

MAGNETIC PROPERTIES OF TITANIUM CARBIDE (TIC) DIATOMIC MOLECULE UNDER THE INFLUENCE OF MAGNETIC AND AHARONOV-BOHM FLUX FIELDS AT FINITE TEMPERATURE

^{1,2}**IBRAHIM, N.,** ^{3,4}**OKORIE, U. S.,** ^{1,2}**ADAMU, A.,** ⁵**IKOT, A. N.**

¹*Department of Physics, University of Maiduguri, Nigeria.*

²*Department of Physics with Electronics, Al-Ansar University, Maiduguri, Nigeria.*

³*Department of Physics, Akwa-Ibom State University, Uyo, Nigeria.*

⁴*Department of Physics, University of South Africa, Florida 1710, Johannesburg, South Africa.*

⁵*Theoretical Physics Group, Department of Physics, University of Port Harcourt, Nigeria..*

ARTICLE INFO

Article history:

Received xxxx

Revised xxxx

Accepted xxxx

Available online xxxx

Keywords:

Aharonov-Bohm (AB) flux field, Titanium Carbide (TiC), Generalized Cosine Yukawa Potential, Magnetic field, Magnetization, Magnetic Susceptibility, Persistent Current

ABSTRACT

In this study, the influence of magnetic and Aharonov-Bohm (AB) flux fields on the magnetic properties of the Titanium Carbide (TiC) diatomic molecule at finite temperature is investigated. Using the generalized cosine Yukawa potential within the framework of the Nikiforov-Uvarov Functional Analysis (NUFA) method, the energy eigenvalue and the corresponding energy eigenfunction as well as the partition functions were obtained. Based on these, temperature-dependent magnetization, magnetic susceptibility, and persistent current were evaluated. The results show that magnetization increases with both magnetic field strength and AB flux, but decreases with temperature due to enhanced thermal agitation that disrupts magnetic dipole alignment. Similarly, magnetic susceptibility and persistent current diminish with temperature but exhibit higher magnitudes at stronger field intensities. These behaviors are consistent with Curie-like paramagnetism and agree with previous findings on related diatomic systems.

1 INTRODUCTION

In quantum mechanics, the Schrödinger Equation (SE) serves as a fundamental second-order differential equation that characterizes the behavior of non-relativistic system [1]. Over time, various analytical methods have been developed to solve the SE for different physical systems. These approaches include the supersymmetric quantum mechanics (SUSYQM) method [2], Nikiforov-Uvarov (NU) method [3], formula method [4], ansatz method [5], Qiang-Dong proper quantization rule [6, 7], factorization method [8] among others. These techniques have been extensively applied to obtain solutions for the SE with various potentials [9-14] including central and non-central potentials, in both bound and scattering state problems.

*Corresponding author: IBRAHIM NUHU

E-mail address: nuhuphysics@unimaid.edu.ng

<https://doi.org/10.60787/jnamp.vol71no.606>

1118-4388© 2025 JNAMP. All rights reserved

Exponential Coulomb (EC) potentials, with or without cosine terms, are particularly significant in fields like plasma physics, nuclear physics, condensed matter physics, and atomic physics [15-20]. The EC potential, also known as the Screened Coulomb (SC) potential, is expressed as:

$$V(r) = -\frac{A}{r} e^{-\alpha r} \quad (1)$$

where α is the screening parameter and A is strength coupling constant. In recent years, researchers have focused on solving the Schrödinger equation (SE) under the influence of magnetic and Aharonov–Bohm (AB) flux fields in two-dimensional spaces, as demonstrated by [21]. Ikhdaire and Hamzavi [22] examined the eigensolutions for charged particles confined by harmonic oscillators subjected to strong magnetic and AB flux fields, revealing notable modifications in the spectral properties. The Dirac equation has also been employed to explore spin and pseudospin symmetries in quantum systems influenced by external electromagnetic fields. Additionally, the Killingbeck potential was analyzed under similar field conditions using power-series techniques by Hamzavi, Ikhdaire & Thylwe [23] and Kumar & Chand [24]. Collectively, these investigations have significantly advanced the understanding of quantum systems under the effect of magnetic and AB flux fields [25, 26]. To the best of our knowledge, no previous study has examined the influence of magnetic and AB flux fields on the magnetic properties of the TiC diatomic molecule with generalized cosine Yukawa potential. In response to this gap, the aim of this paper is to investigate these effects using the generalized cosine Yukawa potential [27] within the NUFA [28] method. The study specifically addresses the following research questions: How does the magnetic field strength (B) influence the magnetization of the TiC diatomic molecule at finite temperatures? What is the effect of the Aharonov–Bohm (AB) flux field (Φ_{AB}) on the magnetization behavior of the TiC diatomic molecule? How do temperature variations (through inverse temperature $\beta = 1/k_B T$) affect the magnetization, magnetic susceptibility and persistent current of the TiC diatomic molecule? What is the combined influence of magnetic and AB flux fields on the magnetic susceptibility and persistent current of TiC? Are the observed magnetic responses of TiC consistent with previously reported behaviors in similar diatomic systems, such as TiH? The potential model [29] adopted for this study is given as:

$$V(r) = -2D_e \frac{A}{\eta} e^{-\xi\eta} \cosh(\xi\eta) \quad (3)$$

or explicitly

$$V(r) = -D_e \frac{A}{\eta} (1 + e^{-2\xi\eta}) \quad (4)$$

where D_e denotes dissociation energy, $A \equiv \eta_e$ denotes equilibrium bond length, ξ denotes screening parameter.

2. Nikiforov-Uvarov Functional Analysis (NUFA) Method

In this section, we briefly introduce Nikiforov-Uvarov Functional Analysis (NUFA) method [28]. This method is useful to solve second-order differential equation wave equations of the hypergeometric-type:

$$\frac{d^2\psi(s)}{ds^2} + \frac{\tilde{\tau}(s)}{\sigma(s)} \frac{d\psi(s)}{ds} + \frac{\tilde{\sigma}(s)}{\sigma^2(s)} \psi(s) = 0 \quad (5)$$

where $\sigma(s)$ and $\tilde{\sigma}(s)$ are polynomials at most second degree, and $\tilde{\tau}(s)$ is a first degree polynomial. The parametric form of NU method is in the form:

$$\frac{d^2\psi(s)}{ds^2} + \frac{\alpha_1 - \alpha_2 s}{s(1 - \alpha_3 s)} \frac{d\psi(s)}{ds} + \frac{1}{s^2(1 - \alpha_3 s)^2} \left[-\xi_1 s^2 + \xi_2 s - \xi_3 \right] \psi(s) = 0 \quad (6)$$

where α_i and ξ_i ($i = 1, 2, 3$) are all parameters. It can be observed in Eq. (6) that the differential equation has two singularities at $s \rightarrow 0$ and $s \rightarrow 1$, thus it takes the wave function in the form

$$\psi(s) = s^\lambda (1-s)^\nu f(s) \quad (7)$$

Substituting Eq. (7) into Eq. (6) leads to the following equation

$$s(1 - \alpha_3 s) \frac{d^2 f(s)}{ds^2} + \left[\sigma_1 + 2\lambda - (2\lambda\alpha_3 + 2\nu\alpha_3 + \alpha_2) s \right] \frac{df(s)}{ds} - \alpha_3 \left(\lambda + \nu + \frac{1}{2} \left(\frac{\alpha_2}{\alpha_3} - 1 \right) + \sqrt{\frac{1}{4} \left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3^2}} \right) \left(\lambda + \nu + \frac{1}{2} \left(\frac{\alpha_2}{\alpha_3} - 1 \right) - \sqrt{\frac{1}{4} \left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3^2}} \right) + \left[\frac{\lambda(\lambda-1) + \alpha_1\lambda - \xi_3}{s} + \frac{\nu(\nu-1)\alpha_3 + \alpha_2\nu - \alpha_1\alpha_3\nu - \frac{\xi_1}{\alpha_3} + \xi_2 - \xi_3\alpha_3}{(1 - \alpha_3 s)} \right] f(s) = 0 \quad (8)$$

Eq. (8) can be reduced to a Gauss hypergeometric equation if and only if the following functions vanished

$$\lambda(\lambda-1) + \alpha_1\lambda - \xi_3 = 0 \quad (9)$$

$$\nu(\nu-1)\alpha_3 + \alpha_2\nu - \alpha_1\alpha_3\nu - \frac{\xi_1}{\alpha_3} + \xi_2 - \xi_3\alpha_3 = 0 \quad (10)$$

Thus, Eq. (8) now becomes

$$s(1 - \alpha_3 s) \frac{d^2 f(s)}{ds^2} + \left[\sigma_1 + 2\lambda - (2\lambda\alpha_3 + 2\nu\alpha_3 + \alpha_2) s \right] \frac{df(s)}{ds} - \alpha_3 \left(\lambda + \nu + \frac{1}{2} \left(\frac{\alpha_2}{\alpha_3} - 1 \right) + \sqrt{\frac{1}{4} \left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3^2}} \right) \times \left(\lambda + \nu + \frac{1}{2} \left(\frac{\alpha_2}{\alpha_3} - 1 \right) - \sqrt{\frac{1}{4} \left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3^2}} \right) f(s) = 0 \quad (11)$$

Solving Eqs. (9) and (10) completely give

$$\lambda = \frac{1}{2} \left((1 - \alpha_1) \pm \sqrt{(1 - \alpha_1)^2 + 4\xi_3} \right) \quad (12)$$

$$\nu = \frac{1}{2\alpha_3} \left((\alpha_3 + \alpha_1\alpha_3 - \alpha_2) \pm \sqrt{(\alpha_3 + \alpha_1\alpha_3 - \alpha_2)^2 + 4 \left(\frac{\xi_1}{\alpha_3} + \alpha_3\xi_3 - \xi_2 \right)} \right) \quad (13)$$

Eq. (11) is the hypergeometric equation type of the form

$$x(1-x) \frac{d^2 f(x)}{dx^2} + \left[c + (a+b+1)x \right] \frac{df(x)}{dx} - [ab] f(x) = 0 \quad (14)$$

where a , b , c are given as follows

$$a = \sqrt{\alpha_3} \left(\lambda + \nu + \frac{1}{2} \left(\frac{\alpha_2}{\alpha_3} - 1 \right) + \sqrt{\frac{1}{4} \left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3^2}} \right) \quad (15)$$

$$b = \sqrt{\alpha_3} \left(\lambda + \nu + \frac{1}{2} \left(\frac{\alpha_2}{\alpha_3} - 1 \right) - \sqrt{\frac{1}{4} \left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3^2}} \right) \quad (16)$$

$$c = \alpha_1 + 2\lambda \quad (17)$$

Setting either a or b equal to a negative integer $-n$, the hypergeometric function $f(s)$ turns to a polynomial of degree n . Hence, the hypergeometric function $f(s)$ approaches finite in the following quantum condition i.e. $a = -n$, where $n = 0, 1, 2, 3, \dots, n_{\max}$.

Using the above quantum condition,

$$\sqrt{\alpha_3} \left(\lambda + \nu + \frac{1}{2} \left(\frac{\alpha_2}{\alpha_3} - 1 \right) + \sqrt{\frac{1}{4} \left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3^2}} \right) = -n \quad (18)$$

$$\lambda + \nu + \frac{1}{2} \left(\frac{\alpha_2}{\alpha_3} - 1 \right) + \frac{n}{\sqrt{\alpha_3}} = -\sqrt{\frac{1}{4} \left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 + \frac{\xi_1}{\alpha_3^2}} \quad (19)$$

Squaring both sides of Eq. (19) and rearranging, one obtains the energy eigenvalues for the NUFA method as

$$\lambda^2 + 2\lambda \left(\nu + \frac{1}{2} \left(\frac{\alpha_2}{\alpha_3} - 1 \right) + \frac{n}{\sqrt{\alpha_3}} \right) + \left(\nu + \frac{1}{2} \left(\frac{\alpha_2}{\alpha_3} - 1 \right) + \frac{n}{\sqrt{\alpha_3}} \right)^2 - \frac{1}{4} \left(\frac{\alpha_2}{\alpha_3} - 1 \right)^2 - \frac{\xi_1}{\alpha_3^2} = 0 \quad (20)$$

By substituting Eqs. (12) and (13) into Eq. (7), one obtains the corresponding wave equation for the NUFA method as

$$\psi(s) = \mathbb{N} s^{\frac{(1-\alpha_1)+\sqrt{(\alpha_1-1)^2+4\xi_3}}{2}} (1-\alpha_3 s)^{\frac{(\alpha_3+\alpha_1\alpha_3-\alpha_2)+\sqrt{(\alpha_3+\alpha_1\alpha_3-\alpha_2)^2+4\left(\frac{\xi_1}{\alpha_3}+\alpha_3\xi_3-\xi_2\right)}}{2\alpha_3}} {}_2F_1(a, b, c; s) \quad (21)$$

where \mathbb{N} is normalization constant.

3. Solution of the 2D Schrodinger Equation for TiC Diatomic Molecule with Generalized Cosine Yukawa Potential

The Generalized Cosine Yukawa Potential under the influence of magnetic and AB flux fields with charged particles can be written in cylindrical coordinates as follows [30]:

$$\left(-i\hbar\vec{\nabla} - \frac{e}{c}\vec{A} \right)^2 \psi(r, \phi, z) = 2\mu [E_{nm} - V(r)] \psi(r, \phi, z) \quad (22)$$

where \hbar denotes reduced Planck constant, e denotes charge of the particle, μ denotes effective mass of the system, c denotes speed of light and E_{nm} denotes energy level. To indicate the magnetic field and the AB-flux field together, we express the vector potential \vec{A} as a superposition of two terms as $\vec{A} = \vec{A}_1 + \vec{A}_2$ having the azimuthal components and external magnetic field with $\vec{\nabla} \times \vec{A}_1 = \vec{B}$ and $\vec{\nabla} \cdot \vec{A}_2 = 0$, where \vec{B} is the magnetic field. Then, we assume

$$\vec{A}_1 = \frac{\vec{B}e^{-2\xi\eta}}{1-e^{-2\xi\eta}} \hat{\phi} \quad (23)$$

To represent Φ_{AB} flux, we take

$$\vec{A}_2 = \frac{\Phi_{AB}}{2\pi\eta} \hat{\phi} = \frac{\rho}{2\pi\eta} \hat{\phi} \quad (24)$$

Therefore, the total vector potential reads

$$\vec{A} = \left(\frac{\vec{B}e^{-2\xi\eta}}{1-e^{-2\xi\eta}} + \frac{\rho}{2\pi\eta} \right) \hat{\phi} \quad (25)$$

To solve the stationary Schrodinger equation, we make ansatz

$$\psi(\eta, \phi) = (2\pi\eta)^{-1/2} e^{im\phi} \mathfrak{J}_{nm}(\eta) \quad m \in \mathbb{Z} = 0, \pm 1, \pm 2, \dots \quad (26)$$

where m is the magnetic quantum number. Substituting Eqs. (4), (25) and (26) into Eq. (22) and using the approximation proposed by Greene and Aldrich [31] given as:

$$\frac{1}{r} \approx \frac{\xi}{1-e^{-\xi\eta}} \quad \text{and} \quad \frac{1}{r^2} \approx \frac{\xi^2}{(1-e^{-\xi\eta})^2} \quad (27)$$

and carrying some algebraic expressions, we get a radial 2nd order-like Differential Equation (DE) given as follows:

$$\mathfrak{J}_{nm}''(\eta) + \left[\frac{2\mu E_{nm}}{\hbar^2} + \frac{4\mu\xi D_e A}{\hbar^2(1-e^{-2\xi\eta})} (1+e^{-2\xi\eta}) - \frac{4m\xi\kappa\vec{B}e^{-2\xi\eta}}{\hbar(1-e^{-2\xi\eta})^2} \right. \\ \left. - \frac{\kappa^2\vec{B}^2 e^{-4\xi\eta}}{\hbar^2(1-e^{-2\xi\eta})^2} - \frac{2\xi\kappa^2\vec{B}\rho e^{-2\xi\eta}}{\hbar^2(1-e^{-2\xi\eta})^2\pi} - \frac{\left[(m+\varepsilon)^2 - \frac{1}{4}\right]\xi^2}{(1-e^{-2\xi\eta})^2} \right] \mathfrak{J}_{nm}(\eta) = 0 \quad (28)$$

where we have defined the following parameters as $\kappa = -\frac{e}{c}$, $\phi_0 = \frac{2\pi\hbar c}{e}$ and $\varepsilon = \frac{\Phi_{AB}}{\phi_0} = \frac{\rho}{\phi_0}$.

For Mathematical simplicity and convenience, we introduce the following dimensionless abbreviations: $-\varepsilon_{nm} = \frac{2\mu E_{nm}}{\hbar^2\xi^2}$, $\mathbb{R} = \frac{4\mu D_e A}{\hbar^2\xi}$, $\mathbb{Z} = \frac{4m\kappa\vec{B}}{\hbar\xi}$, $\mathbb{C} = \frac{\kappa^2\vec{B}^2}{\hbar^2\xi^2}$, $\mathbb{Q} = \frac{2\kappa^2\vec{B}\rho}{\hbar^2\xi\pi}$, $\mathbb{N} = (m+\varepsilon)^2 - \frac{1}{4}$ (29)

By substituting a new variable $s = e^{-\xi\eta}$ into Eq. (28), then we can simply write Eq. (28) in the s -coordinate as follows:

$$\frac{d^2\mathfrak{J}_{nm}(\eta)}{ds^2} + \frac{(1-s)}{s(1-s)} \frac{d\mathfrak{J}_{nm}(\eta)}{ds} + \frac{1}{s^2(1-s)^2} \left[-(\varepsilon_{nm} + \mathbb{R} + \mathbb{C})s^2 + (2\varepsilon_{nm} - \mathbb{Z} - \mathbb{Q})s \right] \mathfrak{J}_{nm}(\eta) = 0 \quad (30)$$

By comparing Eq. (30) with the NUFA method of Eq. (6), we obtain the following

$$\alpha_1 = \alpha_2 = \alpha_3 = 1, \xi_1 = \varepsilon_{nm} + \mathbb{R} + \mathbb{C}, \xi_2 = 2\varepsilon_{nm} - \mathbb{Z} - \mathbb{Q}, \xi_3 = \varepsilon_{nm} - \mathbb{R} + \mathbb{N}, \lambda = \sqrt{\varepsilon_{nm} - \mathbb{R} + \mathbb{N}}$$

$$\text{and } \nu = \frac{1}{2} + \sqrt{\mathbb{C} + \mathbb{N} + \mathbb{Z} + \mathbb{Q} + \frac{1}{4}} \quad (31)$$

with Eq. (31), the energy eigenvalue of the Generalized Cosine Yukawa Potential under the influence of external magnetic and AB-flux fields is now deduced as:

$$\varepsilon_{nm} - \mathbb{R} + \mathbb{N} + 2\sqrt{\varepsilon_{nm} - \mathbb{R} + \mathbb{N}}(n + \nu) + (n + \nu)^2 - (\varepsilon_{nm} + \mathbb{R} + \mathbb{C}) = 0 \quad (32)$$

Substituting Eqs. (28) into Eq. (32), we obtain

$$E_{nm} = \frac{\hbar^2 \xi^2}{2\mu} \left[(m+\varepsilon)^2 - \frac{1}{4} \right] - 2\xi D_e A - \frac{\hbar^2 \xi^2}{2\mu} \left[\frac{\frac{8\mu D_e A}{\hbar^2 \xi} + \frac{\kappa^2 \vec{B}^2}{\hbar^2 \xi^2} - \left[(m+\varepsilon)^2 - \frac{1}{4} \right] - (n+\Lambda)^2}{2(n+\Lambda)} \right]^2 \quad (33)$$

where $\Lambda = \frac{1}{2} + \sqrt{(m+\varepsilon)^2 + \frac{\kappa^2 \vec{B}^2}{\hbar^2 \xi^2} + \frac{4m\kappa \vec{B}}{\hbar \xi} + \frac{2\kappa^2 \vec{B} \rho}{\hbar^2 \xi \pi}}$, $m = \pm 1, \pm 2, \pm 3, \dots$, and m is the

magnetic quantum number. By substituting Eq. (29) and Eq. (31) into Eq. (7), we obtain the corresponding wave function for the NUFA method as:

$$\psi(s) = Ns^{\sqrt{\varepsilon_{nm} - \mathbb{R} + \mathbb{N}}} (1-s)^{\frac{1}{2} + \sqrt{\mathbb{C} + \mathbb{N} + \mathbb{Z} + \mathbb{Q} + \frac{1}{4}}} {}_2F_1(a, b, c; s) \quad (34)$$

where N_{nm} is normalization constant.

${}_2F_1(\lambda + \nu + \sqrt{\varepsilon_{nm} + \mathbb{R} + \mathbb{C}}, \lambda + \nu - \sqrt{\varepsilon_{nm} + \mathbb{R} + \mathbb{C}}, 2\lambda + 1; s)$ is the hypergeometric function.

The 3D nonrelativistic energy solutions of Eq. (33) is obtain by setting $m = \ell + \frac{1}{2}$

$$E_{nm} = \frac{\hbar^2 \xi^2 \ell(\ell+1)}{2\mu} - 2\xi D_e A - \frac{\hbar^2 \xi^2}{2\mu} \left[\frac{\frac{8\mu D_e A}{\hbar^2 \xi} - \ell(\ell+1) - \left(n + \frac{1}{2} + \sqrt{\ell(\ell+1) + \frac{1}{4}} \right)^2}{2 \left(n + \frac{1}{2} + \sqrt{\ell(\ell+1) + \frac{1}{4}} \right)} \right]^2 \quad (35)$$

where ℓ is the rotational quantum number.

4. Magnetic Properties of the Generalized Cosine Yukawa Potential for TiC Diatomic Molecule

Since Eq. (33) is obtained, we can proceed to obtain the partition function and other magnetic properties of (GCYP) for TiC molecule. The partition function $Z(\beta)$ at finite temperature T is obtained using the Boltzmann constant factor as [32]:

$$Z(\beta) = \sum_{n=0}^{\mathbb{N}} e^{-\beta E_{nm}} \quad (36)$$

where $\beta = \frac{1}{kT}$ and k is Boltzmann constant.

Substituting Eq. (33) into Eq. (36), we have:

$$Z(\beta) = \sum_{n=0}^{\mathbb{N}} e^{-\beta \left(\frac{\Omega - (n+\Lambda)^2}{2(n+\Lambda)} \right)} \quad (37)$$

where n is the vibrational quantum number, $n = 0, 1, 2, 3, \dots, \mathbb{N}$, \mathbb{N} signifies the upper bound vibrational quantum number. For simplification and convinience, we have introduced the following notations:

$$\gamma = \frac{\hbar^2 \xi^2}{2\mu} \left[(m+\varepsilon)^2 - \frac{1}{4} \right] - 2\xi D_e A, \lambda = \frac{\hbar^2 \xi^2}{2\mu}, \Omega = \frac{8\mu D_e A}{\hbar^2 \xi} + \frac{\kappa^2 \vec{B}^2}{\hbar^2 \xi^2} - \left[(m+\varepsilon)^2 - \frac{1}{4} \right] \quad (38)$$

The maximum value n_{\max} can be obtain by setting $\frac{dE_{nm}}{dn} = 0$,

$$n_{\max} = -\Lambda \pm \sqrt{\Omega} \quad (39)$$

Replacing the summation in Eq. (37) by an integral, we have:

$$Z(\beta) = \int_0^{\infty} e^{-\beta \left(\gamma - \lambda \left(\frac{\Omega - (n+\Lambda)^2}{2(n+\Lambda)} \right)^2 \right)} dn \quad (40)$$

If we set $\rho = n + \Lambda$, we can re-write the above integral in the form:

$$Z(\beta) = \int_{-\Lambda}^{\infty} e^{\beta \left(\frac{Q_1}{\rho^2} + Q_2 \rho^2 - Q_3 \right)} d\rho \quad (41)$$

On evaluating the integral in Eq. (41), we obtain the partition function of the GCYP for TiC molecule in magnetic and AB-flux fields as follows:

$$Z(\beta) = \frac{e^{-2\sqrt{-\beta Q_1} \sqrt{-\beta Q_2} - \beta Q_3} \sqrt{\pi}}{4\sqrt{-\beta Q_2}} \left(\frac{Erf \left[\frac{\sqrt{-\beta Q_1}}{\Lambda} - \Lambda \sqrt{-\beta Q_2} \right] - e^{4\sqrt{-\beta Q_1} \sqrt{-\beta Q_2}} Erf \left[\frac{\sqrt{-\beta Q_1}}{\Lambda} + \Lambda \sqrt{-\beta Q_2} \right]}{-Erf \left[\frac{\sqrt{-\beta Q_1}}{\Lambda + n_{\max}} - \Lambda \sqrt{-\beta Q_2} - n_{\max} \sqrt{-\beta Q_2} \right] + e^{4\sqrt{-\beta Q_1} \sqrt{-\beta Q_2}} Erf \left[\frac{\sqrt{-\beta Q_1}}{\Lambda + n_{\max}} + \Lambda \sqrt{-\beta Q_2} + n_{\max} \sqrt{-\beta Q_2} \right]} \right) \quad (42)$$

From the obtained partition function of the given system, one can obtain magnetic properties such as magnetization at finite temperature $M(\beta)$, magnetic susceptibility at finite temperature $\chi_m(\beta)$ and persistent current at finite temperature $I(\beta)$ defined as follows [29]:

Magnetization at finite temperature is written as

$$M(\beta) = \frac{1}{\beta Z(\beta)} \frac{\partial Z(\beta)}{\partial \beta} \quad (43)$$

Magnetic susceptibility at finite temperature is written as

$$\chi_m(\beta) = \frac{\partial M(\beta)}{\partial \beta} \quad (44)$$

Persistent current at finite temperature is written as

$$I(\beta) = -\frac{e}{hc} \frac{\partial F(\beta)}{\partial \beta} \quad (45)$$

RESULTS

In this section, the graphical analysis for a TiC diatomic molecule is presented. The fitting parameters used are based on [33].

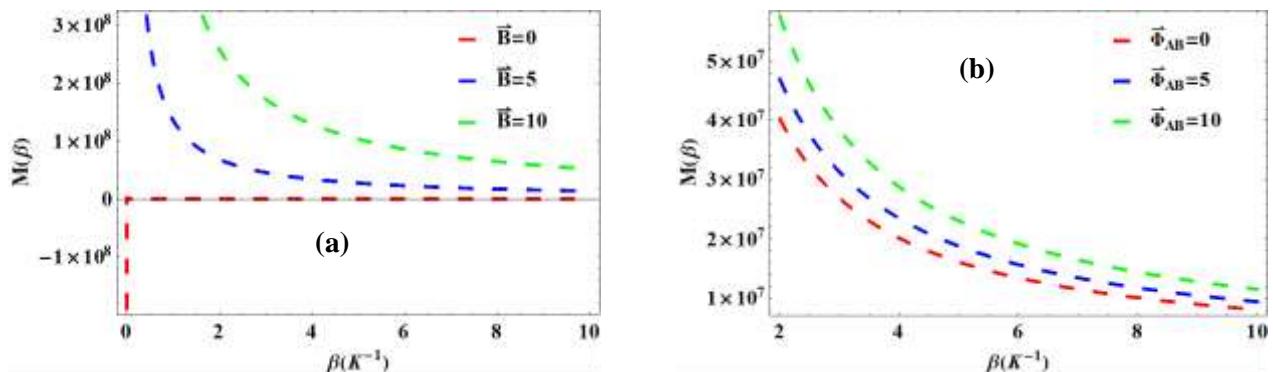


Figure 1. (a) Magnetization as a function of β varying with magnetic field, (b) Magnetization as a function of β varying with AB field.

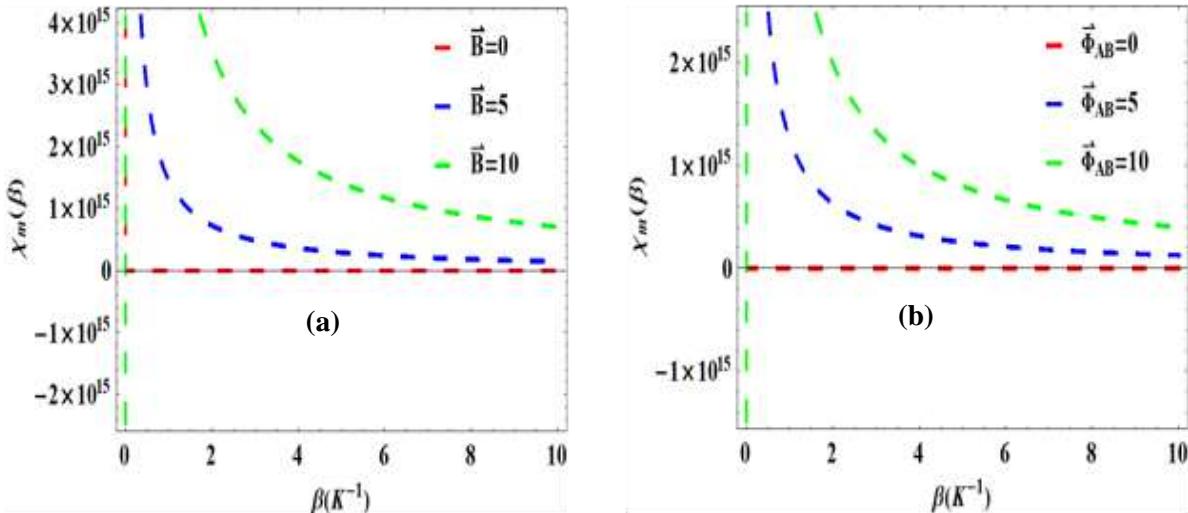


Figure 2. (a) Magnetic susceptibility as a function of β varying with magnetic field, (b) Magnetic susceptibility as a function of β varying with AB field.

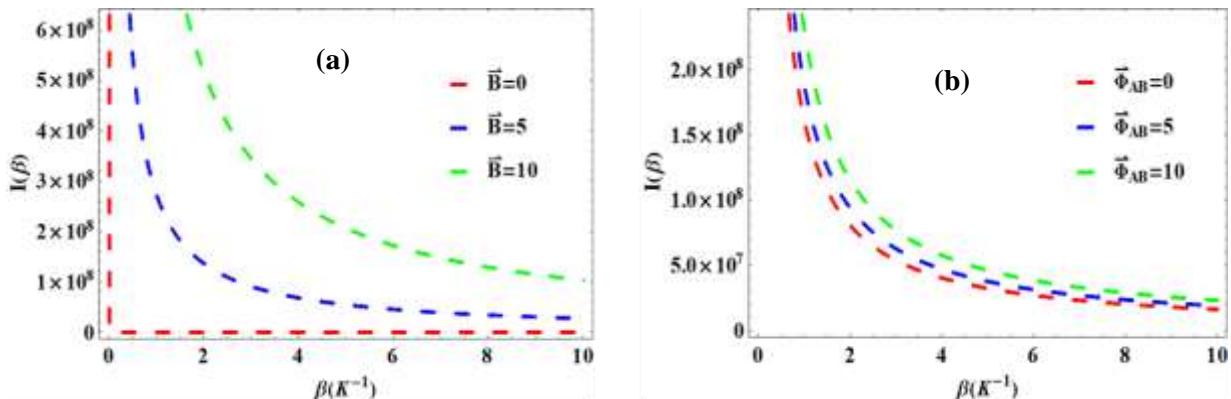


Figure 3. (a) Persistent current as a function of β varying with magnetic field, (b) Persistent current as a function of β varying with AB field.

DISCUSSION

The magnetization of the titanium carbide (TiC) diatomic molecule was analyzed as a function of inverse temperature $\beta = 1/(K_B T)$ under varying magnetic fields \vec{B} and Aharonov–Bohm (AB) flux fields Φ_{AB} , as shown in Figure 1(a) and Figure 1(b), respectively. At zero magnetic field ($\vec{B} = 0$), the magnetization initially exhibits a sharp increase at very low temperatures and then remains nearly constant with further temperature increase. However, for stronger magnetic fields ($\vec{B} = 5$ and $\vec{B} = 10$), the magnetization decreases as temperature increases. Despite this decreasing trend, the overall magnitude of magnetization is higher for stronger magnetic fields. Similarly, in Figure 1(b), magnetization decreases with increasing temperature for AB flux values of $\Phi_{AB} = 0, 5$ and 10 . As the AB flux increases, the overall magnetization also increases. This decrease in magnetization with rising temperature is attributed to enhanced thermal disorder, which disrupts the alignment of magnetic dipoles with the external magnetic field. These observations indicate that higher magnetic fields or AB flux values enhance overall magnetization, even as the thermal disorder reduces alignment at higher temperatures. A similar trend is observed in magnetic susceptibility (Figure 2(a) and Figure 2(b)) and persistent current (Figure 3(a) and Figure 3(b)),

where both quantities decrease with increasing temperature under varying magnetic and AB flux fields. As the field strengths increase, the magnitudes of susceptibility and persistent current also increase. This behavior, characterized by a decrease with increasing temperature, is consistent with the findings reported by [32] for TiH diatomic molecules.

CONCLUSION

This study analyzed the magnetic properties of the TiC diatomic molecule under the combined influence of magnetic and Aharonov–Bohm flux fields using the generalized cosine Yukawa potential within the Nikiforov–Uvarov framework. The findings revealed that increasing the magnetic or AB flux field enhances the overall magnetization, magnetic susceptibility and persistent current, while rising temperature suppresses these quantities due to thermal disorder. These results highlight the significant role of magnetic and AB flux fields in controlling the quantum magnetic behavior of TiC.

ACKNOWLEDGEMENTS

The authors sincerely appreciate the anonymous reviewers for their valuable comments, insightful suggestions and constructive criticisms, which greatly improved the clarity and scientific quality of this manuscript. The authors also acknowledge the editorial team for their careful handling and support throughout the review process.

REFERENCES

- [1] Cari, C. A., Suparmi, A. and Azizah, H. (2018). The approximate solution of Schrödinger equation with minimal length presence for Yukawa potential. *AIP Conference Proceedings*, 020093. <https://doi.org/10.1063/1.5054497>
- [2] Parmar, R. H. (2019). Construction of solvable non-central potential using vector superpotential: A new approach. *Indian Journal of Physics*, 93(9), 1163–1170. <https://doi.org/10.1007/s12648-019-01401-1>
- [3] Parmar, R. H. (2019). Generalized improved non-central potential and solution of Schrödinger equation with extended ring-shaped potential via Nikiforov–Uvarov method. *European Physical Journal Plus*, 134(3), 86. <https://doi.org/10.1140/epjp/i2019-12513-6>
- [4] Falaye, B. J., Ikhdaire, S. M. and Hamzavi, M. (2015). Formula method for bound state problems. *Few-Body Systems*, 56(1), 63–78. <https://doi.org/10.1007/s00601-014-0937-9>
- [5] Yin, C., Cao, Z. and Shen, Q. (2010). Why SWKB approximation is exact for all SIPs. *Annals of Physics*, 325(3), 528–534. <https://doi.org/10.1016/j.aop.2009.11.004>
- [6] Falaye, B. J., Oyewumi, K. J., Ikhdaire, S. M. and Hamzavi, M. (2014). Eigensolution techniques, their applications and Fisher’s information entropy of the Tietz–Wei diatomic molecular model. *Physica Scripta*, 89, 115204. <https://doi.org/10.1088/0031-8949/89/11/115204>
- [7] Qiang, W. C. and Dong, S. H. (2010). Proper quantization rule. *Europhysics Letters*, 89(1), 10003. <https://doi.org/10.1209/0295-5075/89/10003>

[8] Antia, A. D., Ituen, E. E., Obong, H. P. and Isonguyo, C. N. (2015). Analytical solution of the modified Coulomb potential using the factorisation method. *International Journal of Recent Advances in Physics*, 4(1), 55–65. <https://doi.org/10.14810/ijrap.2015.4104>

[9] Hamzavi, M., Hassanabadi, H. and Rajabi, A. A. (2010). Exact solution of Dirac equation for Mie-type potential by using the Nikiforov–Uvarov method under the pseudospin and spin symmetry limit. *Modern Physics Letters A*, 25, 2447. <https://doi.org/10.1142/S0217732310033402>

[10] Hassanabadi, H., Maghsoodi, E. and Zarrinkamar, S. (2012). Spin and pseudospin symmetries of Dirac equation and the Yukawa potential as the tensor interaction. *Communications in Theoretical Physics*, 58, 807. <https://doi.org/10.1088/0253-6102/58/6/04>

[11] Hassanabadi, H., Zarrinkamar, S. and Rajabi, A. A. (2011). Exact solutions of D-dimensional Schrödinger equation for an energy-dependent potential by NU method. *Communications in Theoretical Physics*, 55, 541. <https://doi.org/10.1088/0253-6102/55/4/01>

[12] Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S. and Rahimov, H. (2012). Approximate any l-state solutions of the Dirac equation for modified deformed Hylleraas potential by using the Nikiforov–Uvarov method. *Chinese Physics B*, 21, 120302. <https://doi.org/10.1088/1674-1056/21/12/120302>

[13] Hassanabadi, H., Zarrinkamar, S. and Maghsoodi, E. (2012). Scattering states of Woods–Saxon interaction in minimal length quantum mechanics. *Physics Letters B*, 718, 678. <https://doi.org/10.1016/j.physletb.2012.11.005>

[14] Hassanabadi, H., Zarrinkamar, S. and Maghsoodi, E. (2013). Scattering states of Hulthén interaction in minimal length quantum mechanics. *International Journal of Modern Physics A*, 28, 1350041. <https://doi.org/10.1142/S0217751X13500413>

[15] Maghsoodi, E., Hassanabadi, H., Rahimov, H. and Zarrinkamar, S. (2013). Arbitrary-state solutions of the Dirac equation for a Möbius square potential using the Nikiforov–Uvarov method. *Chinese Physics C*, 37, 043105. <https://doi.org/10.1088/1674-1137/37/4/043105>

[16] Louis, H., Ita, B. I., Magu, T. O., Akakuru, O. U., Nzeata-Ibe, N. A., Ikeuba, A. I., Pigweh, A. I. and Edet, C. O. (2018). Solutions to the Dirac equation for Manning–Rosen plus shifted Deng–Fan potential and Coulomb-like tensor interaction using Nikiforov–Uvarov method. *International Journal of Chemistry*, 10, 99. <https://doi.org/10.5539/ijc.v10n3p99>

[17] Ita, B. I., Louis, H., Akakuru, O. U., Nzeata-Ibe, N. A., Ikeuba, A. I., Magu, T. O., Amos, P. I. and Edet, C. O. (2018). Approximate solution to the Schrödinger equation with Manning–Rosen plus a class of Yukawa potential via WKBJ approximation method. *Bulgarian Journal of Physics*, 45, 323.

[18] Rahimov, H., Nikoofard, H., Zarrinkamar, S. and Hassanabadi, H. (2013). Any l-state solutions of the Schrödinger equation for the modified Woods–Saxon potential in arbitrary

dimensions. *Applied Mathematics and Computation*, 219, 4710.
<https://doi.org/10.1016/j.amc.2012.10.087>

[19] Hassanabadi, H., Maghsoodi, E. and Zarrinkamar, S. A. (2012). Quasi-analytical study of the nonrelativistic two-center Coulomb problem. *Few-Body Systems*, 53, 271–281. <https://doi.org/10.1007/s00601-012-0459-2>

[20] Louis, H., Ita, B. I., Akakuru, O. U., Nzeata-Ibe, N. A., Ikeuba, A. I., Magu, T. O., Amos, P. I. and Edet, C. O. (2018). l-state solutions of the relativistic and non-relativistic wave equations for modified Hylleraas–Hulthen potential using the Nikiforov–Uvarov quantum formalism. *Oriental Journal of Physical Sciences*, 3(3). <http://dx.doi.org/10.13005/OJPS03.01.02>

[21] Eshghi, M., Mehraban, H. and Ikhdair, S. M. (2016). Relativistic Killingbeck energy states under external magnetic fields. *European Physical Journal A*, 52, 201. <https://doi.org/10.1140/epja/i2016-16201-4>

[22] Ikhdair, S. M. and Hamzavi, M. (2012). A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov–Bohm fields. *Physica B: Condensed Matter*, 407(21), 4198–4207

[23] Hamzavi, M., Ikhdair, S. M. and Thylwe, K. E. (2012). Pseudospin symmetry in the relativistic Killingbeck potential: Quasi-exact solution. *Zeitschrift für Naturforschung A*, 67, 567–571. <https://doi.org/10.5560/zna.2012-0046>

[24] Kumar, R. and Chand, F. (2012). Reply to comment on ‘Series solutions to the N-dimensional radial Schrödinger equation for the quark–antiquark interaction potential’. *Physica Scripta*, 86(2), 027001. <https://doi.org/10.1088/0031-8949/86/02/027002>

[25] Eshghi, M. and Mehraban, H. (2017). Study of a 2D charged particle confined by magnetic and AB flux fields under the radial scalar power potential. *European Physical Journal Plus*, 132(3), 121. <https://doi.org/10.1140/epjp/i2017-11379-x>

[26] Ikhdair, S. M., Falaye, B. J. and Hamzavi, M. (2015). Nonrelativistic molecular models under external magnetic and AB flux fields. *Annals of Physics*, 353, 282–298. <https://doi.org/10.1016/j.aop.2014.11.017>

[27] Purohit, K. R., Parmar, R. H. and Rai, A. K. (2020). Eigensolution and various properties of the screened cosine Kratzer potential in D dimensions via relativistic and non-relativistic treatment. *European Physical Journal Plus*, 135(3). <https://doi.org/10.1140/epjp/s13360-020-00299-7>

[28] Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., Rampho, G. J. and Sever, R. (2021). The Nikiforov–Uvarov functional analysis method: A new approach for solving exponential-type potential. *Few-Body Systems*, 62(9), 1–16. <https://doi.org/10.1007/s00601-021-01593-5>

[29] Purohit, K. R., Parmar, R. H. and Rai, A. K. (2020). Bound state solution and thermodynamical properties of the screened cosine Kratzer potential under influence of the magnetic field and Aharonov–Bohm flux field. *Annals of Physics*. <https://doi.org/10.1016/j.aop.2020.168335>

[30] Ibrahim, N., Izam, M. M. and Jabil, Y. Y. (2023). Energy spectra of shifted screened Kratzer potential for some diatomic molecules in the presence of magnetic and Aharonov–Bohm flux fields using extended Nikiforov–Uvarov method. *Nigerian Journal of Physics*, 32(1).

[31] Greene, R. L. and Aldrich, C. (1976). Variational wave functions for a screened Coulomb potential. *Physical Review A*, 14, 2363–2366. <https://doi.org/10.1103/PhysRevA.14.2363>

[32] Edet, C. O., Khordad, R., Ettah, E. B., Aljunid, S. A., Endut, R., Ali, N., Asjad, M., Ushie, P. O. and Ikot, A. N. (2022). Magneto-transport and thermal properties of TiH diatomic molecule under the influence of magnetic and Aharonov–Bohm (AB) fields. *Scientific Reports*, 12, 15430. <https://doi.org/10.1038/s41598-022-19396-x>

[33] Nwabuzor, P., Edet, C., Ikot, A. N., Okorie, U., Ramantswana, M., Horchani, R., Abdel-Aty, A. H. and Rampho, G. (2021). Analyzing the effects of topological defect on the energy spectra and thermal properties of LiH, TiC, and I₂ diatomic molecules. *Entropy*, 23, 1060. <https://doi.org/10.3390/e23081060>