikiforov-Uvarov Functional Analysis (NUFA) Method
In this section, we briefly introduce Nikiforov-Uvarov Functional Analysis (NUFA) method [28].
This method is useful to solve second-order differential equation wave equations of the
hypergeometry-type:
d? 7(s) d 5

v(s), 7(5) 3w (), 5(5) o) g ®

ds o(s) ds  o(s)
where o (s) and &(s) are polynomials at most second degree, and 7(s),is a first degree
polynomial. The parametric form of NU method is in the form:
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dzl//(S)_l_ o — QS dl/j(s)+ 1
ds*  s(l-as) ds  §?(1-as)

[-&s*+&5-& |y (s)=0  (6)

where ¢; and & (i=1,2,3) are all paramters. It can be observed in Eq. (6) that the differential
equation has two singularities at s —» 0 and s —1, thus it takes the wave function in the form
w(s)=s"(1-s) f(s) (7)
Substituting Eq. (7) into Eq. (6) leads to the following equation
df (s)

ds

2 2
-a, /1+v+l % 1|+ 1 % _q +il2 /1+v+1 % _q1|- e +£12
2\ a, 4\ a, lo 2\ a, 4\ a, lo

v(v-1)ea, +a2V—a1a3V—i+§2 -&a,
o

d f(s)=0 ®)

d*f(s)
S(l—a3s)T+[al +24—(24a,+ Ve, +a,)s |

AA-D+aA-¢, N

’ S (1-a,9)

Eq. (8) can be reduced to a Gauss hypergeometric equation if and only if the following functions
vanished

AMA-Y)+ai-&=0 (9)

v(v-1)a, +052v—o:10:3v—i+§2 -&a,=0 (10)
24
Thus, Eqg. (8) now becomes

df (s)
ds

2
s(1-a,s) d df (s) +[ 0y +24—(24a, + v, + a,)s |

SZ

—a{l+v+i(&—@+\/l(ﬁ—1} +£12]

2\ a 4\ a, oy

x[/1+v+l(ﬂ— j—\/i(ﬁ—lj +ilz]f(s)o (11)
2\ a 4\ a, oy

Solving Egs. (9) and (10) completely give

ﬂ,=%((1—al)i (l—al)2+4§3) (12)

20, 3

V= i((% +a,a, —ozz)i\/(oz3 +a,a, —a2)2 +4[§+a3§3 —fzn (13)

Eq. (11) is the hypergeometric equation type of the form
2
x(l—x)d JXEX)—F[C—I-(a—i-b—i-l)X:'C”d—(XX)—[ab]f(X)=0 (14)

where a, b, C are given as follows
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2
ll ll o &
a=.a,| A+v+=| —2-1 e T 15
\/_3 2\ a, J \/4 a, al (15)
1 1 ’
b=\a,| A+v+= % _q|- |5 &- +i12 (16)
2\ a 4\ a, oy
C=a,+24 a7

Setting either aor b equal to a negative integer —n, the hypergeometric function f (s) turnsto a
polynomial of degree n. Hence, the hypergeometric function f(s) approaches finite in the

following quantum condition i.e. a=-n, where n=0,1,2,3,....n .
Using the above quantum condition,

\/a_3 ﬂ+v+%(ﬂ1]+\/%(ﬁlj +i12 =-n (18)

Qs a;,

2
ﬂ,+v+l L | L 1 % g +il2 (19)
2\ a, \/073 4\ a, a;
Squaring both sides of Eq. (19) and rearrainging, one obtains the energy eigenvalues for the NUFA
method as

2 2
PEINPY) RV (G NI UL T RV (C SV UL G —%:0 (20)
2\ a, \/073 2\ a, \/073 4\ a, a,

By substituting Egs. (12) and (13) into Eq. (7), one obtains the corresponding wave equation for
the NUFA method as

(1=0 J+[(or-1) > +4&, (aztaaz-a, )+\/(a3 +onaz-a, )’ *4[%”‘353*52}
w(s)=Ns 2 (1-as) 204 ,F(ab,c;s) (21)
where N is normalization constant.

3. Solution of the 2D Schrodinger Equation for TiC Diatomic Molecule with
Generalized Cosine Yukawa Potential

The Generalized Cosine Yukawa Potential under the influence of magnetic and AB

flux fields with charged particles can be written in cylindrical coordinates as follows [30]:

2
(_iw_%/&j v (r2) =2 Evy V(1) (1. .2) 22)
where % denotes reduced Planck constant, € denotes charge of the particle, x denotes effective
mass of the system, cdenotes speed of light and E, . denotes energy level. To indicate the
magnetic field and the AB-flux field together, we express the vector potential A as a superposition
of two terms as A= Ai + AZ having the azimuthal components and external magnetic field with
VxA =B and V-A, =0, where B is the magnetic field. Then, we assume
Be " .

== (23)

>
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To represent @ ,; flux, we take

b= L @
27n 27n
Therefore, the total vector potential reads
D 287 .
A= (ieem N ﬁ]qﬁ (25)
To solve the stationary Schrodinger equation, we make ansatz
w(n.¢)= (27:77)_]/2 e™3.. (1) meZ=0,+1+2,... (26)

where m is the magnetic quantum number. Substituting Egs. (4), (25) and (26) into Eq. (22) and
using the approximation proposed by Greene and Aldrich [31] given as:

1 3 1 g2

SR Ty an r_zz—(l—e‘f”)z (27)

and carrying some algebraic expressions, we get a radial 2" order-like Differential Equation (DE)

given as follows:

[ 2uE 4uED,A e AmExBe
ﬂznm+ Zlué: EZ (1+e 2§r])_ é: .
Rt R (1-e ) h(1-e )

S (7)+ (-t S (7)=0 (28)
B KB B 2£K%B pe " B 4
n*(1-e? )2 n* (1-e? )2 T (1-e? )2
where we have defined the following parameters as « = —E, & = 2rhe and ¢= q;AB = ¢£
C e z :

For Mathematical simplicity and convenience, we introduce the following dimensionless
=) 2R2 2p

ZIL;Egm, :4ﬂ?eA1Z:4mKB,C:K282 ,QZZI(Z Bp’N:(m+8)2—1 (29)

n2& n2& hé n2& n*er 4

By substituting a new variable s=e™" into Eq. (28), then we can simply write Eq. (28) in the s -

coordinate as follows:

d°Sy (1) (1-5) A5y (n) 1 |~(6mtR+C)s"+(25, -2 Q)s

ds’ s(1-s) ds s?(1-5)" | (& —~R+N)

abbreviations: —¢ =

Sam (7)=0

(30)
By comparing Eq. (30) with the NUFA method of Eqg. (6), we obtain the following

og=a,=0,=1,& =6, +R+C, & =2¢, —7-Q, &=¢,,—R+N, A=/¢g,,—R+N

and v:%+\/C+N+Z+Q+% (31)

with Eqg. (31), the energy eigenvalue of the Generalized Cosine Yukawa Potential under the
influence of external magnetic and AB-flux fields is now deduced as:

&~ R+N+2,[e, ~R+N(n+V)+(n+Vv)’ (&, +R+C)=0 (32)

Substituting Egs. (28) into Eq. (32), we obtain

143



Ibrahim et al. - Journal of NAMP 71, (2025) 139-150

2p?2
BuDA | <8 —[(m+5)2—1}—(n+A)2

2

2 g2 2 2 2 2 £2
2u 4 2u 2(n+A)
(33)
2p2 S 2D
where A=£+ (m+g)2+KZBZ+4mKB+2KZBp, m=+1+243,..., and mis the
2 RE: T hE Rem

magnetic quantum number. By substituting Eq. (29) and Eq. (31) into Eq. (7), we obtain the
corresponding wave function for the NUFA method as:

w(s)=NsVm " (1-s)2 R ,F (a,b,c;s) (34)
where N, is normalization constant.

,F (ﬂ +V+4e, +R+C,A+v—/e, +R+C,24+1; s) is the hypergeometric function.
The 3D nonrelativistic energy solutions of Eq. (33) is obtain by setting m = ¢ + l

_8,uDeA B f 1
h2§2E(€+1) 9 22 hgé: E( [n-l- + f(€+l+ J

2

By = 2D A (35)
# “ (n-i— +. /4 €+1)+1}
4
where / is the rotational quantum number.
4. Magnetic Properties of the Generalized Cosine Yukawa Potential for TiC Diatomic

Molecule
Since Eq. (33) is obtained, we can proceed to obtain the partition function and other magnetic

properties of (GCYP) for TiC molecule. The partition function Z (ﬁ) at finite temperature T
IS obtalned using the Boltzmann constant factor as [32]:

ze PEm (36)

where ﬂ:% and k is Boltzmann constant.

Substituting Eq. (33) into Eq. (36), we have:

2oy T

n=0
where n is the vibrational quantum number, n=0,1,2,3,...,%, N signifies the upper bound

vibrational quantum number. For simplification and convinience, we have introduced the
following notations:

(37)

1] ZDAA_hZEZQ_&iDeA K2B2
4 $Ded, o2u T h2E p2g

The maximum value n__, can be obtain by setting dEn%n =0,

y== ~em+e2 3| 38)
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L =—-A+JQ (39)
Replacing the summation in Eq. (37) by an integral, we have:
N T {y—l[g (:://\\) ]}
je dn (40)
0

If we set p=n+A, we can re-write the above integral in the form:

N+A B +sz -Q3

pel,
On evaluatlng the integral in Eq. (41), we obtain the partition function of the GCYP for TiC
molecule in magnetic and AB-flux fields as follows:

Erf{ ‘/? -AJ=BQy -1y, —ﬂQg}eA‘\/ﬂ_Q“/ﬁ_%Er{X/f?;“\\/‘/}_anmax -5Q,

4J-5Q,
From the obtained partition function of the given system, one can obtain magnetic properties such
as magnetization at finite temperature M (ﬂ) magnetic susceptibility at finite temperature

Zn(B) and persistent current at finite temperature | () defined as follows [29]:
Magnetization at finite temperature is written as

(41)

(42)

2(p)-

1 0Z(p
M (B)= ($) (43)
BZ(B) op
Magnetic susceptibility at finite temperature is written as
oM ()
=—— 44
Zn(B)=—3 5 (44)
Persistent current at finite temperature is written as
e oF (ﬂ)
I = 45
(A)=—1-"73 5 (45)
RESULTS

In this section, the graphical analysis for a TiC diatomic molecule is presented. The fitting
parameters used are based on [33].

ax1ef] | e ! =
- B=0 - by=0

2x 108 ‘\ - B=s 1 \ (b) - Byp=3
‘ \ B=10 4x 107\ \ B =10
= 1x10® N & W
= ‘ A g e e = ax107 W x
0 ;- T ~ = e
—1x 108 (@) S a7
| 1% 107 - “~"-‘,—_.;__‘
0 2 4 6 8 10 2 4 6 8
BK™Y i

Figure 1. (a) Magnetization as a function of g varying with magnetic field, (b) Magnetization as a

function of g varying with AB field.
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Figure 2. (a) Magnetic susceptibility as a function of g varying with magnetic field, (b) Magnetic
susceptibility as a function of g varying with AB field.
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Figure 3. (a) Persistent current as a function of B varying with magnetic field, (b) Persistent
current as a function of g varying with AB field.

DISCUSSION
The magnetization of the titanium carbide (TiC) diatomic molecule was analyzed as a function of

inverse temperature § = 1/(KgT) under varying magnetic fields B and Aharonov—-Bohm (AB)

flux fields @, 5, as shown in Figure 1(a) and Figure 1(b), respectively. At zero magnetic field (ﬁ =
0), the magnetization initially exhibits a sharp increase at very low temperatures and then remains

nearly constant with further temperature increase. However, for stronger magnetic fields (ﬁ =

S5and B = 10), the magnetization decreases as temperature increases. Despite this decreasing
trend, the overall magnitude of magnetization is higher for stronger magnetic fields. Similarly, in
Figure 1(b), magnetization decreases with increasing temperature for AB flux values of &, =
0,5 and 10. As the AB flux increases, the overall magnetization also increases. This decrease in
magnetization with rising temperature is attributed to enhanced thermal disorder, which disrupts
the alignment of magnetic dipoles with the external magnetic field. These observations indicate
that higher magnetic fields or AB flux values enhance overall magnetization, even as the thermal
disorder reduces alignment at higher temperatures. A similar trend is observed in magnetic
susceptibility (Figure 2(a) and Figure 2(b)) and persistent current (Figure 3(a) and Figure 3(b)),
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where both quantities decrease with increasing temperature under varying magnetic and AB flux
fields. As the field strengths increase, the magnitudes of susceptibility and persistent current also
increase. This behavior, characterized by a decrease with increasing temperature, is consistent with
the findings reported by [32] for TiH diatomic molecules.

CONCLUSION

This study analyzed the magnetic properties of the TiC diatomic molecule under the combined
influence of magnetic and Aharonov—Bohm flux fields using the generalized cosine Yukawa
potential within the Nikiforov—Uvarov framework. The findings revealed that increasing the
magnetic or AB flux field enhances the overall magnetization, magnetic susceptibility and
persistent current, while rising temperature suppresses these gquantities due to thermal disorder.
These results highlight the significant role of magnetic and AB flux fields in controlling the
guantum magnetic behavior of TiC.
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