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ABSTRACT 

Malaria and typhoid fever pose significant health challenges in endemic 

regions, particularly in sub-Saharan Africa, due to environmental factors 

such as poor sanitation, stagnant water, and fluctuating temperatures. This 

study presents a deterministic compartmental model for co-infection 

dynamics of malaria and typhoid fever, incorporating both direct (human-

to-human) and indirect (environment-to-human) transmission. Sub-models 

for malaria, typhoid and co-infection are analyzed to establish positivity, 

boundedness, and disease-free equilibrium (DFE). The basic reproduction 

numbers are derived using the next-generation matrix method. Stability of 

the DFE is shown  when 𝑅0 is less than 𝑢𝑛𝑖𝑡𝑦(𝑅0
𝑚 < 1, 𝑅0

𝑡 < 1 , 𝑅0
𝑚𝑡 < 1), 

particularly under the condition, 𝑔𝑡 < 𝑒𝑡 and 𝑔𝑣 < 𝑒𝑣 and unstable when 

𝑅0 > 1 (𝑅0
𝑚 > 1, 𝑅0

𝑡 > 1 , 𝑅0
𝑚𝑡 > 1). Numerical simulations assess the 

impact of environmental decay pathogen shedding and breeding vector 

growth on disease persistence.  Sensitivity analysis reveals key drivers 

influencing disease persistence. The results underscore the importance of 

integrated interventions targeting both environmental and host-based 

transmission pathways to reduce the burden of malaria-typhoid co-

infection. 

1. INTRODUCTION  

Infectious diseases continue to pose a serious global health burden, particularly in low and middle-

income countries where deteriorating infrastructure and limited access to healthcare persist. In sub-

Saharan Africa, malaria and typhoid fever remain endemic and are frequently implicated in co-

infection scenarios that complicate diagnosis, treatment, and control efforts. Both diseases share 

overlapping symptoms, transmission conditions, and risk environments, leading to frequent 

misdiagnosis and improper treatment. often with fatal consequences. Malaria, a parasitic disease 

transmitted by the female Anopheles mosquito, is responsible for a considerable proportion of 

morbidity and mortality, especially among children under five and pregnant women. 
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[1] in 2021 alone, over 240 million cases of malaria were reported globally, resulting in 

approximately 619,000 deaths, with the African region accounting for more than 90% of this 

burden. Despite the availability of effective preventive measures, such as insecticide-treated nets 

and antimalarial therapies, transmission persists due to environmental factors, such as standing 

water that facilitates mosquito breeding, and climatic conditions that favor vector survival. 

Typhoid fever, caused by Salmonella enteric serotype Typhi, is a water / fecal-oral and foodborne 

bacterial infection, and can be transmitted directly and indirectly. Despite the fact that chronic 

typhoid can be transmitted by individual, who do not have history of the illness [2]. Is common in 

areas where limited access to safe water, poor hygiene, and inadequate sanitation, typhoid 

outbreaks remain common 

 

Co-infection of malaria and typhoid fever is a growing public health concern in regions where both 

diseases are endemic. The co-existence of these pathogens in a single host can significantly 

complicate clinical management due to symptom overlap and potential drug interactions. 

Environmental factors play a pivotal role in the transmission dynamics of both diseases. Stagnant 

water, fluctuating temperatures, and poor sanitation create reservoirs for both breeding vectors and 

typhoid-causing bacteria. While previous studies have modeled the co-infection dynamics of 

various diseases, few have explicitly captured the environmental dependency of malaria-typhoid 

co-infection within a unified mathematical framework [3]. 
 

In this study, we extend prior work by developing a novel compartmental model that incorporates 

both direct and indirect transmission pathways for malaria and typhoid fever [4]. Our model 

explicitly accounts for environmental reservoirs, on how vectors such as contaminated water 

sources and mosquito breeding sites can be reduced [5], and investigates how these reservoirs 

influence disease dynamics. the model is subjected to numerical simulations and sensitivity 

analysis to evaluate the impact of key parameters,  

 

The remainder of this paper is structured as follows: Section 2 presents the model formulation, 

including all compartments and transmission pathways. Section 3 analyzes the sub-models for 

malaria and typhoid infection separately and co-infection. Investigated the Disease Free 

Equilibrium (DFE) and Endemic Equilibrium Point (EEP), we derive the basic reproduction 

numbers and perform stability analysis. While, Section 4 presents numerical simulations and 

discussion. 

 

2.0  MATERIAL AND METHODS 

2.1 Model Formulation 

We develop a deterministic compartmental model to study the transmission dynamics of malaria 

and typhoid fever co-infection within a human population, accounting explicitly for environmental 

reservoirs that influence the dynamics of both diseases. The human population is assumed to be 

homogeneously mixed, and the total population at time 𝑡 is denoted as: 
 

𝑁ℎ = 𝑆ℎ(𝑡) + 𝐼𝑡(𝑡) + 𝐼𝑚(𝑡) + 𝐼𝑚𝑡(𝑡) + 𝑅𝑡(𝑡) + 𝑅𝑚(𝑡) + 𝑅𝑚𝑡(𝑡)+ 𝑆𝑣(𝑡) 𝐼𝑣(𝑡) 
 

Incorporated into the model are the bacterial compartments, where 𝐵𝑡(𝑡) is the concentration of 

Salmonella Typhi bacteria in the environment and  𝐵𝑣(𝑡) is the concentration of aquatic-stage 

mosquito vectors. Also  we have, 𝑆ℎ(𝑡) Susceptible humans, 𝐼𝑡, (𝑡) infected human with typhoid, 

𝐼𝑚(𝑡) infected human with malaria,  𝑅𝑡(𝑡) recovered infected human with typhoid, 𝑅𝑚(𝑡)  

recovered infected human with malaria, and 𝑅𝑚𝑡(𝑡) is the susceptible human with co-infection. 

. 
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    2.2  Transmission Dynamics 

a)    Typhoid fever infection to susceptible Humans 

 Direct (person-to-person) and indirect (environment) transmission  

 𝜆𝑡1 = 
𝛽𝑡1  ( 𝐼𝑡 + ռ𝑡𝐼𝑚𝑡 )

𝑁ℎ
 ,      𝜆𝑡2  

=
𝛽𝑡2   𝐵𝑡

𝐵𝑡 +  𝐾𝑡
 

b)   Malaria Infection to Susceptible Humans 

  Direct (person-to-person) and indirect (environment) transmission 

.   𝜆𝑚1
= 

𝛽𝑚1  ( 𝐼𝑚+ռ𝑚𝐼𝑚𝑡 )

𝑁ℎ
 ,   𝜆𝑚2  

= 𝛽𝑚2
( 

  𝐵𝑣

𝐵𝑣+  𝐾𝑣
) 𝐼𝑚      

 Cross-Transmission:Typhoid and Malaria Co-Infection 

c)   Typhoid to Malaria-infected individual 

  𝜆𝑡3    =
𝛽𝑡3( 𝐼𝑡+ռ𝑡𝐼𝑚𝑡 )

𝑁ℎ
 ,  𝜆𝑡4  = 

𝛽𝑡4    𝐵𝑡

𝐵𝑡+  𝐾𝑡
   

d)  Malaria to Typhoid-infected individual  

  𝜆𝑚3    = 
𝛽𝑚3  (𝑟 𝐼𝑚+ռ𝑚𝐼𝑚𝑡 )

𝑁ℎ
 ,   𝜆𝑚4  = 𝛽𝑚4  (

𝐵𝑣

𝐵𝑣+  𝐾𝑣
)𝐼𝑚   

Where 𝛽𝑡1 denote person to peron typhoid transmissioin, 𝛽𝑡2 is denotes the environment-to-

humans per capital contact rates and the salmonella typhi in the contaminated environment, ռ𝑡 ∈
(0,1). This assumption is motivated by the fewer numbers of co-infected individuals as compared 

to those infected with typhoid only 

 For malaria, the parameter 𝑟, is the total number of mosquitoes bite per day, while 𝛽𝑚1 denotes 

effective person-to-person malaria transmission rate. The modification parameter ռ𝑚, account for 

the relative infectious individual in class 𝐼𝑚  relative to individual in class 𝐼𝑚𝑡. we also assume that 

ռ𝑚 ∈ (0,1) , this assumption assumed that there are fewer numbers of co-infected individuals as 

compared to those infected with malaria alone. While 𝛽𝑚2  denotes environment-to-human 

transmission rates of the vectors /pathogens interaction of infection with other compartments, once 

humans carries the diseases and move to the environments, also bitten by the parasite, which 

become infected too. You can see the interaction in the model figure 1, between compartment  

 𝐵𝑣 and 𝐼𝑚. Maywhile, the term 𝜆𝑡4  is the environmental transmission terms for typhoid, while 

 𝜆𝑚4  is the environmental transmission terms for malaria as a result of infected human(𝐼𝑚)-to-

environment transmissions due to interaction. 

2.3 Environmental Contamination 

Contamination Dynamics in the environmental reservoirs are governed by logistic growth, 

shedding and decay: 
 

Salmonella Typhi: 
𝑑𝐵𝑡

𝑑𝑡
= 𝑔𝑡𝐵𝑡(1  − 

𝐵𝑡

𝐾𝑡
) + 𝐽𝑡𝐼𝑡 + 𝜃𝑡𝐼𝑚𝑡 − 𝑒𝑡𝐵𝑡 

Aquatic-stage (breeding) vectors: 
𝑑𝐵𝑣

𝑑𝑡
= 𝑔𝑣𝐵𝑣(1 − 

𝐵𝑣

𝐾𝑣
) + 𝐽𝑣𝐼𝑣+𝜃𝑣𝐼𝑚𝑡 − 𝑒𝑣𝐵𝑣 

where 𝐽𝑡𝐽𝑣 are Salmonella Typhi bacteria and pathogens/vectors shedding rates from single 

infected classes, while 𝜃𝑡𝜃𝑣are co-infection shedding rate of salmonella Typhi and 

pathogens/breeding vectors in the environment, and  𝑒𝑡𝑒𝑣 are environmental decay rates. 
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Figure 1: Schematic Flow Diagram for Malaria and Typhoid Fever Co-Infection 

Substituted into the above flow diagram are: 

𝑥1 = 𝑔𝑡 𝐵𝑡  (1 − 
𝐵𝑡

𝑘𝑡
 ) + Jt It  + 𝜃𝑡𝐼𝑚𝑡 – etBt ,  𝑥2 =  gv Bv  (1 −  

𝐵𝑣

𝑘𝑣
) + Jv Iv + 𝜃𝑣𝐼𝑚𝑡  − evBv 

It is assumed that after treatment of individual with single infection and co-infection, immune 

system might likely wane, which make them move to the susceptible compartment to join new 

recruitments. 

The complete system of differential equations describing the dynamics is: 

𝑑𝑆ℎ

𝑑𝑡
= 𝜋ℎ + 𝜌𝑡𝑅𝑡 + 𝜌𝑚𝑅𝑚 + 𝜌𝑚𝑡𝑅𝑚𝑡−[ 𝜆𝑡1+ 𝜆𝑡2 +  𝜆𝑚1

+  𝜆𝑚2
]𝑆 −  𝜇𝑠S 

𝑑𝐼𝑡

𝑑𝑡
. = ( 𝜆𝑡1+ 𝜆𝑡2) 𝑆 − ( 𝜆𝑚3

+  𝜆𝑚4
)𝐼𝑡 − ( 𝜇ℎ+ 𝛿𝑇 + 𝑎) 𝐼𝑡 

𝑑𝐼𝑚

𝑑𝑡
= ( 𝜆𝑚1

+  𝜆𝑚2
) 𝑆 − ( 𝜆𝑡3 +  𝜆𝑡4)𝐼𝑚 − ( 𝜇ℎ+ 𝛿𝑚 + 𝑏) 𝐼𝑚 

𝑑𝐼𝑚𝑡

𝑑𝑡
= ( 𝜆𝑡3 +  𝜆𝑡4) 𝐼𝑚  − ( 𝜆𝑚3

+  𝜆𝑚4
)𝐼𝑡 − 𝑣((𝑓 + 𝑔 + ℎ))𝐼𝑚𝑡 − ( 𝜇ℎ+𝜓)𝐼𝑚𝑡   

𝑑𝑅𝑡

𝑑𝑡
= 𝑎𝐼𝑇 + 𝑣(𝑓)𝐼𝑚𝑡 − ( 𝜇ℎ +  𝜌𝑡) 𝑅𝑡 

𝑑𝑅𝑚

𝑑𝑡
= 𝑏𝐼𝑚 + 𝑣(ℎ)𝐼𝑚𝑡 − ( 𝜇ℎ +  𝜌𝑚) 𝑅𝑚                    (1.)    

𝑑𝑅𝑚𝑡

𝑑𝑡
= 𝑣𝑔 𝐼𝑚𝑡 − ( 𝜇ℎ +  𝜌𝑚𝑇)𝑅𝑚𝑡 

𝑅𝑡 

 

𝜌𝑚𝑡𝑅𝑚𝑡

𝜇ℎ 

𝜇ℎ 

𝜌𝑚𝑅𝑚

𝜇ℎ + 𝛿𝑚

𝑏

𝜓 +

𝜇

𝜇ℎ 

𝑒𝑡𝒆𝒗

 
. 𝑥2

 
𝑥1

 

𝑣ℎ

𝑣𝑔

𝑣𝑓

𝑎

𝜌𝑡𝑅𝑡

𝜇ℎ +

𝛿

𝑒𝑣

 

𝑒𝑣

 

𝜋ℎ 
𝜇𝑠 

𝜆𝑣2

 

𝜆𝑣1

 

𝐵𝑣 

 

𝐼𝑣

 

𝑆𝑣 

 

𝐵𝑡 𝐼𝑡 

𝑺𝒉 

 

𝑅𝑚 

 

𝐼𝑚𝑡 𝑅𝑚𝑡 

 

𝐼𝑚 

 



 Uyi-Osagie et al. - Journal of NAMP 71, (2025) 57-72 

61 

𝑑𝐵𝑡

𝑑𝑡
= 𝑔𝑡𝐵𝑡(1 − 

𝐵𝑡

𝐾𝑡
) + 𝐽𝑡𝐼𝑡+𝜃𝑡𝐼𝑚𝑡 − 𝑒𝑡𝐵𝑡 

 
𝑑𝐵𝑣

𝑑𝑡
= 𝑔𝑣𝐵𝑣(1 − 

𝐵𝑣

𝐾𝑣
) + 𝐽𝑣𝐼𝑣+𝜃𝑣𝐼𝑚𝑡 − 𝑒𝑣𝐵𝑣 

𝑑𝑆𝑣

𝑑𝑡
= 𝜋𝑣 +  𝜆𝑣1

𝐵𝑣 − ( 𝑒𝑣 +  𝜆𝑣2
) 𝑆𝑣 

𝑑𝐼𝑣
𝑑𝑡

=  𝜆𝑣2
𝑆𝑣 −  𝑒𝑣𝐼𝑣 

The Initial condition of the co-infection model 

𝑆ℎ (0) >  0,   𝐼𝑡 (0) ≥  0, 𝐼𝑚(0) ≥  0, 𝐼𝑚𝑡(0) ≥  0, 𝑅𝑡(0) ≥  0, 𝑅𝑚(0) ≥  0, 𝑅𝑚𝑡(0) ≥  0, 
𝐵𝑡(0) ≥  0, 𝐵𝑣(0) ≥  0 , 𝑆𝑣(0) ≥  0, 𝐼𝑣(0) ≥  0 

 

2.4 Positivity and Boundedness of the Malaria-typhoid fever co-infection Model. 

For the model to be epidemiologically meaningful, it is important to examine the following in the 

closed set ռ.  

Theorem 1 

The solution of the proposed model (1) is bounded 

Proof 

Let 𝑁ℎdenotes the number of total population for humans; 

𝑋(𝑡) = 𝑆ℎ + 𝐼𝑡 + 𝐼𝑚 + 𝐼𝑚𝑡 + 𝑅𝑡 + 𝑅𝑚 + 𝑅𝑚𝑡 + 𝐵𝑡 + 𝐵𝑣 + 𝑆𝑚 + 𝐼𝑚  

𝑁ℎ(𝑡) =  𝑆ℎ(𝑡) + 𝐼𝑡(𝑡) + 𝐼𝑚(𝑡) +  𝐼𝑚𝑡(𝑡) + 𝑅𝑡(𝑡)  + 𝑅𝑚(𝑡)  +  𝑅𝑚𝑡(𝑡)               (2) 

 
𝑑𝑁ℎ

𝑑𝑡
 =  

𝑑𝑆ℎ

𝑑𝑡
  +   

𝑑𝐼𝑇

𝑑𝑡
  +  

𝑑𝐼𝑚

𝑑𝑡
+ 

𝑑𝐼𝑡

𝑑𝑡
+ 

𝑑𝐼𝑚𝑡

𝑑𝑡
+ 

𝑑𝑅𝑡

𝑑𝑡
+ 

𝑑𝑅𝑚

𝑑𝑡
 +  

𝑑𝑅𝑚𝑡

𝑑𝑡
                  

  
𝑑𝑁ℎ

𝑑𝑡
=  𝜋ℎ + 𝑃𝑡𝑅𝑡 + 𝑃𝑚𝑅𝑚 + 𝑃𝑚𝑡𝑅𝑚𝑡 −   𝜇ℎ𝑁ℎ −  [ 𝜎𝑡𝐼𝑡 +  𝜎𝑚𝐼𝑚 +   𝜓𝜎𝑚𝑡𝐼𝑚𝑡  ]               

Let   𝑍 = 𝑃𝑡𝑅𝑡 + 𝑃𝑚𝑅𝑚 + 𝑃𝑚𝑡   and  𝜎𝑡  ,  𝜎𝑚 ,  𝜎𝑚𝑡 represent infection induced death rate. 

If. there is no mortality of malaria and typhoid fever infection, we get 

   
𝑑𝑁ℎ

𝑑𝑡
 ≤   𝜋ℎ + z − 𝜇ℎ𝑁ℎ 

Thus,  
𝑑𝑁ℎ

𝑑𝑡
+ 𝜇ℎ  𝑁ℎ ≤ 𝜋ℎ + 𝑧    (3) 

Integrating and simplifying both sides of the inequality, we obtain 

𝑁ℎ(𝑡) ≤
𝜋ℎ+𝑧

𝜇ℎ
+ 𝑁ℎ  (0) −

𝜋ℎ+𝑧

𝜇ℎ
) 𝑒𝜇ℎ𝑡  

lim
𝑛.→∞

𝑠𝑢𝑝𝑁ℎ(𝑡) ≤ lim
𝑛→∞

sup ( 
𝜋ℎ + 𝑧

𝜇ℎ
+ (𝑁ℎ  (0) −

𝜋ℎ + 𝑧

𝜇ℎ
)𝑒𝜇ℎ𝑡

)   =
𝜋ℎ + 𝑧

𝜇ℎ
  

ռℎ = {( 𝑆ℎ, 𝐼𝑡  , 𝐼𝑚, 𝐼𝑚𝑡 , 𝑅𝑡  . 𝑅𝑚 , 𝑅𝑚𝑡) ∈ 𝑅+
7 ∶ 0 ≤ 𝑁ℎ  ≤

𝜋ℎ+𝑧

𝜇ℎ
 }       (4) 

 From equation (1), we consider the environmental bacteria 𝐵𝑡 : 
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𝑑𝐵𝑡

𝑑𝑡
= 𝑔𝑡𝐵𝑡(1 − 

𝐵𝑡

𝐾𝑡
) + 𝐽𝑡𝐼𝑡+𝜃𝑡𝐼𝑚𝑡 − 𝑒𝑡𝐵𝑡               

𝑑𝐵𝑡

𝑑𝑡
 ≤ 𝑔𝑡𝐵𝑡(1 − 

𝐵𝑡

𝐾𝑡
)                  

This is a logistic-type of equation   

Thus,  𝐵𝑡 is bounded above by carrying capacity 𝐾𝑡: 0 ≤ 𝐵𝑡(𝑡) ≤ 𝐾𝑡 for all 𝑡 ≥ 0   (5) 

Similarly, we consider the vectors population at a given time t, given by 

𝑁𝑣 = 𝐵𝑣 + 𝑆𝑣 + 𝐼𝑣     

Differentiating equation (1) with respect to t, we have  

    
𝑑𝑁𝑣

𝑑𝑡
 =  

𝑑𝑆𝑣

𝑑𝑡
  +   

𝑑𝐼𝑣

𝑑𝑡
  +  

𝑑𝐵𝑣

𝑑𝑡
                                                                         (6) 

This means that 

 
𝑑𝑁𝑣

𝑑𝑡
= 𝜋𝑣 + 𝜆𝑣1

𝐵𝑣 + 𝜃𝑣𝐼𝑚𝑡 − 𝜇𝑣𝑁𝑣 

𝑑𝑁𝑣

𝑑𝑡
≤ 𝜋𝑣 + 𝜆𝑣1

𝐵𝑣 + 𝜃𝑣𝐼𝑚𝑡 − 𝜇𝑣𝑁𝑣 

Since 𝐵𝑣 ≤ 𝐾𝑣 

Integrating and simplifying both sides of the inequality, we obtain 

𝑁𝑣(𝑡) ≤ 
 𝜋𝑣+𝜆𝑣1𝐵𝑣

𝜇𝑣
+ (𝑁𝑣(𝑜)  −

 𝜋𝑣+𝜆𝑣1𝐵𝑣

𝜇𝑣
 )𝑒−𝜇𝑣𝑡

 

 Taking the limit, we have 

lim
𝑛→∞

𝑠𝑢𝑝𝑁𝑣(𝑡) ≤
 𝜋𝑣+𝜆𝑣1𝐵𝑣

𝜇𝑣
 : 0≤ 𝑁𝑣(𝑡) ≤

 𝜋𝑣+𝜆𝑣1𝐵𝑣

𝜇𝑣
 

Hence the total vector population 𝑁𝑣   is bounded in the region; 

  ռ𝑣 = {( 𝑆𝑣, 𝐼𝑣 , 𝐵𝑣 ) ∈ 𝑅+
3 ∶ 0 ≤ 𝑁𝑣  ≤

𝜋𝑣

𝜇𝑣
}                                                   (7) 

Conclusively; 

.  ռ = {𝑋 = 𝑅+
11  : 0 ≤ 𝑁ℎ ≤

𝜋ℎ+𝑍

𝜇ℎ
, 0 ≤ 𝐵𝑡 ≤ 𝐾𝑡, 0 ≤

 𝜋𝑣+𝜆𝑣1𝐵𝑣

𝜇𝑣
}
  
  (8) 

Theorem 2  

For the system of differential equation (1) Co-infection model to be epidemiologically 

meaningful, permit the basic data of malaria-typhoid Co-infection model equation (1) given as : 

𝑆ℎ(0) > 0, 𝐼𝑡(0) > 0, 𝐼𝑚(0) > 0, 𝐼𝑚𝑡(0) > 0, 𝑅𝑡(0) > 0, 𝑅𝑚(0) > 0, 𝑅𝑚𝑡(0) > 0, 𝐵𝑡(0) >
0, 𝐵𝑣(0) > 0, 𝑆ℎ(0) > 0 and 𝐼𝑡(0) > 0 . Then the 

orbits(𝑠ℎ(𝑡), 𝐼𝑡(𝑡), 𝐼𝑚(𝑡), 𝐼𝑚𝑡(𝑡), 𝑅𝑡(𝑡), 𝑅𝑚(𝑡), 𝑅𝑚𝑡(𝑡), 𝐵𝑡(𝑡), 𝐵𝑣(𝑡), 𝑆𝑣(𝑡), 𝐼𝑣(𝑡)) of the model 

with positive basic conditions, will continue to be positive for all time  t > 0.      

Proof.: 

 Let  𝑡1= sup {𝑡1 > 0: 𝑆ℎ(0) > 0, 𝐼𝑡(0) > 0, 𝐼𝑚(0) > 0, 𝐼𝑚𝑡(0) > 0, 𝑅𝑡(0) > 0, 𝑅𝑚(0) >
0, 𝑅𝑚𝑡(0) > 0, 𝐵𝑡(0) > 0, 𝐵𝑣(0) > 0, 𝑆ℎ(0) > 0 , 𝐼𝑡(0) > 0 } 

Consider the first equation of model (1), given below as 

𝑑𝑠ℎ(𝑡)

𝑑𝑡
= 𝜋ℎ + 𝑧 − [ 𝜆𝑡1+ 𝜆𝑡2 +  𝜆𝑚1

+  𝜆𝑚2
]𝑆 −  𝜇𝑠S 

Which can be re-expressed as: 

𝑑

𝑑𝑡
= [𝑆ℎ(𝑡)𝑒𝑥𝑝 { 𝜇𝑠S

𝑡 + ∫ ( 𝜆𝑡1 +  𝜆𝑡2 +  𝜆𝑚1
+  𝜆𝑚2

)𝑑𝑡
𝑡

0
}] ≥  
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𝜋ℎ + z  𝑒𝑥𝑝 { 𝜇𝑠S
𝑡 + ∫ ( 𝜆𝑡1 +  𝜆𝑡2 +  𝜆𝑚1

+  𝜆𝑚2
)𝑑𝑡

𝑡

0

} 

𝑆ℎ(𝑡1)𝑒𝑥𝑝 {𝜇𝑡1 + ∫ ( 𝜆𝑡1 +  𝜆𝑡2 +  𝜆𝑚1
+  𝜆𝑚2

)𝑑𝑡
𝑡1

0

} − 𝑆ℎ(0)

≥  ∫ 𝜋ℎ + z 
𝑡1

0

[𝑒𝑥𝑝 {𝜇𝑠𝑦 + ∫ ( 𝜆𝑡1 +  𝜆𝑡2 +  𝜆𝑚1
+  𝜆𝑚2

)𝑑𝑡
𝑦

0

} ] 𝑑𝑦 

So that 

𝑆ℎ(𝑡1) ≥ 𝑆ℎ(0)𝑒𝑥𝑝 [− 𝜇𝑠𝑡1 − ∫ ( 𝜆𝑡1 +  𝜆𝑡2 +  𝜆𝑚1
+  𝜆𝑚2

)𝑑𝑡
𝑡1
0

] + [𝑒𝑥𝑝 {− 𝜇𝑠𝑡1 −

∫ ( 𝜆𝑡1 +  𝜆𝑡2 +  𝜆𝑚1
+  𝜆𝑚2

)𝑑𝑡
𝑡1
0

}] × ∫ 𝜋ℎ + z 
𝑡1
0

[𝑒𝑥𝑝{𝜇𝑠𝑦 + ∫ ( 𝜆𝑡1 +  𝜆𝑡2 +  𝜆𝑚1
+

𝑦

0

 𝜆𝑚2
)𝑑𝑡} ]𝑑𝑦 > 0      (9) 

Hence, 𝑆ℎ(𝑡) > 0, ∀ 𝑡 > 0. 

Similarly, following same process prove for others in equations (1). We have established 

positivity for all the state variables in model (1) for all time t. 

 
2.5  Disease-Free Equilibrium Point (EEP) for Co-infection Model 

At the DFE, there are no infections in the system, hence: 

𝐸𝑚
0 = (𝑆ℎ

0, 𝐼𝑡  ,
0 𝐼𝑚  ,

0 𝐼𝑚𝑡 ,
0 𝑅𝑡

0, 𝑅𝑚  ,
0 𝑅𝑚𝑡

0 , 𝐵𝑡
0, 𝐵𝑣

0, 𝑆𝑣
0, 𝐼𝑣

0 ) =(
𝜋ℎ

𝜇ℎ
, 0 , 0, 0, 0, 0,   0, 0, 0,

   𝜋𝑣

𝜇𝑣
, 0    (10)  .          

Here, the human population is entirely susceptible, and both environmental reservoirs are free of 

pathogens.  

2.6   Existence of Endemic Equilibrium Point (EEP) for Co-infection Model 

We examine the existence of the endemic equilibrium point (EEP) of the model (1) and this 

describes that the disease is currently prevalent in the population [6] 

  𝐸𝑚𝑇
∗ = 𝑆ℎ

∗  (𝑡), 𝐼𝑡  
∗  (𝑡), 𝐼𝑚

∗ (𝑡), 𝐼𝑚𝑡
∗ (𝑡), 𝑅𝑚

∗ (𝑡), 𝑅𝑡
∗(𝑡), 𝑅𝑚𝑡

∗ (𝑡), 𝐵𝑣
∗(𝑡), 𝐵𝑡

∗(𝑡), 𝑆𝑣
∗(𝑡), 𝐼𝑣

∗(𝑡)     (11)  

Solving the right hand side of the equations in (1) for the states variables in terms of the forces of 

infection ( 𝜆𝑚
∗ ) and ( 𝜆𝑡

∗) at the endemic steady state, were all the derivatives are set to zero.  

 (
𝑑𝑠

𝑑𝑡
= 0 and 

𝑑𝑣

𝑑𝑡
= 0)  , substituting the following equation below, to solve the RHS of the 

equation (1) produce our EEP. 

 𝜆𝑚  =   𝜆𝑚1
+  𝜆𝑚2

,   𝜆𝑡 =  𝜆𝑡1 +  𝜆𝑡2 ,   𝜆1  =   𝜆𝑡3 +  𝜆𝑡4   ,   𝜆2 =  𝜆𝑚3
+  𝜆𝑚4

   

  𝜆𝑡1     =  
𝛽𝑡1   ( 𝐼𝑡+ռ𝑡𝐼𝑚𝑡 )

𝑁ℎ
 ,  𝜆𝑡2 = 

𝛽𝑡2    𝐵𝑡

𝐵𝑡+  𝐾𝑡
   ,   𝜆 𝑚1

= 
𝛽𝑚1   (𝑟 𝐼𝑚+ռ𝑚𝐼𝑚𝑡 )

𝑁ℎ
 ,   𝜆 𝑚2

= 𝛽𝑚2
(

𝐵𝑣

𝐵𝑣+  𝐾𝑣
) 𝐼𝑚 

   𝜆𝑡3    =
𝛽𝑡3   ( 𝐼𝑇+ռ𝑡𝐼𝑚𝑡 )

𝑁ℎ
 ,   𝜆𝑡4    = 

𝛽𝑡4     𝐵𝑡

𝐵𝑡+  𝐾𝑡
 ,    𝜆𝑚3  =

𝛽𝑚3   (𝑟 𝐼𝑚+ռ𝑚𝐼𝑚𝑡 )

𝑁ℎ
 ,    𝜆𝑚4    

=

 𝛽𝑚4
  (

𝐵𝑣

𝐵𝑣+  𝐾𝑣
) 𝐼𝑚   

2.7 Malaria-Only Model  

𝑑𝑆ℎ

𝑑𝑡
= 𝜋ℎ + 𝑃𝑚𝑅𝑚 − ( 𝜆𝑚1

+ 𝜆𝑚2
)𝑆 −  𝜇𝑠 
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𝑑𝐼𝑚

𝑑𝑡
= ( 𝜆𝑚1

+ 𝜆𝑚2
) 𝑆 − ( 𝜇ℎ+ 𝛿𝑚 + 𝑏) 𝐼𝑚 

𝑑𝑅𝑚

𝑑𝑡
= 𝑏 𝐼𝑚 − ( 𝜇ℎ +  𝑃𝑚)𝑅𝑚                            (12) 

 
𝑑𝐵𝑣

𝑑𝑡
= 𝑔𝑣𝐵𝑣(1  − 

𝐵𝑡

𝐾𝑡
) + 𝐽𝑣𝐼𝑣 − 𝑒𝑣𝐵𝑣 

𝑑𝑆𝑣

𝑑𝑡
= 𝜋𝑣 + 𝜆𝑣1

𝐵𝑣 − ( 𝜇𝑆𝑣 + 𝜆𝑣2
) 𝑆𝑣 

𝑑𝐼𝑣
𝑑𝑡

= 𝜆𝑣2𝑆𝑣 −  𝑒𝑣𝐼𝑣 

𝑁ℎ(𝑡)  =   𝑆ℎ(𝑡)  +    𝐼𝑚(𝑡) + 𝑅𝑚(𝑡) , 𝑁𝑣(𝑡)  =   𝑆𝑣(𝑡)  +    𝐼𝑣(𝑡) + 𝐵𝑣(𝑡) 

 

2.7.1  Positivity and Boundedness 

Hence, the same process as proved above in theorem 1 and 2, malaria-only system is both positive 

invariant and bounded in the biologically feasible region: 

   Ռ.= ռℎ  ×  ռ𝑣∁𝑅+
3 × 𝑅+

3={ ( 𝑆ℎ, 𝐼𝑚, 𝑅𝑣, 𝑆𝑣, 𝐼𝑣, 𝐵𝑣) ∈ 𝑅+
6 : 0 ≤ 𝑁ℎ  ≤

𝜋ℎ+𝑧

𝜇ℎ
; 0 ≤ 𝑁𝑣  ≤

 𝜋𝑣+𝜆𝑣1𝐵𝑣

𝜇𝑣
} 

(13) 2.8 Typhoid-Only Model 
𝑑𝑆ℎ

𝑑𝑡
= 𝜋ℎ + 𝜌𝑡𝑅𝑡 − [ 𝜆𝑡1+ 𝜆𝑡2]𝑆 −  𝜇𝑠𝑆 

𝑑𝐼𝑡

𝑑𝑡
= ( 𝜆𝑡1+ 𝜆𝑡2) 𝑆 − ( 𝜇ℎ+ 𝛿𝑇 + 𝑎) 𝐼𝑡         

𝑑𝑅𝑡

𝑑𝑡
= 𝑎𝐼𝑡 − ( 𝜇ℎ +  𝑃𝑡) 𝑅𝑡                      (14) 

𝑑𝐵𝑡

𝑑𝑡
= 𝑔𝑡𝐵𝑡(1  − 

𝐵𝑡

𝐾𝑡
) + 𝐽𝑡𝐼𝑡 − 𝑒𝑡𝐵𝑡 

With total human population:  

𝑁ℎ.(𝑡)  =   𝑆ℎ(𝑡)  +    𝑡(𝑡) + 𝑅𝑣(𝑡) + 𝐵𝑡(t)  

 

2.8.1 Positivity and Boundedness 

Hence, the same process as proved above in theorem 1 and 2 the typhoid-only system is both 

positive invariant and bounded in the biologically feasible region: 

   Ω𝑡 = (𝑆ℎ, 𝐼𝑡, 𝑅𝑡 , 𝐵𝑡) ∈  𝑅+
4 : 𝑁ℎ  ≤

𝜋ℎ+𝑧

𝜇ℎ
; 0 ≤ 𝐵𝑡(𝑡) ≤ 𝐾𝑡}  for all 𝑡 ≥ 0     (15)        

 

3.0 BASIC REPRODUCTION NUMBERS  

The basic reproduction number(𝑅0) is a key threshold parameter in epidemiology, representing 

the expected number of secondary infections generated by one infectious individual in a whole 

susceptible population. If 𝑅0 < 1, the disease tends to die out: if  𝑅0 > 1, the disease may persist 

and become endemic.[6]  

3.3.1       Malaria Only Reproduction Number(𝑹𝟎
𝒎) 

The basic reproduction number(𝑅0
𝑚) for malaria Sub- model (12), using Diekmann, et al (2010), 

and Sokhamoy, Susmita (2020). The computation of  𝑅0 is done using next-generation matrix 

approach, and the Jacobian (JE0) matrix of F and V at the DFE evaluated is given as follows: 

from the equation (12) and differentiating F and V with respect to the state variables, we have the 

equations. 

Mathematically, 𝑅0 is defined as the spectral radius of the matrix product FV-1 express as 
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𝑅0 =𝜌(FV-1)  (16) 

Where 𝜌 is the spetra radius 

 𝑋 = [𝐼𝑚, 𝐵𝑣, 𝐼𝑣] ,  𝑉 = 𝑉− − 𝑉+      

𝐹 = [

(𝜆𝑚1
+ 𝜆𝑚2

)𝑆ℎ

𝑔𝑣𝐵𝑣 (1 −
𝐵𝑣

𝐾𝑣
)

0

]   (17) ,  𝑉 = [

(𝜇ℎ + 𝛿𝑡 + 𝑏)𝐼𝑚
−𝐽𝑣𝐼𝑣 + 𝑒𝑣𝐼𝑣
𝜆𝑣2

𝑆𝑣 + 𝑒𝑣𝐼𝑣

]                (18)
 

Differentiating with respect to the state variables, Following the jacobian matrix process we have;

                      

𝐹. 𝑣−1 − 𝜆𝐼 =

[
 
 
 

𝑟.𝛽𝑚1 .𝜋ℎ

𝜇ℎ𝑁ℎ(𝜋ℎ+𝛿𝑚+𝑏)
− 𝜆 0 0

0
𝑔𝑣

𝑒𝑣
− 𝜆

𝑔𝑣𝐽𝑣

𝑒𝑣
2

0 0 0 − 𝜆]
 
 
 

      (19) 

   

𝜆3 − (
𝜋ℎ+𝛿𝑚+𝑏𝑁ℎ𝑔𝑣𝜇ℎ

𝑒𝑣𝜇ℎ𝑁ℎ(𝜋ℎ+𝛿𝑚+𝑏)
+

𝑔𝑣𝑟𝛽𝑚1𝜋ℎ

𝑒𝑣𝜇ℎ𝑁ℎ(𝜋ℎ+𝛿𝑚+𝑏)
) 𝜆  

The eigenvalues of the jacobians(𝐽𝐸0
) is given as 

𝜆 = 0 ,  =
𝑔𝑣

𝑒𝑣
 ,  𝜆 =

𝑟𝛽𝑚1
𝜋ℎ

𝜇ℎ𝑁ℎ(𝜋ℎ+𝛿𝑚+𝑏)
         

The effective basic reproduction number of the malaria 𝑅0
𝑚 sub-model (12) is given by  

 𝜌(FV-1) = Max [𝑅0
𝑚], with   the spectral radius of FV-1

  

 

 

𝑅.0
𝑚 =

𝑟𝛽𝑚1𝜋ℎ

𝜇ℎ𝑁ℎ(𝜋ℎ+𝛿𝑚+𝑏)
      (20)    

 

3.3.2     Typhoid- Only Reproduction Number(𝑅0
𝑡)

 The basic reproduction number denoted by(𝑅0
𝑡),using only the infected compartment It and Bt 

from system (14) , following same method in 3.3.1 

𝑋 = [𝐼𝑡, 𝐵𝑡 ] ,  𝑉 = 𝑉− − 𝑉+      

 𝐹 = [
(𝜆𝑡1 + 𝜆𝑡2)S

𝑔𝑡𝐵𝑡(1 −
𝐵𝑡

𝑘𝑡
) + 𝐽𝑡𝐼𝑡

] ,      (21) 

 𝑣 = [
(𝜇ℎ + 𝛿𝑡 + 𝑎) 𝐼𝑡

𝑒𝑡𝐵𝑡
]     (22) 

𝐹𝑉−1 − 𝜆𝐼 = [

𝛽𝑡1𝜋ℎ

𝑢.𝑘
− 𝜆

−𝛽𝑡2𝜋ℎ

𝐺
𝐽𝑡

𝑘

𝑔𝑡

𝑒𝑡
− 𝜆

] = 0

   

     

 𝜆2 −
(𝑘𝑢𝑔𝑡+𝜋ℎ𝛽𝑡1𝑒𝑡)𝜆

𝑒𝑡𝑢𝑘
+

𝜋ℎ(𝑢𝐽𝑡𝛽𝑡2𝑒𝑡+𝐺𝛽𝑡1𝑔𝑡)

𝑘𝐺𝑒𝑡𝑢
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[[𝜆 =
1

2

1

𝑘𝐺𝑒𝑡𝑢
[𝐺𝑘𝑢𝑔𝑡 + 𝐺𝜋ℎ𝛽𝑡1

𝑒𝑡 + √4𝐺𝑘𝑢2𝐽𝑡𝜋ℎ𝛽𝑡2
𝑒𝑡

2 + 𝐺2𝑘2𝑢2𝑔𝑡
2 − 2𝐺2𝑘𝑢𝜋ℎ𝛽𝑡1

𝑒𝑡𝑔𝑡 + 𝐺2𝜋ℎ
2𝛽𝑡1

2 𝑒𝑡
2]]], [[𝜆 =

1

2

1

𝑘𝐺𝑒𝑡𝑢
[𝐺𝑘𝑢𝑔𝑡 + 𝐺𝜋ℎ𝛽𝑡1

𝑒𝑡 − √4𝐺𝑘𝑢2𝐽𝑡𝜋ℎ𝛽𝑡2
𝑒𝑡

2 + 𝐺2𝑘2𝑢2𝑔𝑡
2 − 2𝐺2𝑘𝑢𝜋ℎ𝛽𝑡1

𝑒𝑡𝑔𝑡 + 𝐺2𝜋ℎ
2𝛽𝑡1

2 𝑒𝑡
2]]], 

𝑅 0
𝑇

 = 𝜌(FV-1) = Max [𝑅0
𝑇], with   the spectral radius of FV-1, is been given by 

𝑅0
𝑡 = [[𝜆 =

1

2

1

𝑘𝐺𝑒𝑡𝑢
[𝐺𝑘𝑢𝑔𝑡 + 𝐺𝜋ℎ𝛽𝑡1𝑒𝑡 + √4𝐺𝑘𝑢2𝐽𝑡𝜋ℎ𝛽𝑡2𝑒𝑡

2 + 𝐺2𝑘2𝑢2𝑔𝑡
2 − 2𝐺2𝑘𝑢𝜋ℎ𝛽𝑡1𝑒𝑡𝑔𝑡 + 𝐺2𝜋ℎ

2𝛽𝑡1
2 𝑒𝑡

2]]] 

(23) 

Where: 

𝑢 = 𝜇ℎ𝑁ℎ,  𝑘 = 𝜇ℎ + 𝛿𝑡 + 𝑎,  𝐺 = 𝑘𝑡𝑒𝑡𝜇ℎ  

3.3.3       Co-infection Reproduction Number (𝑹𝟎
𝒎𝒕)  

Following the same method we generated in 3.1.1, the Jacobian matrix of F and V as follows: 

Infected compartments 𝐼𝑚, 𝐼𝑡, 𝐼𝑚𝑡 , 𝐼𝑣, 𝐵𝑡, 𝐵𝑣 from system (1) is differentiated partially with respect 

to the state variables follows; 

X= |𝐼𝑚, 𝐼𝑡, 𝐼𝑚𝑡, 𝐼𝑣, 𝐵𝑡, 𝐵𝑣|                  

𝐹.=

[
 
 
 
 
 
 
 
 

(𝜆𝑚1
+ 𝜆𝑚2

)𝑆ℎ

(𝜆𝑡1 + 𝜆𝑡2
)𝑆ℎ

(𝜆𝑡3
+ 𝜆𝑡4)𝐼𝑚 + (𝜆𝑚3

+ 𝜆𝑚4
)𝐼𝑡

0

𝑔𝑡𝐵𝑡 (1 −
𝑡

𝑘𝑡
)

𝑔𝑣𝐵𝑣 (1 −
𝐵𝑣

𝑘𝑣
) ]

 
 
 
 
 
 
 
 

  (24) ,      𝑉 =

[
 
 
 
 
 
 

(𝜆𝑡3 + 𝜆𝑡4)𝐼𝑚 + (𝜇ℎ+𝛿𝑚 + 𝑏)

(𝜆𝑚3
+ 𝜆𝑚4

)𝐼𝑚 + (𝜇ℎ+𝛿𝑚 + 𝑎)

𝑉(𝑓 + 𝑔 + ℎ)𝐼𝑚𝑡 + (𝜇ℎ + 𝜓)𝐼𝑚𝑡

−𝜆𝑣2
𝑆𝑣 + 𝑒𝑣𝐼𝑣

−𝐽𝑡𝐼𝑡 − 𝜃𝑡𝐼𝑚𝑡 + 𝑒𝑡𝐵𝑡

−𝐽𝑣𝐼𝑣 − 𝜃𝑣𝐼𝑚𝑡 + 𝑒𝑣𝐵𝑣 ]
 
 
 
 
 
 

  (25) 

From our computation, since co-infection contributes new infections, the basic reproduction 

number for the co-infection of malaria and typhoid fever, represented by𝑅0
𝑚𝑡 is given as; 

𝜌(𝐹𝑉−1) =Max( 
1

2

𝐷1+√𝐷2−2𝐷3+𝐷4+2𝐷5+𝐷6

𝜇ℎ𝑁ℎ𝑍𝑡𝑘𝑡𝑒𝑡
 ,   

𝑟𝛽𝑚1𝜋ℎ

𝜇ℎ𝑁ℎ𝑍𝑚
)            (26) 

𝑍𝑡 = 𝜇ℎ + 𝛿𝑡 + 𝑎 ,      𝑍𝑚 = 𝜇ℎ + 𝛿𝑚 + 𝑏, 𝐷1 = 𝑁ℎ𝑍𝑡𝑔𝑡𝑘𝑡𝜇ℎ + 𝛽𝑡2𝜋ℎ𝐽𝑡𝑁ℎ + 𝛽𝑡1𝜋ℎ𝑘𝑡𝑒𝑡 , 

 𝐷2 = 𝑁ℎ
2𝑍𝑡

2𝑔𝑡
2𝑘𝑡

2𝜇ℎ
2 + 2𝐽𝑡𝑁ℎ

2𝜋ℎ𝑍𝑡𝛽𝑡2𝑔𝑡𝑘𝑡𝜇ℎ , 𝐷3 = 𝑁ℎ𝜋ℎ𝛽𝑡1𝑒𝑡𝑔𝑡𝑘𝑡
2𝑁ℎ ,  𝐷4 = 𝐽𝑡

2𝑁ℎ
2𝜋ℎ

2𝑍𝑡𝛽𝑡2
2 , 

𝐷5 = 2(𝐽𝑡𝑁ℎ𝜋ℎ
2𝛽𝑡1𝛽𝑡2𝑒𝑡𝑘𝑡),   𝐷6 = 𝜋ℎ

2𝛽𝑡1
2 𝑒𝑡

2𝑘𝑡
2 

3.4     Stability Analysis 

3.4.1 Local Stability of the DFE 

Theorem 3. 

The disease-free equilibrium 𝐸0 is locally asymptotically stable if: 

𝑅0
𝑚 < 1, 𝑅0

𝑡 < 1 , 

Proof 

Linearizing the full system 𝐸0 , the Jacobian split into block matrices associated with new infection 

and transition terms. The eigenvalues are negative if and only if the spectral radius of the next-

generation-matrix is less than one. This condition is equivalent to require  



 Uyi-Osagie et al. - Journal of NAMP 71, (2025) 57-72 

67 

𝑅0
𝑚 < 1,  𝑅0

𝑡 < 1 , 𝑅0
𝑚𝑡 < 1               (27)  

3.4.2  Stability Analysis of the Disease-Free Equilibrium for Typhoid fever infection   

Sub-model 

Theorem 4   

The Jacobian matrix of (14) at the DFE point 𝐸𝑡
0 = (

𝜋ℎ

𝜇ℎ
,   0, 0, 0 ,0) is locally asymptotically  

stable (LAS) if 𝑅0 
𝑡 < 1   and unstable if  𝑅0 

𝑡 > 1 

𝐏𝐫𝐨𝐨𝐟: The Jacobians matrix of the model (15) at the DFE point 
0

tE is given by taking first-order 

partial derivatives of each equation with respect to each state variable, which give; 

𝐽𝐸0=
𝑡

[
 
 
 
 
 −𝜇ℎ −𝛽𝑡1 𝜌𝑡

−𝛽𝑡2𝜋ℎ

𝜇ℎ𝑘𝑡

0 𝛽𝑡1 − (𝜇ℎ + 𝛿𝑡 + 𝑎) 0
𝛽𝑡2𝜋ℎ

𝜇ℎ𝑘𝑡

0 𝑎 −(𝜇ℎ + 𝜌𝑡) 0
0 𝐽𝑡 0 (𝑔𝑡 − 𝑒𝑡)]

 
 
 
 
 

= 0            (28)  

All the infection will become zero, because we are interested in the linearized dynamics near DFE. 

𝐽𝐸0=
𝑡

[
 
 
 
−𝜇ℎ 0 𝜌𝑡 0
0 𝛽𝑡1 − (𝜇ℎ + 𝛿𝑡 + 𝑎) 0 0

0 𝑎 −(𝜇ℎ + 𝜌𝑡) 0
0 0 0 (𝑔𝑡 − 𝑒𝑡)]

 
 
 
= 0 

    

 

We observed that the Jacobian matrix is a block lower triangular matrix, meaning it has a special 

structure: 

𝐹 = (
𝐴 𝐵
𝐶 𝐷

)  

Then the eigenvalues of the Jacobian  𝐽𝐸0

𝑡  matrix is given as: 

𝜆1= 𝜇ℎ< 0,  𝜆2 = 𝛽𝑡1
− (𝜇ℎ + 𝛿𝑡 + 𝑎) < 0 If and only if 𝛽𝑡1

< (𝜇ℎ + 𝛿𝑡 + 𝑎)       (29) 

𝜆3 = −(𝜇ℎ + 𝜌𝑡) <0  ,  𝜆4 = (𝑔𝑡 − 𝑒𝑡) < 0 If and only if  𝑔𝑡 < 𝑒𝑡   

  

Hence, the system DFE is locally asymptotically stable (LAS) if 𝛽𝑡1< (𝜇ℎ + 𝛿𝑡 + 𝑎) and 

𝑔𝑡 < 𝑒𝑡  ,  and become unstable if   𝛽𝑡1>(𝜇ℎ + 𝛿𝑡 + 𝑎) and 𝑔𝑡 > 𝑒𝑡, 
This complete the proof. 

Similarly, stability for 𝑅0
𝑡   and 𝑅0

𝑚𝑡, is same process. 

 

3.4.3 Global Stability of the Disease Free Equilibrium 

Following the method of [7], we analyze the Global stability of the Disease free equilibrium point, 

is established under the conditions: 

To investigate global stability of the uninfected system at the DFE of equation (1) using the next 

generation matrix (NGM), 

Solving equation (1) at the DFE, we have; 

𝑆ℎ = 
𝜋ℎ

𝜇ℎ
  ,  𝑆𝑣 = 

𝜋𝑣

𝜇𝑣 
                

(30) 

Since there is no infection, we say the system is globally asymptotically stable (GAS). 

To investigate global stability of the infected system at the DFE of equation (1) using the next 

generation matrix (NGM), 
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The Jacobian matrix (JE0) of the infected compartments [𝐼𝑡  , 𝐼𝑚 , 𝐼𝑚𝑡 , 𝐼𝑣 ] is given as:                    𝐽 =

[
 
 
 
 
−(𝜇ℎ + 𝛿𝑡 + 𝑎) 0 0 0

0 −(𝜇ℎ + 𝛿𝑚 + 𝑏) 0 0

𝜆𝑡1
̇ 𝜆𝑚1

̇ −(𝑣(𝑓 + 𝑔 + ℎ) + (𝜇ℎ + 𝜓)) 0

0 0 0 −𝑒𝑣]
 
 
 
 

   .(31) 

Theorem 5 

The infected subsystem 
𝑑𝑥

𝑑𝑦
= 𝐹(𝑋, 0) has a globally asymptotically stable equilibrium; if the 

infected system’s Jacobian matrix (𝐽𝐸0
) has all the off diagonal elements non-negatives and the 

diagonal elements are all negative. This further implies that the determinant of the Jacobian matrix 

(𝐽𝐸0
) is positive and the trace negative (Conditions for stability) 

det (𝐽𝐸𝑜) = −(𝜇ℎ + 𝛿𝑡 + 𝑎) − (𝜇ℎ + 𝛿𝑡 + 𝑏) − (𝜇ℎ + 𝜓 + 𝑣(𝑓 + 𝑔 + ℎ)) − 𝑒𝑣 > 0   

(4 negative signs = positive)                (32)  

Trace (JE0) = −3𝜇ℎ − 𝛿𝑡 − 𝑎 − 𝛿𝑚 − 𝜓 − 𝑣(𝑓 + 𝑔 + ℎ) − 𝑒𝑣 < 0  

Therefore, the DFE is stable under these thresholds. 

Table 1 Baseline Parameters ans variables Values used in the Numerical Experiments 
Variables Values Soumrce  

 

 

 

 

 

 

Parameters Values Soumrce 

𝑺𝒕(𝒕) 118341511 Assumed 𝑵𝒉 206553865 WHO (2023) 

𝑺𝒎(𝒕) 1800 Assumed 𝑵𝒗 16800 WHO(2023) 

𝑰𝒕(𝒕) 18123413 Assumed 𝜃𝑡 0.02 Assumed 

𝑰𝒎(𝒕) 19234785 Assumed 𝜃𝑣 0.05 Assumed 

𝑰𝒎𝒕(𝒕) 21045767 Assumed 𝜋ℎ 20544 World Bank (2022) 

𝑰𝒗(𝒕) 500 Assumed 𝜋𝑣 41000 WHO  (2010-2023) 

𝑹𝒕(𝒕) 9248875 Assumed 𝑘𝑡 0.006 Okuonghae & 

Inyama (2018) 

𝑹𝒎(𝒕) 8711883 Assumed 𝑘𝑣 0.0065 Okuonghae & 

Inyama (2011) 

𝑹𝒎𝒕(𝒕) 11847571 Assumed A 0.008 LHT (2025) 

𝒆𝑡 0.2 Assumed 𝑓 0.5 Assumed 

𝑩𝒕(𝒕) 10000 Assumed 𝑔 0.01 Junehyul, et al 

(2017) 

𝑩𝒗(𝒕) 10000 Assumed ℎ 0.8 NACA (2011) 

𝝀𝒕𝟏 0.0006 Assumed 𝜓 2.5 Operah et al., 

(2022) 

𝝀𝒕𝟐 0.02 Assumed 𝐽1 30 Assumed 

𝝀𝒎𝟏
 0.021 WHO, 2024 𝐽𝑣      25 Assumed 

𝝀𝒎𝟐
 0.002                WHO, 2024 𝛽𝑡 0.001 Akinyi et al., 2020 

𝝀𝒕𝟑  0.021 Assumed 𝛽𝑚 0.003 Okosun et al., 2013 

𝝀𝒕𝟒  0.1 Assumed 𝛽𝑚1
 0.0025 Okosun et al., 2013 

𝝀𝒎𝟑
 0.01 Assumed 𝛽𝑡1

 0.005 Akinyi et al., 2020 

𝝀𝒎𝟒
 0.02 Assumed 𝛽𝑡2

 0.001 Assumed 

𝝀𝒗𝟏
 0.1 Assumed 𝛽𝑚2

 0.004 Assumed 

𝒓 0.3 Okosun et al., 

(2013) 
𝑒𝑣 0,05 Assumed 

𝜇ℎ 0.0004 Assumed  𝜇𝑚 0.1429 Assumed 

𝛿𝑡 0.007 Assumed  𝑔𝑡 0.3 Assumed 

𝛿𝑚 0.03 Assumed  𝑔𝑣 0.25 Assumed 
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4.0 NUMERICAL SIMULATIONS 

The system (1) of non-linear ODEs was solved numerically with MATLAB 7.10.0 (R2010a) 

Using the ode45 (Runge-Kutta 4,5 method). Simulations time is expressed over time (days) with  

relative tolerance 10−6, the initial conditions for all compartments in equation (1) are given in0. 

  

table1. The  𝜆𝑡2 and 𝜆𝑚2
were used in the simulations because they are already defined as force of  

infection terms in the ODEs  

 

Experiment 1: To determine the effect of varying shedding rate (𝐽𝑡) on the Salmonella Typhi  

reservoir in the environment (𝐵𝑡) due to infected humans with typhoid (𝐼𝑡) and co-infected 

humans  

(𝐼𝑚𝑡), with  (𝐽𝑡 = 20, 25, 35, 50) over time (days). 

 

Experiment 1: To dete

Figure 4.1  The shedding rate (𝐽𝑡)  with typhoid-infected (𝐼𝑡) and co-infected (𝐼𝑚𝑡) humans over 

time (days). This graph initially  rises from shedding (𝐼𝑡 , 𝐼𝑚𝑡) later decline due to recovery and 

decay, for varying (𝐽𝑡). 

Experiment 2: To determine the effect of varying rate of indirect transmission (𝜆𝑡2) on prevalence 

of only typhoid fever infection on the Infectious class for (𝐼𝑡)due to interaction of infected 

individuals with the environment (𝜆𝑡2 = 0.02, 0.05, 0.08, 0.11). 
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Figure 4.2  Prevalence of Typhoid fever infection (𝐼𝑡) with varying rate of indirect 

transmission (𝜆𝑡2) from interaction with infected individuals with the environment . This graph 

effect of varying indirect transmission rate 𝜆𝑡2 on typhoid only infected class  (𝐼𝑡); initial rise 

followed by decline due to recovery, treatment and decay .  

Experiment 3: To determine the effect of varying rate of indirect transmission (𝜆𝑚2
)on 

prevalence of malaria only infection on the Infectious class of human (𝐼𝑚)due to interaction of 

infected individuals with the environment(𝜆𝑚2
= 0.03, 0.07, 0.11, 0.15). 

 

Figure 4.3  Prevalence of Malaria infection (𝐼𝑚) with varying rate of indirect transmission      

(𝜆𝑚2
). This graph varying 𝜆𝑚2

 show an initial rise in prevalence due to strong environmental 

interaction, but later decline as recovery and control effects dorminate. 

Experiment 4: To determine the effect of varying shedding rate (𝐽𝑣) of the pathogens and breeding 

vectors reservoir in the environment (𝐵𝑣) due to infected humans with malaria (𝐼𝑚) and co-

infected humans as a result of  interaction (𝐽𝑣 = 30,  45,  55,  65)  
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Figure 4.4 Concentration of the pathogens and breeding vectors reservoir in the environment 

(𝐵𝑣)  with malaria (𝐼𝑚) and co-infected (𝐼𝑚𝑡) humans . This graph varying 𝐽𝑣 increases 𝐵𝑣 as 

vectors bite infected humans  (𝐼𝑚, 𝐼𝑚𝑡), with transmission later decline through decay and control. 

DISCUSSION 

The findings from our model highlight how both direct and indirect transmission pathways, 

together with environmental reservoirs, influence disease spread. We develop a deterministic 

model to study this research and investigated the disease-free and endemic equilibria, derived basic 

reproduction number, and performed stability analysis to identify the conditions for disease 

persistence. Numerical solution shows that environmental factors, such as salmonella typhi 

bacteria and breeding vectors/pathogen shedding, significantly affect infection prevalence, 

emphasizing the critical role of environmental drivers in shaping disease dynamics. 

However, the model demonstrates that strengthening community health interventions by 

improving access to clean water, improve sanitation, public health campaigns, along with vector 

control could help reduce disease burden. This reflects real-world trends where eradication remains 

elusive, but continued efforts produce measurable declines in prevalence and mortality. 
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