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ABSTRACT 

Fractional vibration dynamics in rectangular thin plates use fractional 

derivatives to represent material memory and hereditary effects, introducing 

notable mathematical complexity. This study assesses the experimental 

parameters and the variation of time-fractional orders to simulate vibration 

behavior over time. A computational framework developed in Maple is 

applied to analyze how changes in the fractional order affect vibration 

frequencies, alongside variations in Young’s modulus—a key indicator of 

material stiffness governing stress–strain relationships. The simulations 

show that both parameters strongly influence the plate’s dynamic response. 

Increasing the fractional order modifies damping and resonance patterns, 

while higher values of Young’s modulus raise natural frequencies and alter 

vibrational modes. The results provide valuable insight into how fractional 

dynamics interact with elastic properties, supporting improved analysis and 

design of advanced materials and structures exposed to vibration. This 

approach enhances the modeling of vibration-sensitive engineering systems 

by accurately capturing complex mechanical behavior. 

1 INTRODUCTION  

A rectangular thin plate is regarded as a fundamental structural component in numerous real-world 

engineering applications, ranging from mechanical and aeronautical systems to marine, civil, and 

structural engineering. Owing to their lightweight profile, high strength-to-weight ratio, and 

versatility in design, thin plates are extensively used in the manufacturing of aircraft wings, building 

floors, ship hulls, microelectromechanical systems (MEMS), and many precision instruments. To 

ensure reliable performance and structural integrity, accurate investigation of their dynamic 

properties-particularly vibration behavior—is essential. Improper prediction or control of plate 

vibrations can lead to excessive noise, fatigue, resonance-induced failures, and compromised safety 

or functionality in engineering systems. Traditionally, the vibration dynamics of thin plates have 

been analyzed using classical integer-order partial differential equations (PDEs), which assume 

idealized, memoryless material behavior. 
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However, experimental evidence and advances in material science indicate that many plate 

materials, especially modern composites and metals exposed to complex environments, exhibit 

nonlocal, history-dependent properties. Classical models often fail to capture the hereditary and 

damping effects resulting from internal friction, viscoelasticity, or microstructural phenomena. To 

bridge this gap, time-fractional derivatives have emerged as powerful modeling tools, enabling the 

formulation of time-fractional vibration dynamics equations. These fractional models incorporate 

memory effects, providing a more realistic depiction of how past states influence present vibrations 

and leading to improved predictions of both transient and steady-state responses [1]. 

In this article, we consider the vibration dynamics in a rectangular thin plate model of the form [2] 

𝜕𝛼𝜙(x,y,t)

𝜕𝑡𝛼 =
𝑅

𝜌 ℎ
(−2

𝜕4𝜙(x,y,t)

𝜕𝑥2𝜕𝑦2 −
𝜕4𝜙(x,y,t)

𝜕𝑥4 −
𝜕4𝜙(x,y,t)

𝜕𝑦4 ) ,                            0 < 𝛼 ≤ 2              (1)  

Where 𝜙 is the unknown function, 𝑅 =
𝐸ℎ3

12(1−𝜇2)
  is the elasticity modulus, ρ is the mass density of 

the plate, ℎ  is the uniform thickness and 𝜇 is the Poisson’s ratio. The mathematical complexity of 

time-fractional PDEs complicates both their analytical and numerical treatment, particularly when 

the order of the fractional derivative a parameter that dictates the intensity of memory effects varies 

or must be tailored for specific materials. Furthermore, material parameters such as Young's 

modulus, which quantifies the elasticity or stiffness of a plate, profoundly affect its vibration 

characteristics. Accurately simulating how simultaneous changes in fractional derivative order and 

Young's modulus influence vibration frequencies, damping, and mode shapes is essential for 

robust, material-sensitive plate design. This paper investigates how variations in the fractional 

derivative order affect the vibration response of a rectangular thin plate, specifically its natural 

frequencies and damping characteristics. It also explores the combined effects of fractional 

derivatives and experimental material parameters (Aluminium, Brass, Epoxy Glass, and Hard 

Wood), including Young's modulus E, mass density ρ, and Poisson's ratio μ, under uniform 

thickness. Understanding these interactions is crucial for improving computational modeling and 

simulation methods, which can drive advances in designing vibration-optimized materials and 

engineering structures. However, a comprehensive computational study examining the combined 

effects of varying the fractional order α and Young's modulus E on vibration responses for 

common engineering materials remains lacking and this paper aim to fill that gap. 

In recent years, several authors have proposed suitable analytic–numeric methods. For example, 

[3] presented an analytical and experimental investigation on the free vibration of a floating 

composite sandwich plate with viscoelastic layers; [4] provided analytical buckling solutions for 

rectangular thin plates using the generalized integral transform method; [5] employed a unified 

formulation for the free vibration of laminated plates through the Jacobi–Ritz method; [6] studied 

thin plate vibration using the homotopy perturbation algorithm; [7] applied the Adomian 

decomposition method to the free vibration analysis of thin isotropic rectangular plates submerged 

in fluid, [8] presented the mathematical modelling and solution of nonlinear vibration problems in 

laminated plates with CNT-originating layers on a two-parameter elastic foundation; [9] 

investigated the poroelastic size-dependent dynamics of viscoelastic microbeams connected 

through a viscoelastic layer; and [10] examined the nonlinear dynamics and forced vibrations of 

simply supported fractional viscoelastic microbeams using a fractional differential quadrature 

method. Existing works largely emphasizes analytical and semi-analytical solutions for thin plate 

vibrations, yet it insufficiently addresses the effects of experimentally varied fractional-order 

parameters on vibration responses. This study fills that gap by simulating how changes in the 

fractional derivative order influence the natural frequencies and damping characteristics of 

rectangular thin plates, considering the experimental properties of Aluminium, Brass, Epoxy 

Glass, and Hard Wood, each with distinct Young’s modulus, density, Poisson’s ratio, and uniform 

thickness. 
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Fractional Calculus [11] 

Definition 1. 

Let 𝛼 > 0  we define the Riemann-Liouville fractional integral by 

𝐷𝑡
−𝛼

0
𝑅 𝜙(t) =

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝜙(𝜏)

𝑡

0

𝑑𝜏,        𝛼 > 0                 (2) 

Suppose  𝛼 = 1,  then equation (2) reduces to the integral of the form 

𝐷𝑡
−1

0
𝑅 𝜙(t) = ∫ 𝜙(𝜏)

𝑡

0

𝑑𝜏          𝛼 = 1                                             (3) 

Description of the computational technique 

In this section, we propose and implement a finite difference scheme using a fractional time-

stepping algorithm based on the Riemann–Liouville integral. The method begins by dividing the 

time domain into uniform intervals of size ∆t, enabling a time-marching solution approach. This 

scheme is well-suited for handling fractional derivatives, allowing precise tracking of the plate’s 

dynamic response over time. The algorithm incorporates the influence of the fractional order α on 

vibration characteristics, including frequency attenuation and damping effects governed by 

stiffness, which is affected by changes in Young’s modulus—a key indicator of material elasticity. 

As α varies, the non-local memory effects inherent in fractional calculus modify the plate’s 

behaviour. Maple’s symbolic computation tools are used to formulate the governing equations 

with fractional Riemann–Liouville derivatives, while its numerical solvers facilitate the time-

progression of the solution. 

Description of the finite difference scheme with a fractional time-stepping algorithm based 

on the Riemann-Liouville integral 

Step 1: Initialization: This first stage goes thus: 

Identify and initialize all parameters: Elasticity modulus 𝐸, plate thickness ℎ, Poisson’s ratio 𝜇, 

density ρ, and flexural rigidity 𝑅 =
𝐸ℎ3

12(1−𝜇2)
 .  We define the spatial domain (𝑥, 𝑦) and time domain 

t, and initialize the unknow function 𝜙(𝑥, 𝑦, 𝑡) with specific conditions and boundary conditions. 

Step 2: Decompose the model equation (1) into the Riemann-Liouville fractional integral (2) 

We consider the Riemann-Liouville fractional derivative definition for order 𝛼. For the Riemann-

Liouville fractional derivative of order 𝛼, the operator can be represented as a fractional integral 

and integer derivative composition: 
∂𝛼𝜙

∂𝑡𝛼
=

d𝑛

d𝑡𝑛
(𝐼𝑛−𝛼 − 𝜙)                                                                                         (4) 

Where 𝐼𝛽 is the Riemann-Liouville fractional integral of order 𝛽, and 𝑛 = ⌈𝛼⌉ 
By rewriting equation (4), which is equivalent to a fractional integral equation using the Riemann-

Liouville fractional integral operator: 

𝜙(x, y, t) = 𝜙(x, y, 0) +
𝑅

𝜌 ℎ
𝐼𝑡

𝛼 (−2
𝜕4𝜙

𝜕𝑥2𝜕𝑦2
−

𝜕4𝜙

𝜕𝑥4
−

𝜕4𝜙

𝜕𝑦4 )                     (5) 

Where the fractional integral 𝐼𝑡
𝛼 acts on the right-hand side to the spatial derivatives of 𝜙. 

Step 3: Evaluate the length of the finite computational steps, N Discretize the time domain into N 

time steps: 𝑡0 = 0, 𝑡1, … , 𝑡𝑁 = 𝑇,  with step size ∆𝑡. The numerical approximation for the 

Riemann-Liouville fractional integral, which allows evaluating fractional integrals/sums at 

discrete time steps up to length N and obtaining the fourth-order mixed derivatives. 

Step 4: Factorize and collect the like terms  

For each time step 𝑛 = 1, 2, … , 𝑁𝑡 , and compute the fractional time derivative term using past 

values of 𝜙𝑚 for 𝑚 < 𝑛. We assemble the spatial discretize of the operator and form the right -

hand side using the previous time step solutions and fractional derivatives. Solve the resulting 

sparse linear system for 𝜙𝑛 using Maple linear solvers. 
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Step 5: Display the output of the simulations in visualized 2D, 3D surfaces, and appendices. 

Store  𝜙𝑛 solution at each time step for visualization and Maple plots commands to generate 2D/3D 

surface plots for 𝜙(x, y, 𝑡𝑛) at the selected times. 

Table 1. Presents a summary of the five-step finite difference scheme with a fractional time-

stepping algorithm. 

 

 Table 1. Maple codes command Implementation 

Step Description  Mathematical Expression 

Step 1: 

Initialization 

Initialize all physical parameter: Elasticity modulus E, 

plate thickness h, Poisson ratio 𝜇, density ρ, flexural 

rigidity 𝑅 =
𝐸ℎ3

12(1−𝜇2)
 .  Define spatial domain (𝑥, 𝑦) ∈

[0, 𝐿𝑥] × [0, 𝐿𝑦], and time domain 𝑡 ∈ [0, 𝑇]. Set initial 

and boundary conditions for 𝜙(x, y, 0),
𝜕𝜙(x,y,0)

𝜕𝑡
, and 

the edge values 

𝜙(x, y, 0) = 𝑓0(𝑥, 𝑦) 
𝜕𝜙(x, y, t)

𝜕𝑡
= 𝑔0(𝑥, 𝑦) 

𝑅 =
𝐸ℎ3

12(1 − 𝜇2)
 

Step 2: 

Reformulation 

Using Riemann-

Liouville 

fractional 

integral 

 

 

 

Convert the time-fractional PDE into equivalent 

fractional integral from the Riemann-Liouville 

definition. Recast the governing PDE: 

𝜙(x, y, t) = 𝜙(x, y, 0) + 𝐼𝑡
𝛼𝑓(t)

=
𝑅

ρh
𝐼𝑡

𝛼 [−2
𝜕4𝜙(x, y, t)

𝜕𝑥2𝜕𝑦2

−
𝜕4𝜙(x, y, t)

𝜕𝑥4
−

𝜕4𝜙(x, y, t)

𝜕𝑦4
] 

Apply fractional integral 

𝐼𝑡
𝛼𝑓(t) =

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1

𝑡

0

 

Step 3: 

Discretization 

Discretize the time domain 

𝑡𝑛 = 𝑛∆𝑡𝑛, 𝑛 = 0,1, … , 𝑁𝑡 

Where ∆𝑡 =
𝑇

𝑁𝑡
, Use finite differences for space and a 

numerical quadrature scheme to approximate the 

fractional integral over t. Compute mixed and pure 

fourth-order spatial derivatives using central 

differences 

For each grid point (𝑖, 𝑗) 

𝜙𝑛
𝑖,𝑗

= 𝜙0
𝑖,𝑗 +

𝑅

ρh
∆𝑡𝛼 ∑ 𝑏𝑘

𝑛−1

𝑘=0

 

Step 4: 

Assembly and 

solution 

For each time step  𝑛 

Use known 𝜙𝑚 for 𝑚 < 𝑛 to compute the time 

fractional history. 

Discretize the spatial operator ∆4𝜙 . 

Solve the resulting linear algebraic system for 𝜙𝑛 

using Maple sparse matric solvers. 

Solve linear system 

𝐴𝜙𝑛 = 𝑏 

Where 𝐴 is the sparse matrix 

and 𝑏 include contribution 

from initial and boundary 

conditions 

Step 5: 

Postprocessing 

and 

visualization 

 

Store the numerical solution 𝜙𝑛(𝑥, 𝑦) at each time 

step. Use Maple plotting tools (plot3D, surf data etc) to 

generate 2D contour plots and 3D surface 

visualizations for 𝜙(𝑥, 𝑦, 𝑡𝑛). 
 

Outputs: 

Plot2D (𝜙(𝑥), 𝑥 = 0. .1) 

Plot3D (𝜙(𝑥, 𝑦), 𝑥 =

0. .
∙𝜋

2
, 𝑦 = 0. .

∙𝜋

2
 ) 

 

4.  Error, Stability Analysis, and Convergence 

4.1.1 Error analysis 

The error analysis in the fractional-order thin plate vibration models emphasizes the combined 

influences of fractional derivative discretization, spatial approximation, fractional order memory 

effects, and material stiffness E on the accuracy and reliability of numerical simulations.  

Suppose 𝜙(𝑥, 𝑦, 𝑡;  𝛼, 𝐸) is the exact solution and 𝜙(𝑛𝑢𝑚)(𝑥, 𝑦, 𝑡;  𝛼, 𝐸)  is the numerical 

approximation, then the local truncation error (LTE) is  
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𝜏(𝑥, 𝑦, 𝑡) =
∂𝛼𝜙

∂𝑡𝛼
𝑒𝑥𝑎𝑐𝑡

−  
∂𝛼𝜙

∂𝑡𝛼
𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

                                                (6) 

and the global error at time 𝑡𝑛 is  

𝑒(𝑥, 𝑦, 𝑡𝑛) = 𝜙(𝑛𝑢𝑚)(𝑥, 𝑦, 𝑡;  𝛼, 𝐸) − 𝜙(𝑥, 𝑦, 𝑡;  𝛼, 𝐸)                       (7) 

 

The maximum absolute error is  

‖𝑒(𝑡𝑛)‖∞ = max
𝑥,𝑦

[𝜙(𝑛𝑢𝑚)(𝑥, 𝑦, 𝑡𝑛) − 𝜙(𝑥, 𝑦, 𝑡𝑛)]                               (8) 

And 𝐿2 norm error is 

‖𝑒(𝑡𝑛)‖2 = (∑[𝜙(𝑛𝑢𝑚)(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛) − 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛)]
2

𝑖,𝑗

∆𝑥∆𝑦)

1
2

        (9) 

Combining all sources of error is  
‖𝑒(𝑡𝑛)‖ ≤ 𝐶1∆𝑡2−𝛼 + 𝐶2∆𝑥2 + 𝐶3∆𝑦3 + 𝐶4𝜖𝐸                                       (10) 

Where 𝜖𝐸  = [𝐸(𝑛𝑢𝑚) − 𝐸(𝑒𝑥𝑎𝑐𝑡)] and 𝐶1, 𝐶2, 𝐶3, and 𝐶4 depend on the solution's smoothness, 

modes, and fractional order. 
 
4.2  Stability Analysis 

The stability analysis of fractional-order models for thin plate vibration dynamics reveals how 

fractional-order derivatives intricately influence vibration frequencies, particularly concerning 

material parameters like Young's modulus E. 

∆𝑡𝛼 ≤ 𝐶 (
∆𝑥4∆𝑦4

𝑅
)

1
𝛼

                                                                                 (11) 

Where C is the constant depending on the initial and boundary conditions and plate geometry. 

The stability of the computational algorithm depends strongly on the fractional order 𝛼, time step 

∆𝑡, and the spatial resolution. As 𝛼 decreases, the smaller time steps are required to maintain 

stability. 

 

4.3   Convergence 

 The convergence of the fractional-order thin plate vibration model is essentially to establish that 

the numerical or analytical method used to solve the governing fractional PDE is accurate and 

stable as it approaches the true solution when step sizes go to zero particularly under variations in 

fractional order 𝛼 and Young’s modulus E.  

The frequency spectrum 𝜔(𝛼, 𝐸) shifts with 𝛼, and the numerical convergence must account for 

these changes, Young modulus E affects flexural rigidity since 𝑅 =
𝐸ℎ3

12(1−𝜇2)
, increasing E 

increases R, thereby increasing vibration frequency 𝜔,  leading to faster oscillation. 

The convergence refers to whether the numerical solution 𝜙(𝑛𝑢𝑚)(𝑥, 𝑦, 𝑡) approaches the exact 

solution 𝜙(𝑒𝑥𝑎𝑐𝑡)(𝑥, 𝑦, 𝑡) as the mesh sizes ∆𝑥, ∆𝑦, ∆𝑡 → 0. For the given algorithm, the 

convergence depends on consistency and stability. The convergence rate of the computational 

algorithm is measured by the rate: 
𝕆(∆𝑡2−𝛼 + ∆𝑥2 + ∆𝑦2)                                                     (12)   

As ∆𝑡, ∆𝑥, ∆𝑦 → 0, the numerical solution converges to the exact solution, and convergence is 

lower for small 𝛼. 

5. Computational Experiments 

In this section, we apply the proposed algorithm to simulate numerical solutions for the four 

different materials (Aluminium, Brass, Epoxy glass, and wood (hard)) with different Young's 

modulus, ρ, the mass density of the plate, and μ is Poisson's ratio, while the thickness is uniform 
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           Table 2.  Suitable values for the engineering materials [12] 
Materials 𝐸(𝑃𝑎) 𝜇 𝜌(𝑘𝑔/𝑚3) Notes 

Aluminium 7.0 × 1010 0.33 2700 Lightweight 

Brass 1.1 × 1011 0.34 8500 Dense, Moderate stiffness 

Epoxy glass 2.0 × 109 0.23 1800 Composite/soft 

Wood (hard) 1.0 × 1010 0.30 600 Natural material 

 

 5.2 We consider the initial displacement and velocity, which represent a standing wave in 

fundamental mode with a single impulse and shape deformation released from rest: 

Initial displacement:             

𝜙(x, y, 0) = sin (
𝜋𝑥

𝐿𝑥
) 𝑠𝑖𝑛 (

𝜋𝑦

𝐿𝑦
)                                                                           (13) 

Initial velocity:     

                                                
𝜕𝜙(x,y,t)

𝜕𝑡
= 0                                                                               (14) 

Where 𝐿𝑥 and 𝐿𝑦 are the lengths of the plate in the x and y-directions. They are keys geometric 

parameters defining the physical size of the rectangular plate and directly influences the vibration 

characteristics. The simulation solutions are presented in tabular form, 2D, and 3D plots of the 

surface for the Aluminium, Brass, Epoxy glass, and wood (hard), respectively. 

Table 3.   Numerical solutions for the various 𝛼 when lengths of the plate are 𝐿𝑥 = 2 and 𝐿𝑦 = 4 

(x, y) Materials 𝛼 = 2.0 𝛼 = 1.5 𝛼 = 1.0 𝛼 = 0.5 

0,0 Aluminium 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

Brass 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

Epoxy glass 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

wood (hard) 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

0.2, 0.2 Aluminium 0.0483409082 0.0919498715 0.1283409081 0.1483409082 

Brass 0.0919498715 0.1265581407 0.2091949871 0.2911949871 

Epoxy glass 0.1265581407 0.1487780175 0.2211655814 0.3365581410 

wood (hard) 0.1487780173 0.1564344650 0.2977801734 0.3487781230 

0.4, 0.4 Aluminium 0.0954915028 0.1267894518 0.1954915012 0.2836434465 

Brass 0.1816356325 0.2938926261 0.3216356320 0.3995491502 

Epoxy glass 0.2499999999 0.3090169943 0.3938926610 0.4616356320 

wood (hard) 0.2938926261 0.3619498715 0.4190169943 0.5111938926 

0.6, 0.6 Aluminium 0.1402907797 0.1722464210 0.1970290779 0.2668489200 

Brass 0.2668489204 0.2954318731 0.3368489204 0.3972860295 

Epoxy glass 0.3672860297 0.4328761230 0.5672863421 0.6317706231 

wood (hard) 0.4317706236 0.6321654200 0.7367117706 0.8539904997 

0.8, 0.8 Aluminium 0.1816356320 0.2454915021 0.3454915021 0.4321590169 

Brass 0.3454915028 0.4255282581 0.5755282581 0.6118778525 

Epoxy glass 0.4755282581 0.5590169990 0.6745159943 0.7122185080 

wood (hard) 0.5590169943 0.6877852522 0.8187785252 0.8920614028 

1.0, 1.0 Aluminium 0.2185080127 0.3056269378 0.4156269356 0.5567249851 

Brass 0.4156269377 0.5120614420 0.6342178402 0.6761402817 

Epoxy glass 0.5720614026 0.6672498511 0.3724967851 0.7140281768 

wood (hard) 0.6724985119 0.7560710678 0.9707106781 0.9552825814 
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2D plots presentations. 

 
Figure 1a. Depict the trend of displacements ϕ(t) obtained for the various fractional derivatives of the 

four materials considered (Aluminium) the vibration dynamics in the rectangular thin plate model (1). 

 
Figure 1b. Depict the trend of displacements ϕ(t) obtained for the various fractional derivatives of the 

four materials considered (Brass) the vibration dynamics in the rectangular thin plate model (1). 

 
Figure 1c. Depict the trend of displacements ϕ(t) obtained for the various fractional derivatives of the 

four materials considered (Epoxy glass) the vibration dynamics in the rectangular thin plate model (1). 
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Figure 1d. Depict the trend of displacements ϕ(t) obtained for the various fractional derivatives of the 

four materials considered wood (hard) the vibration dynamics in the rectangular thin plate model (1) 

 

3D plots presentations.  

 
Figure 2a. Depict the trend of displacements ϕ(x,y) obtained for the classical derivatives of the four 

materials considered (Aluminium) for the vibration dynamics in the rectangular thin plate model (1) 
 

 
Figure 2b. Depict the trend of displacements ϕ(x,y) obtained for the classical derivatives of the four 

materials considered (Brass) for the vibration dynamics in the rectangular thin plate model (1). 
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Figure 2c. Depict the trend of displacements ϕ(x,y) obtained for the classical derivatives of the four 

materials considered (Epoxy glass) for the vibration dynamics in the rectangular thin plate model (1) 
 

 
Figure 2d. Depict the trend of displacements ϕ(x,y) obtained for the classical derivatives of the four 

materials considered (wood (hard)) for the vibration dynamics in the rectangular thin plate model (1) 
 

 
Figure 3a. Depict the trend of displacements ϕ(x,y) obtained for the fractional derivatives of the four 

materials considered (Aluminium,) for the vibration dynamics in the rectangular thin plate model (1). 
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Figure 3b. Depict the trend of displacements ϕ(x,y) obtained for the fractional derivatives of the 

four materials considered (Brass) for the vibration dynamics in the rectangular thin plate model (1). 

 
Figure 3c. Depict the trend of displacements ϕ(x,y) obtained for the fractional derivatives of the four 

materials considered (Epoxy glass) for the vibration dynamics in the rectangular thin plate model (1). 

 
 

Figure 3d. Depict the trend of displacements ϕ(x,y) obtained for the fractional derivatives of the 

four materials considered (wood (hard)) for the vibration dynamics in the rectangular thin plate 

model (1). 
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Figure 4a. Demonstrated the comparison of the displacements ϕ(x, y) obtained for the integer 

derivative α=2.0 and fractional derivative α=1.5 of the four materials considered (Aluminium) for 

the vibration dynamics in the rectangular thin plate model (1). 

 
Figure 4b. Demonstrated the comparison of the displacements ϕ(x, y) obtained for the integer 

derivative α=2.0 and fractional derivative α=1.5 of the four materials considered (Brass) for the 

vibration dynamics in the rectangular thin plate model (1). 
 

 
Figure 4c. Demonstrated the comparison of the displacements ϕ(x, y) obtained for the integer 

derivative α=2.0 and fractional derivative α=1.5 of the four materials considered (Epoxy glass) for 

the vibration dynamics in the rectangular thin plate model (1). 
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Figure 4d. Demonstrated the comparison of the displacements ϕ(x, y) obtained for the integer 

derivative α=2.0 and fractional derivative α=1.5 of the four materials considered (wood (hard)) for 

the vibration dynamics in the rectangular thin plate model (1). 

        
Figure 5.  The convergence error analysis reveals that the numerical method's stability varies 

greatly with material properties. As shown in the log-log plot of max error vs ϕ(x), Aluminium 

exhibits severe divergence, where the error increases dramatically for larger time steps, indicating 

instability or poor suitability of the chosen scheme for highly conductive materials. Brass and 

Wood display similar but less extreme divergence. In contrast, Epoxy glass maintains low, stable 

error, highlighting its favorable numerical convergence under the given fractional-order model 

parameters. 

 

RESULTS AND DISCUSSION 

The finite difference scheme with a fractional time-stepping algorithm based on the Riemann-

Liouville integral was employed to solve the vibration dynamics in a rectangular thin plate model 

and the numerical results presented in Table 3 highlight clear differences in the dynamic response 

of the four materials under fractional-order thin-plate vibration. Across all coordinate points and 

fractional orders, Aluminium consistently shows the smallest displacement values, reflecting its 

high stiffness-to-density ratio and rapid decay of vibration. Hard wood generally follows, 

producing larger amplitudes than Aluminium but remaining lighter and more responsive than 

brass. Brass exhibits noticeably higher displacement values due to its high density, which slows 

vibrational decay despite having a relatively high modulus. Epoxy glass shows the largest 

responses at several points, especially for lower fractional orders, due to its low stiffness, making 
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it the most flexible material. As α decreases from 2.0 to 0.5, amplitude increases for all materials, 

confirming stronger memory effects in fractional systems. Overall, the comparison demonstrates 

that stiffer materials yield smaller responses and converge faster, while softer materials exhibit 

amplified fractional-order behaviour. 

i. Figures 1a–1d depict 2D displacement evolutions of a thin plate under fractional-order 

vibration across four materials. Fractional derivatives crucially influence damping and 

memory effects, leading to varying maximal displacements: highest in Aluminium, moderate 

in Brass and Hard Wood, and minimal in Epoxy Glass due to strong viscoelastic damping. 

ii. Figures 2a–2d show 3D displacement patterns of thin plates under classical dynamics (α=2) 

for Aluminium, Hard Wood, Brass, and Epoxy Glass. Material stiffness, density, and damping 

parameters shape vibration amplitude and distribution, guiding design for optimal damping 

and isolation. 

iii. Figures 3a–3d show maximum displacements of a rectangular thin plate under fractional 

vibration dynamics (α=1.5) for Aluminium, Brass, Epoxy Glass, and Hard Wood. 

Displacement varies by material stiffness, density, and damping, with Aluminium highest, 

Epoxy Glass lowest, and Wood and Brass showing intermediate responses. 

iv. Figures 4a–4d compare displacement responses using integer- and fractional-order derivatives 

for Aluminium, Brass, Epoxy Glass, and Hard Wood. Fractional derivatives produce higher 

vibration amplitudes due to damping and memory effects, while integer-order models predict 

lower amplitudes and altered frequencies, highlighting more realistic viscoelastic behavior. 

CONCLUSION 

This paper examined the fractional-order vibration dynamics of rectangular thin plates using a 

finite difference scheme combined with a fractional time-stepping algorithm based on the 

Riemann–Liouville integral. The results underscore the significant influence of fractional calculus 

on the mechanical behaviour of engineering materials, particularly in capturing memory-

dependent and viscoelastic effects that classical integer-order models fail to represent adequately. 

By analysing four materials- Aluminium, Brass, Hard Wood, and Epoxy Glass-the study 

demonstrates how stiffness, density, and elastic properties govern their dynamic responses under 

fractional-order excitation. The numerical simulations reveal that Aluminium, due to its high 

stiffness-to-density ratio, consistently exhibits the smallest displacement amplitudes and the fastest 

decay of vibration. Hard Wood presents moderate vibrational responses, while Brass, with its high 

density, shows slower decay and larger amplitudes despite a relatively high modulus. Epoxy Glass 

remains the most flexible material, exhibiting the highest amplitudes, especially at lower fractional 

orders. The increased displacement associated with decreasing α highlights the strong memory and 

damping characteristics inherent in fractional-order systems. The convergence error analysis 

further reflects the relationship between material properties and numerical stability. While 

Aluminium and Brass display divergence under larger time steps, Epoxy Glass maintains stable 

convergence, making it more numerically compatible with the selected fractional-order scheme. 

These findings suggest that material behaviour must be carefully considered when applying 

fractional-order numerical methods to structural vibration problems. Graphical analyses from 2D 

and 3D displacement plots reinforce these conclusions, illustrating how fractional-order 

formulations yield more physically realistic behaviours than classical integer-order models. 

Overall, this paper provides a strong foundation for applying fractional calculus to advanced 

structural dynamics, enabling improved modelling of damping, energy dissipation, and 

viscoelasticity. The methodology and results offer valuable insights for material selection, 

vibration control, and structural design in engineering applications where memory effects play a 

crucial role. 
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