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ABSTRACT

Fractional vibration dynamics in rectangular thin plates use fractional
derivatives to represent material memory and hereditary effects, introducing
notable mathematical complexity. This study assesses the experimental
parameters and the variation of time-fractional orders to simulate vibration
behavior over time. A computational framework developed in Maple is
applied to analyze how changes in the fractional order affect vibration
frequencies, alongside variations in Young’s modulus—a key indicator of
material stiffness governing stress—strain relationships. The simulations
show that both parameters strongly influence the plate’s dynamic response.
Increasing the fractional order modifies damping and resonance patterns,
while higher values of Young’s modulus raise natural frequencies and alter
vibrational modes. The results provide valuable insight into how fractional
dynamics interact with elastic properties, supporting improved analysis and
design of advanced materials and structures exposed to vibration. This
approach enhances the modeling of vibration-sensitive engineering systems
by accurately capturing complex mechanical behavior.

1 INTRODUCTION

A rectangular thin plate is regarded as a fundamental structural component in numerous real-world
engineering applications, ranging from mechanical and aeronautical systems to marine, civil, and
structural engineering. Owing to their lightweight profile, high strength-to-weight ratio, and
versatility in design, thin plates are extensively used in the manufacturing of aircraft wings, building
floors, ship hulls, microelectromechanical systems (MEMS), and many precision instruments. To
ensure reliable performance and structural integrity, accurate investigation of their dynamic
properties-particularly vibration behavior—is essential. Improper prediction or control of plate
vibrations can lead to excessive noise, fatigue, resonance-induced failures, and compromised safety
or functionality in engineering systems. Traditionally, the vibration dynamics of thin plates have
been analyzed using classical integer-order partial differential equations (PDEs), which assume
idealized, memoryless material behavior.
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However, experimental evidence and advances in material science indicate that many plate
materials, especially modern composites and metals exposed to complex environments, exhibit
nonlocal, history-dependent properties. Classical models often fail to capture the hereditary and
damping effects resulting from internal friction, viscoelasticity, or microstructural phenomena. To
bridge this gap, time-fractional derivatives have emerged as powerful modeling tools, enabling the
formulation of time-fractional vibration dynamics equations. These fractional models incorporate
memory effects, providing a more realistic depiction of how past states influence present vibrations
and leading to improved predictions of both transient and steady-state responses [1].

In this article, we consider the vibration dynamics in a rectangular thin plate model of the form [2]

aad’(x'y't) _ L _ a4¢(x,y,t) _ a4¢(X,y’t) _ a4¢(x,y,t)
ot« o ph( 2 0x20y? dx? dy* ); 0<a<?2 (1)
. . h3 i o ) ‘
Where ¢ is the unknown function, R = 12(]51_#2) is the elasticity modulus, p is the mass density of

the plate, h is the uniform thickness and u is the Poisson’s ratio. The mathematical complexity of
time-fractional PDEs complicates both their analytical and numerical treatment, particularly when
the order of the fractional derivative a parameter that dictates the intensity of memory effects varies
or must be tailored for specific materials. Furthermore, material parameters such as Young's
modulus, which guantifies the elasticity or stiffness of a plate, profoundly affect its vibration
characteristics. Accurately simulating how simultaneous changes in fractional derivative order and
Young's modulus influence vibration frequencies, damping, and mode shapes is essential for
robust, material-sensitive plate design. This paper investigates how variations in the fractional
derivative order affect the vibration response of a rectangular thin plate, specifically its natural
frequencies and damping characteristics. It also explores the combined effects of fractional
derivatives and experimental material parameters (Aluminium, Brass, Epoxy Glass, and Hard
Wood), including Young's modulus E, mass density p, and Poisson's ratio x, under uniform
thickness. Understanding these interactions is crucial for improving computational modeling and
simulation methods, which can drive advances in designing vibration-optimized materials and
engineering structures. However, a comprehensive computational study examining the combined
effects of varying the fractional order o and Young's modulus E on vibration responses for
common engineering materials remains lacking and this paper aim to fill that gap.

In recent years, several authors have proposed suitable analytic-numeric methods. For example,
[3] presented an analytical and experimental investigation on the free vibration of a floating
composite sandwich plate with viscoelastic layers; [4] provided analytical buckling solutions for
rectangular thin plates using the generalized integral transform method; [5] employed a unified
formulation for the free vibration of laminated plates through the Jacobi—Ritz method; [6] studied
thin plate vibration using the homotopy perturbation algorithm; [7] applied the Adomian
decomposition method to the free vibration analysis of thin isotropic rectangular plates submerged
in fluid, [8] presented the mathematical modelling and solution of nonlinear vibration problems in
laminated plates with CNT-originating layers on a two-parameter elastic foundation; [9]
investigated the poroelastic size-dependent dynamics of viscoelastic microbeams connected
through a viscoelastic layer; and [10] examined the nonlinear dynamics and forced vibrations of
simply supported fractional viscoelastic microbeams using a fractional differential quadrature
method. Existing works largely emphasizes analytical and semi-analytical solutions for thin plate
vibrations, yet it insufficiently addresses the effects of experimentally varied fractional-order
parameters on vibration responses. This study fills that gap by simulating how changes in the
fractional derivative order influence the natural frequencies and damping characteristics of
rectangular thin plates, considering the experimental properties of Aluminium, Brass, Epoxy
Glass, and Hard Wood, each with distinct Young’s modulus, density, Poisson’s ratio, and uniform
thickness.
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Fractional Calculus [11]

Definition 1.
Let « > 0 we define the Riemann-Liouville fractional integral by
1 t
Rp—-a — _ a-—1
DE0 = 1o | €D @ a>0 @
Suppose a = 1, then equation (2) reduces to the integral of the form
t
790 = [ ¢@dr a1 3
0

Description of the computational technique

In this section, we propose and implement a finite difference scheme using a fractional time-
stepping algorithm based on the Riemann-Liouville integral. The method begins by dividing the
time domain into uniform intervals of size At, enabling a time-marching solution approach. This
scheme is well-suited for handling fractional derivatives, allowing precise tracking of the plate’s
dynamic response over time. The algorithm incorporates the influence of the fractional order o on
vibration characteristics, including frequency attenuation and damping effects governed by
stiffness, which is affected by changes in Young’s modulus—a key indicator of material elasticity.
As o varies, the non-local memory effects inherent in fractional calculus modify the plate’s
behaviour. Maple’s symbolic computation tools are used to formulate the governing equations
with fractional Riemann—Liouville derivatives, while its numerical solvers facilitate the time-
progression of the solution.

Description of the finite difference scheme with a fractional time-stepping algorithm based
on the Riemann-Liouville integral

Step 1: Initialization: This first stage goes thus:

Identify and initialize all parameters: Elasticity modulus E, plate thickness h, Poisson’s ratio y,

density p, and flexural rigidity R = We define the spatial domain (x, y) and time domain

12(1-p2) "
t, and initialize the unknow function ¢ (x, y, t) with specific conditions and boundary conditions.
Step 2: Decompose the model equation (1) into the Riemann-Liouville fractional integral (2)
We consider the Riemann-Liouville fractional derivative definition for order a. For the Riemann-
Liouville fractional derivative of order a, the operator can be represented as a fractional integral
and integer derivative composition:

b _ & (na_ 4
aee = arn ¢) )
Where I# is the Riemann-Liouville fractional integral of order 8, and n = [«]
By rewriting equation (4), which is equivalent to a fractional integral equation using the Riemann-
Liouville fractional integral operator:

R o* a* o*

60030 = 93,0+ 51 (250 - 56 - 55 ®)
Where the fractional integral 1% acts on the right-hand side to the spatial derivatives of ¢.
Step 3: Evaluate the length of the finite computational steps, N Discretize the time domain into N
time steps: t, =0,ty,...,ty =T, with step size At. The numerical approximation for the
Riemann-Liouville fractional integral, which allows evaluating fractional integrals/sums at
discrete time steps up to length N and obtaining the fourth-order mixed derivatives.
Step 4: Factorize and collect the like terms
For each time step n =1, 2, ..., N;, and compute the fractional time derivative term using past
values of ¢™ for m < n. We assemble the spatial discretize of the operator and form the right -
hand side using the previous time step solutions and fractional derivatives. Solve the resulting
sparse linear system for ¢™ using Maple linear solvers.
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Step 5: Display the output of the simulations in visualized 2D, 3D surfaces, and appendices.

Store ¢™ solution at each time step for visualization and Maple plots commands to generate 2D/3D
surface plots for ¢ (x,y, t,,) at the selected times.
Table 1. Presents a summary of the five-step finite difference scheme with a fractional time-
stepping algorithm.

Table 1. Maple codes command Implementation
Step Description Mathematical Expression
Step 1: Initialize all physical parameter: Elasticity modulus E, | ¢(x,y,0) = fo(x,y)
Initialization plate thickness h Poisson ratio u, density p, flexural 0p(x,y,t) )
. . . — a7 = 90X,y
= at

rigidity R = 12(1 . Define spatial domain (x,y) € ER3

[0,L,] x [0, Ly], and time domain ¢ € [0, T]. Set initial | R = m

and boundary conditions for ¢(x,y, 0),@, and

the edge values
Step 2: Convert the time-fractional PDE into equivalent Apply fractional integral

Reformulation
Using Riemann-

fractional integral from the Riemann-Liouville
definition. Recast the governing PDE:

1 t
I7f(® =@f0 t—-oet

Liouville dxy,t) =d(xy 0) +IFf(1)
fractional R *p(x,y,t)
integral ph o _ZW
*o(xy,t) 0*p(xy,1)
o axt oyt
Step 3: Discretize the time domain For each grid point (i, j)

Discretization

t, = nAt,,n=01,..,N;
Where At = NL Use finite differences for space and a
t

numerical quadrature scheme to approximate the
fractional integral over t. Compute mixed and pure
fourth-order spatial derivatives using central
differences

At“ Z by

Step 4: For each time step n Solve linear system

Assembly and Use known ¢™ for m < n to compute the time Ap™ =b

solution fractional history. Where A is the sparse matrix
Discretize the spatial operator A*¢ . and b include contribution
Solve the resulting linear algebraic system for ¢™ from initial and boundary
using Maple sparse matric solvers. conditions

Step 5: Store the numerical solution ¢™(x, y) at each time Outputs:

Postprocessing
and
visualization

step. Use Maple plotting tools (plot3D, surf data etc) to
generate 2D contour plots and 3D surface
visualizations for ¢(x, y, t;,).

Plot2D (¢(x),x = 0..1)
Plot3D (qb(x, y),x =

0.%,y=0.7)

4. Error, Stability Analysis, and Convergence
4.1.1 Error analysis

The error analysis in the fractional-order thin plate vibration models emphasizes the combined
influences of fractional derivative discretization, spatial approximation, fractional order memory
effects, and material stiffness E on the accuracy and reliability of numerical simulations.
Suppose ¢(x,v,t; a,E) is the exact solution and ¢ ™™ (x,y,t; a,E) is the numerical
approximation, then the local truncation error (LTE) is
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“¢p “¢p
(x,y,t) = - — 6
( Y ) ata. exact ot® numerical ( )
and the global error at time t,, is
e(x,y,tn) = ™M™ (x,y,t; @, E) — p(x,y,t; a,E) 7)

The maximum absolute error is
lle(t)lleo = r2ayx[¢(num>(x, Yotn) = d(x, y, tn)] ®)
And L, norm error is

N| =

leCtlla = D 6™ (i, v 02) = ¢ (e vy ta)]* Axdy | (9
Lj

Combining all sources of error is

lle(t)Il < C1At?>™% + C,Ax? + C3Ay3 + Cueg (10)
Where ez = [Emm — glexac] and €y, C,, C5, and C, depend on the solution's smoothness,
modes, and fractional order.

4.2  Stability Analysis
The stability analysis of fractional-order models for thin plate vibration dynamics reveals how
fractional-order derivatives intricately influence vibration frequencies, particularly concerning
material parameters like Young's modulus E.

1

Ax‘*Ay“)E

At® < C< (11)

Where C is the constant depending on the initial and boundary conditions and plate geometry.
The stability of the computational algorithm depends strongly on the fractional order «, time step
At, and the spatial resolution. As a decreases, the smaller time steps are required to maintain
stability.

4.3  Convergence

The convergence of the fractional-order thin plate vibration model is essentially to establish that
the numerical or analytical method used to solve the governing fractional PDE is accurate and
stable as it approaches the true solution when step sizes go to zero particularly under variations in
fractional order a and Young’s modulus E.

The frequency spectrum w(a, E) shifts with a, and the numerical convergence must account for
3

these changes, Young modulus E affects flexural rigidity since R = ,increasing E

12(1-pu?)
increases R, thereby increasing vibration frequency w, leading to faster oscillation.
The convergence refers to whether the numerical solution ¢ ™™ (x,y,t) approaches the exact
solution ¢€*aD(x,y,t) as the mesh sizes Ax,Ay,At — 0. For the given algorithm, the
convergence depends on consistency and stability. The convergence rate of the computational
algorithm is measured by the rate:
O(At?~% + Ax? + Ay?) (12)

As At,Ax, Ay — 0, the numerical solution converges to the exact solution, and convergence is
lower for small a.

5. Computational Experiments

In this section, we apply the proposed algorithm to simulate numerical solutions for the four

different materials (Aluminium, Brass, Epoxy glass, and wood (hard)) with different Young's

modulus, p, the mass density of the plate, and p is Poisson's ratio, while the thickness is uniform
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Table 2. Suitable values for the engineering materials [12]

Materials E(Pa) u p(kg/m3) | Notes

Aluminium 7.0 x 1010 0.33 2700 Lightweight

Brass 1.1 x 101t 0.34 8500 Dense, Moderate stiffness
Epoxy glass 2.0 x 10° 0.23 1800 Composite/soft

Wood (hard) 1.0 x 101° 0.30 600 Natural material

5.2 We consider the initial displacement and velocity, which represent a standing wave in
fundamental mode with a single impulse and shape deformation released from rest:
Initial displacement:

¢(x,y,0) = sin (Z—x> sin <Z—y>
x y

Initial velocity:

(13)

IpLxyt) _
L (14)

Where L, and L, are the lengths of the plate in the x and y-directions. They are keys geometric
parameters defining the physical size of the rectangular plate and directly influences the vibration

characteristics. The simulation solutions are presented in tabular form, 2D, and 3D plots of the
surface for the Aluminium, Brass, Epoxy glass, and wood (hard), respectively.

Table 3. Numerical solutions for the various a when lengths of the plate are L, = 2and L, = 4

x,y) Materials a=2.0 a=1.5 a=1.0 a=0.5
0,0 Aluminium 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000
Brass 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000
Epoxy glass 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000
wood (hard) 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000
0.2,0.2 | Aluminium 0.0483409082 | 0.0919498715 | 0.1283409081 | 0.1483409082
Brass 0.0919498715 | 0.1265581407 | 0.2091949871 | 0.2911949871
Epoxy glass 0.1265581407 | 0.1487780175 | 0.2211655814 | 0.3365581410
wood (hard) 0.1487780173 | 0.1564344650 | 0.2977801734 | 0.3487781230
0.4,0.4 | Aluminium 0.0954915028 | 0.1267894518 | 0.1954915012 | 0.2836434465
Brass 0.1816356325 | 0.2938926261 | 0.3216356320 | 0.3995491502
Epoxy glass 0.2499999999 | 0.3090169943 | 0.3938926610 | 0.4616356320
wood (hard) 0.2938926261 | 0.3619498715 | 0.4190169943 | 0.5111938926
0.6,0.6 | Aluminium 0.1402907797 | 0.1722464210 | 0.1970290779 | 0.2668489200
Brass 0.2668489204 | 0.2954318731 | 0.3368489204 | 0.3972860295
Epoxy glass 0.3672860297 | 0.4328761230 | 0.5672863421 | 0.6317706231
wood (hard) 0.4317706236 | 0.6321654200 | 0.7367117706 | 0.8539904997
0.8,0.8 | Aluminium 0.1816356320 | 0.2454915021 | 0.3454915021 | 0.4321590169
Brass 0.3454915028 | 0.4255282581 | 0.5755282581 | 0.6118778525
Epoxy glass 0.4755282581 | 0.5590169990 | 0.6745159943 | 0.7122185080
wood (hard) 0.5590169943 | 0.6877852522 | 0.8187785252 | 0.8920614028
1.0, 1.0 | Aluminium 0.2185080127 | 0.3056269378 | 0.4156269356 | 0.5567249851
Brass 0.4156269377 | 0.5120614420 | 0.6342178402 | 0.6761402817
Epoxy glass 0.5720614026 | 0.6672498511 | 0.3724967851 | 0.7140281768
wood (hard) 0.6724985119 | 0.7560710678 | 0.9707106781 | 0.9552825814
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2D plots presentations.
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The variation of a Aluminium displacement

Figure la. Depict the trend of displacements ¢(t) obtained for the various fractional derivatives of the
four materials considered (Aluminium) the vibration dynamics in the rectangular thin plate model (1).
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The variation of a Brass dispalcement

Figure 1b. Depict the trend of displacements ¢(t) obtained for the various fractional derivatives of the
four materials considered (Brass) the vibration dynamics in the rectangular thin plate model (1).
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The variation of a Epoxy glass dispalcement

Figure 1c. Depict the trend of displacements ¢(t) obtained for the various fractional derivatives of the
four materials considered (Epoxy glass) the vibration dynamics in the rectangular thin plate model (1).
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Figure 1d. Depict the trend of displacements ¢(t) obtained for the various fractional derivatives of the
four materials considered wood (hard) the vibration dynamics in the rectangular thin plate model (1)

3D plots presentations.

Flgure 2Za
wix,y)
a=2.0
Aluminium -
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Figure 2b
P(x,¥)
a=2.0
Brass

Figure 2b. Depict the trend of displacements ¢(x,y) obtained for the classical derivatives of the four
materials considered (Brass) for the vibration dynamics in the rectangular thin plate model (1).
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Figure 2c
P(x,y)
a=2.0
Epoxy glass -0,

Figure 2c. Depict the trend of displacements ¢(x,y) obtained for the classical derivatives of the four
materials considered (Epoxy glass) for the vibration dynamics in the rectangular thin plate model (1)

Figure 2d
P(x,y)
a=2.0
wood (hard) _

a2 1

Figure 2d. Depict the trend of displacements ¢(x,y) obtained for the classical derivatives of the four
materials considered (wood (hard)) for the vibration dynamics in the rectangular thin plate model (1)

Figure 3a

P(x,y)
a=1.5
Aluminium

Figure 3a. Depict the trend of displacements ¢(x,y) obtained for the fractional derivatives of the four
materials considered (Aluminium,) for the vibration dynamics in the rectangular thin plate model (1).
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Figure 3b. Depict the trend of displacements ¢(x,y) obtained for the fractional derivatives of the
four materials considered (Brass) for the vibration dynamics in the rectangular thin plate model (1)

Figure 3c
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Figure 3c. Depict the trend of displacements ¢(x,y) obtained for the fractional derivatives of the four

materials considered (Epoxy glass) for the vibration dynamics in the rectangular thin plate model (

Figure 3d
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wood (hard) _
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Figure 3d. Depict the trend of displacements ¢(x,y) obtained for the fractional derivatives of the
four materials considered (wood (hard)) for the vibration dynamics in the rectangular thin plate
model (1).
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Flgure 4a
P(x,y)

a= 2.0 Blue
a= 1.5 Yellow ,
Aluminium

Figure 4a. Demonstrated the comparison of the displacements ¢(x, y) obtained for the integer
derivative 0=2.0 and fractional derivative a=1.5 of the four materials considered (Aluminium) for
the vibration dynamics in the rectangular thin plate model (1).

Fifure 4bh

P(x,y)

a = 2.0 Red
a=1.5 Gold
Brass

'
|

B 1

Figure 4b. Demonstrated the comparison of the displacements ¢(X, y) obtained for the integer
derivative 0=2.0 and fractional derivative a=1.5 of the four materials considered (Brass) for the
vibration dynamics in the rectangular thin plate model (1).

Filgure 4o
Px,v)
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a=1.5 Gray :”“
Epoxy glass _, T

'
|.z|:1

Figure 4c. Demonstrated the comparison of the displacements ¢(x, y) obtained for the integer
derivative 0=2.0 and fractional derivative a=1.5 of the four materials considered (Epoxy glass) for
the vibration dynamics in the rectangular thin plate model (1).
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Flgure 4d
Pp(x,y)

a= 2.0 Purple
a=1.5 Orange
wood (hard)

|3

Figure 4d. Demonstrated the comparison of the displacements ¢(X, y) obtained for the integer
derivative 0=2.0 and fractional derivative o=1.5 of the four materials considered (wood (hard)) for

the vibration dynamics in the rectangular thin plate model (1).
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Brass

10%8 } o Epoxy glass

Wood (hard)
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Max absolute error on [0,5])
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2x107? 3x1074x10"? 6x10°? 101

Figure 5. The convergence error analysis reveals that the numerical method's stability varies
greatly with material properties. As shown in the log-log plot of max error vs ¢(x), Aluminium
exhibits severe divergence, where the error increases dramatically for larger time steps, indicating
instability or poor suitability of the chosen scheme for highly conductive materials. Brass and
Wood display similar but less extreme divergence. In contrast, Epoxy glass maintains low, stable
error, highlighting its favorable numerical convergence under the given fractional-order model
parameters.

RESULTS AND DISCUSSION

The finite difference scheme with a fractional time-stepping algorithm based on the Riemann-
Liouville integral was employed to solve the vibration dynamics in a rectangular thin plate model
and the numerical results presented in Table 3 highlight clear differences in the dynamic response
of the four materials under fractional-order thin-plate vibration. Across all coordinate points and
fractional orders, Aluminium consistently shows the smallest displacement values, reflecting its
high stiffness-to-density ratio and rapid decay of vibration. Hard wood generally follows,
producing larger amplitudes than Aluminium but remaining lighter and more responsive than
brass. Brass exhibits noticeably higher displacement values due to its high density, which slows
vibrational decay despite having a relatively high modulus. Epoxy glass shows the largest
responses at several points, especially for lower fractional orders, due to its low stiffness, making
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it the most flexible material. As a decreases from 2.0 to 0.5, amplitude increases for all materials,
confirming stronger memory effects in fractional systems. Overall, the comparison demonstrates
that stiffer materials yield smaller responses and converge faster, while softer materials exhibit
amplified fractional-order behaviour.

i. Figures la—1d depict 2D displacement evolutions of a thin plate under fractional-order
vibration across four materials. Fractional derivatives crucially influence damping and
memory effects, leading to varying maximal displacements: highest in Aluminium, moderate
in Brass and Hard Wood, and minimal in Epoxy Glass due to strong viscoelastic damping.

ii. Figures 2a—2d show 3D displacement patterns of thin plates under classical dynamics (0=2)
for Aluminium, Hard Wood, Brass, and Epoxy Glass. Material stiffness, density, and damping
parameters shape vibration amplitude and distribution, guiding design for optimal damping
and isolation.

iii. Figures 3a—3d show maximum displacements of a rectangular thin plate under fractional
vibration dynamics (0=1.5) for Aluminium, Brass, Epoxy Glass, and Hard Wood.
Displacement varies by material stiffness, density, and damping, with Aluminium highest,
Epoxy Glass lowest, and Wood and Brass showing intermediate responses.

iv. Figures 4a—4d compare displacement responses using integer- and fractional-order derivatives
for Aluminium, Brass, Epoxy Glass, and Hard Wood. Fractional derivatives produce higher
vibration amplitudes due to damping and memory effects, while integer-order models predict
lower amplitudes and altered frequencies, highlighting more realistic viscoelastic behavior.

CONCLUSION

This paper examined the fractional-order vibration dynamics of rectangular thin plates using a
finite difference scheme combined with a fractional time-stepping algorithm based on the
Riemann-Liouville integral. The results underscore the significant influence of fractional calculus
on the mechanical behaviour of engineering materials, particularly in capturing memory-
dependent and viscoelastic effects that classical integer-order models fail to represent adequately.
By analysing four materials- Aluminium, Brass, Hard Wood, and Epoxy Glass-the study
demonstrates how stiffness, density, and elastic properties govern their dynamic responses under
fractional-order excitation. The numerical simulations reveal that Aluminium, due to its high
stiffness-to-density ratio, consistently exhibits the smallest displacement amplitudes and the fastest
decay of vibration. Hard Wood presents moderate vibrational responses, while Brass, with its high
density, shows slower decay and larger amplitudes despite a relatively high modulus. Epoxy Glass
remains the most flexible material, exhibiting the highest amplitudes, especially at lower fractional
orders. The increased displacement associated with decreasing o highlights the strong memory and
damping characteristics inherent in fractional-order systems. The convergence error analysis
further reflects the relationship between material properties and numerical stability. While
Aluminium and Brass display divergence under larger time steps, Epoxy Glass maintains stable
convergence, making it more numerically compatible with the selected fractional-order scheme.
These findings suggest that material behaviour must be carefully considered when applying
fractional-order numerical methods to structural vibration problems. Graphical analyses from 2D
and 3D displacement plots reinforce these conclusions, illustrating how fractional-order
formulations yield more physically realistic behaviours than classical integer-order models.
Overall, this paper provides a strong foundation for applying fractional calculus to advanced
structural dynamics, enabling improved modelling of damping, energy dissipation, and
viscoelasticity. The methodology and results offer valuable insights for material selection,
vibration control, and structural design in engineering applications where memory effects play a
crucial role.
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