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ABSTRACT 

Asthma is a long-term respiratory illness marked by airway inflammation 

and obstruction, and its severity is often worsened by environmental 

pollutants such as particulate matter, tobacco smoke. In this study, a 

deterministic compartmental model was formulated using ordinary 

differential equations (ODEs) to examine and predict the progression and 

management of asthma in environments affected by pollution. The model 

categorizes the population into several health and exposure groups: 

susceptible (S), exposed (E), infected (I)—with subcategories for mild, 

moderate, and chronic conditions—recovered (R), and an environmental 

pollution class (P). The framework also integrates intervention strategies 

such as health education, pollution control policies, and medical treatment 

to evaluate their effectiveness in limiting disease spread. The basic 

reproduction number (Ro) was computed to identify the conditions under 

which asthma either persists or can be eliminated.  The results demonstrated 

that elevated pollution levels, higher exposure rates, and inadequate 

interventions significantly increase asthma incidence. 

1. INTRODUCTION  

Asthma is a prevalent and long-term respiratory illness that affects over 262 million people 

worldwide and more than 455,000 deaths annually (World Health Organization,2023).[1]. It 

presents major public health concerns by disrupting daily life and placing a strain on healthcare 

systems (Global Initiative for Asthma,2023). [2]. Its hallmark is chronic inflammation of the 

airways, leading to increased airway responsiveness and a tendency for the bronchial tubes to 

narrow. The causes of asthma are multifactorial, involving both inherited genetic traits and external 

environmental triggers. While genetic predisposition may make some individuals more vulnerable, 

factors like airborne allergens, tobacco smoke, air pollutants, respiratory infections, and 

occupational exposures are well-established in worsening or triggering symptoms (Dharmage et 

al., 2019; Busse & Lemanske, 2001) [3]. 
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The manifestation of asthma differs significantly from person to person, with some individuals 

experiencing occasional, mild symptoms, while others endure persistent and more severe forms of 

the condition. Typically, asthma presents with recurrent wheezing—a high-pitched whistling 

sound during breathing—persistent coughing (often more noticeable at night or early in the 

morning), chest tightness, and episodes of breathlessness. These symptoms are frequently 

provoked by a range of environmental and physiological triggers, including allergens such as 

pollen, dust mites, and pet dander; respiratory infections of viral or bacterial origin; physical 

exertion; exposure to cold air; air pollutants like smoke, ozone, and particulate matter; and certain 

occupational irritants, including chemicals and industrial fumes [4]. This research work developed 

a deterministic compartmental model using ordinary differential equations (ODEs). The model 

divided the human population into various health and exposure categories: susceptible (𝑆), 
exposed (𝐸), infected (𝐼) with sub-compartments (mild, moderate, chronic), recovered (𝑅), and a 

dynamic environmental pollution class (𝑃). Additionally, the model incorporated control 

strategies, such as public health awareness, pollution regulation and medical interventions, to 

assess their impact on disease transmission and burden [5]. The remainder of this paper is 

structured as follows: Section 2 presents the model formulation, including all compartments and 

transmission pathways. Section 3 analyzes the sub-models for the deterministic nature of the 

dynamics of asthma progression and treatment Determine the Disease-Free Equilibrium (DFE) 

and Endemic Equilibrium Point (EEP) of the model, we derive the basic reproduction numbers 

and solving the model equations analytically or numerically. While Section 4 presents numerical 

simulations and discussion. 

2.0   MATERIAL AND METHODS 

2.1 Model Variables and Parameters 

In Table 2.1 below we present the description of the model variables and parameters. 

Table 2.1: Description of Variables and Parameters 

Variables  Description  

𝑆(𝑡) Number of susceptible individuals at time t 

𝐸(𝑡) Number of exposed individual (exposed to pollution) at time t 

𝐼1(𝑡) Number of infected individuals with mild asthma at time t 

𝐼2(𝑡) Number of infected individuals with moderate asthma at time t 

       𝐼3(t) Number of infected individuals with severe asthma at time t 

       𝐼4(t)) 
𝑅(𝑡) 
𝑃(𝑡) 

Number of infected individuals with chronic asthma at time t 

Number of recovered individuals receiving treatment at time t 

Cumulative concentration of pollution in the environment at time t  

𝑁(𝑡) Total population at time t 

Parameters  Description  

Ʌ Recruitment rate of individuals to the susceptible class. 

𝛾 Transmission rate due to interaction of susceptible with pollutants present in the 

environment. 

𝜆 The transmission rate at which exposed individuals become infected due to 

environmental pollutant. 

𝛽₁ Progression rate at which individuals with mild asthma progress to moderate asthma.  

𝛽₂ Progression rate at which individuals with moderate asthma progress to severe 

asthma.  

𝛽₃ Progression rate at which individuals with severe asthma progress to chronic asthma.  

𝛼₁ The average rate of asthma control for individuals with mild asthma 

𝛼₂ The average rate of asthma control for individuals with moderate asthma 
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𝛼₃ The average rate of asthma control for individuals with severe asthma 

𝛼₄ The average rate of asthma control for individuals with chronic asthma 

𝜎𝑖 Asthma induced death rate, where  𝑖 = 1, 2, . . .5 represent the concerned 

compartments.  

𝜛 The probability of achieving successful asthma control due to public awareness  

(0 < 𝜔 ≤ 1) 
𝜏 

 

𝛿 

𝜇 

𝑄 

The rate at which human activities contribute to the reduction of pollutants in the 

environment (0 < 𝜏 ≤ 1). 
The natural attenuation rate of pollutants 

Natural death rate 

The aggregate emission rate of pollutants from various sources 

 

2.3         Description of Model Formulation 

A modified mathematical model was developed to account for the underlying causes of asthma, 

with particular emphasis on the impact of environmental pollutants as key contributing factors. 

The total population is divided into eight classes namely; susceptible individuals 𝑆(𝑡), exposed 

individual 𝐸(𝑡), infected individual with mild asthma 𝐼ₗ (𝑡), infected individual with moderate 

asthma 𝐼₂(𝑡), infected individual with severe asthma 𝐼₃(𝑡), infected individuals with chronic 

asthma 𝐼₄(𝑡), individuals in the recovered class 𝑅(𝑡), and an environmental pollution class 𝑃(𝑡). 
sThe recruitment rate into the susceptible population 𝑆(𝑡) is given by Λ. It is assumed that the 

susceptible population become asthmatic when continuously being exposed to pollutant present in 

the environment in two steps. First individual from the susceptible class move to the exposed class 

𝐸(𝑡) at a transmission rate 𝛾, and then from the exposed class to the initial infected class 𝐼1(𝑡) at 

a transmission rate 𝜆 due to continuous exposure with environmental pollution.  Individual infected 

with mild asthma 𝐼1(𝑡) can progress into moderate asthma 𝐼2(𝑡) class at a rate 𝛽₁. Similarly 

individual with moderate asthma if not treated or control can progress into the severe asthma class 

𝐼3(𝑡) at the rate 𝛽2. Individual with severe asthma can progress into a chronic asthma class 𝐼4(𝑡) 
at the rate 𝛽3. 

 
Figure 2.1 Flow diagram of the Mathematical model of Asthma Control 

Since asthma disease progresses through four stages, treatment of infected individuals can take 

place at any of these stages at a rate 𝛼𝑖, the average rate of asthma control, where 𝑖 = 1,2,3,4 is 

the different stages of asthma progression, moving the infected individual into the recovered 

class 𝑅(𝑡), 𝑃(𝑡) is the cummulative concentration of pollution present in the environment at time 

t. We also observed that 𝑄 is the rate of emission of pollutant from various sources into the 

environment. 𝛿 is the natural attenuation rate of pollutants which refers to the rate at which 

environmental pollutants naturally break down, degrade, or are removed from the environment 
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without human intervention and 𝜏 is the depletion rate coefficient of the pollutant concentration in 

the environment due to human activities. 

2.4  Model Equations  

Below is the system of nonlinear ordinary differential equations that describe the asthma disease 

model: 

𝑆′ = 𝛬 − 𝜇𝑆 − 𝛾𝑆𝑃                                        (2.1) 

𝐸′ = 𝛾𝑆𝑃 − 𝜆𝑃𝐸 − 𝜇𝐸                         (2.2) 

𝐼1
′ = 𝜆𝑃𝐸 − (𝜇 + 𝜎1)𝐼1 − 𝛽1𝐼1 −𝜛𝛼1𝐼1                         (2.3) 

𝐼2
′ = 𝛽1𝐼1 − (𝜇 + 𝜎2)𝐼2 − 𝛽2𝐼2 −𝜛𝛼2𝐼2                       (2.4) 

 𝐼3
′ = 𝛽2𝐼2 − (𝜇 + 𝜎3)𝐼3 − 𝛽3𝐼3 −𝜛𝛼3𝐼3                      (2.5) 

𝐼4
′ = 𝛽3𝐼3 − (𝜇 + 𝜎4)𝐼4 −𝜛𝛼4𝐼4                       (2.6) 

𝑅4
′ = 𝜛𝛼4𝐼4 +𝜛𝛼3𝐼3 +𝜛𝛼2𝐼2 +𝜛𝛼1𝐼1 − (𝜇 + 𝜎5)𝑅                    (2.7) 

 𝑃′ = 𝑄 − (𝛿 + 𝜏)𝑃                         (2.8) 

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝐼3(𝑡) + 𝐼4(𝑡) + 𝑅(𝑡) + 𝑃(𝑡)                  (2.9) 

where 𝑁(𝑡) is the total population at time t 

2.5  Positivity and Boundedness of Solution of the Asthma Model 

We would show that the solution to the model equations is epidemiological and mathematically 

well posed and is positive in the invariant region of attraction Ω. We obtained the invariant set Ω, 
where the model solution is bounded.  

Theorem 2.1  

If 𝑆(0), 𝐸(0), 𝐼1(0), 𝐼2(0), 𝐼3(0), 𝐼4(0), 𝑅(0), 𝑃(0)are non-negative, the solution 

𝑆(𝑡), 𝐸(𝑡), 𝐼1(𝑡), 𝐼2(𝑡), 𝐼3(𝑡), 𝐼4(𝑡), 𝑅(𝑡), 𝑃(𝑡) of the Asthma disease model are non-negative for 

all 𝑡 ≥ 0 

Proof: 

From equation (2.9), we have that  

𝑁′(𝑡) = 𝑆′(𝑡) + 𝐸′(𝑡) + 𝐼1
′(𝑡) + 𝐼2

′(𝑡) + 𝐼3
′(𝑡) + 𝐼4

′(𝑡) + 𝑅′(𝑡) + 𝑃′(𝑡)   (2.10) 

Substituting equations (2.1) to (2.8) into equation (2.10) we have, 

𝑁′(𝑡) = 𝛬 − (𝑆 + 𝐸 + 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 + 𝑅)𝜇 − (𝜎1𝐼1 + 𝜎2𝐼2 + 𝜎3𝐼3 + 𝜎4𝐼4 + 𝜎5𝑅) 
    +𝑄 − (𝛿 + 𝜏)𝑃   (2.11) 

Setting the disease induce death rate to be zero (𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 0) 
and let 𝑁(𝑡) = 𝑆 + 𝐸 + 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 + 𝑅, we have  

𝑁′(𝑡) = 𝛬 − 𝜇𝑁 + 𝑄 − (𝛿 + 𝜏)𝑃       (2.12) 

𝑁′(𝑡) ≤ 𝛬 − 𝜇𝑁         (2.13) 

Solving equation (2.13) by method of separation of variable, we have 

𝑑𝑁

𝑑𝑡
≤ 𝛬 − 𝜇𝑁   ⟹  

𝑑𝑁

𝛬−𝜇𝑁
≤ 𝑑𝑡       (2.14) 

Integrating both side of equation (3.14), we have  
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−
1

𝜇
𝐼𝑛(𝛬 − 𝜇𝑁) ≤ 𝑡 + 𝐾   ⟹  𝐼𝑛(𝛬 − 𝜇𝑁) ≥ −𝜇(𝑡 + 𝐾)     

⟹  |𝛬 − 𝜇𝑁| ≥ 𝐴𝑒−𝜇(𝑡+𝐾)    ⟹  |𝛬 − 𝜇𝑁| ≥ 𝐴𝑒−𝜇𝑡    (2.15) 

where A is the constant of integration.  

Applying the initial condition 𝑁(0) = 𝑁0 to equation (2.15), we have that  

𝛬 − 𝜇𝑁0 = 𝐴          (2.16) 

Substituting equation (2.16) into equation (2.15) we have  

𝛬 − 𝜇𝑁 ≥ (𝛬 − 𝜇𝑁0)𝑒
−𝜇𝑡        (2.17) 

Rearranging equation (2.17), we have 

𝑁 ≤
𝛬

𝜇
− (

𝛬−𝜇𝑁0

𝜇
) 𝑒−𝜇𝑡        (2.18) 

As 𝑡 ⟶ ∞ in equation (2.18), the population size at time  𝑁 =
𝛬

𝜇
 (0 ≤ 𝑁 ≤

𝛬

𝜇
). 

This implies that the feasible solution set of the nonlinear system of equation of the model enter 

and remain in the region Ω 

Ω = {( 𝑆(𝑡), 𝐸(𝑡), 𝐼1(𝑡), 𝐼2(𝑡), 𝐼3(𝑡), 𝐼4(𝑡), 𝑅(𝑡)) ∈ ℛ
7, 𝑁 ≤

Ʌ

𝜇
}   (2.19) 

Therefore, all feasible solutions of the system of differential equations (2.1) to (2.8) enter the 

region. The region 𝛺 is positively invariant with respect to the model equation. 

2.6  Disease - Free Equilibrium of Asthma Disease Model (𝑬𝐨) 
At the Disease-Free Equilibrium, we make the assumption that the disease compartment variables 

become zero, hence 𝐸(𝑡) = 𝐼1(𝑡) =  𝐼2(𝑡) = 𝐼3(𝑡) = 𝐼4(𝑡) = 𝑅(𝑡) = 0 and that. Hence 𝐸0 =
(𝑆(𝑡), 0,0,0,0,0,0, 𝑃(𝑡)) 
In the system of nonlinear differential equation given in equation (2.1) - (2.8), we set the derivative 

to be equal to zero and the equation becomes 

0 = Λ − 𝜇𝑆 − 𝛾𝑆𝑃  ⇒ 𝑆 =
Λ

𝜇+𝛾𝑃
                            (2.20) 

0 = 𝑄 − (𝛿 + 𝜏)𝑃  ⇒ 𝑃(𝑡) =
𝑄

𝛿+𝜏
       (2.21) 

Therefore, the disease-free equilibrium is 

𝐸ₒ = (
Λ

𝜇+𝛾𝑃
, 0, 0, 0, 0 ,0 ,0,

Q

𝛿+𝜏
)                                                                              (2.22) 

2.7 Existence of Endemic Equilibrium of Asthma Disease Model (𝑬𝟎
∗) 

Here we assume that the Asthma Disease due to environmental pollution in the population will 

persist with time 𝑡 and hence 𝑆(𝑡) ≠ 𝐸(𝑡) ≠ 𝐼1(𝑡) ≠  𝐼2(𝑡) ≠ 𝐼3(𝑡) ≠ 𝐼4(𝑡) ≠ 𝑅(𝑡) ≠ 𝑃(𝑡) ≠ 0.  

Also, we know that 𝜆 = 1, 𝛾 = 1 and δ = 0  

From equation (2.8), we have 

 𝑃′ = 𝑄 − (𝛿 + 𝜏)𝑃 = 0 

 ⇒′ 𝑄 − 𝜏𝑃 = 0 

⇒ 𝑃(𝑡) =
𝑄

𝜏
             (2.23) 

From equation (2.1), we have that  

0 = 𝛬 − 𝜇𝑆 − 𝛾𝑆𝑃 ⇒ 𝛬 − (𝜇 + 𝑃)𝑆 = 0 ⇒  𝛬 = (𝜇 + 𝑃)𝑆      

⇒  𝑆 =
𝛬

𝜇+𝑃
=

𝛬

𝜇+
𝑄

𝜏

=
𝛬𝜏

𝜇𝜏+𝑄
  (Substitute equation (2.23) and simplify) 

⇒  𝑆(𝑡) =
𝛬𝜏

𝜇𝜏+𝑄
              (2.24) 

From equation (2.2), we have that  
0 = 𝛾𝑆𝑃 − 𝜆𝑃𝐸 − 𝜇𝐸 ⇒  0 = 𝑆𝑃 − 𝑃𝐸 − 𝜇𝐸 ⇒  0 = 𝑆𝑃 − (𝑃 + 𝜇)𝐸  

Substituting 𝑆(𝑡) and 𝑃(𝑡), we have  
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 ⇒  0 = (
𝛬𝜏

𝜇𝜏+𝑄
) (

𝑄

𝜏
) − (

𝑄

𝜏
+ 𝜇)𝐸  ⇒  0 = (

𝛬𝜏

𝜇𝜏+𝑄
) (

𝑄

𝜏
) − (

𝑄+𝜇𝜏

𝜏
)𝐸  

⇒  0 = (
𝛬𝜏

𝜇𝜏+𝑄
) (

𝑄

𝜏
) = (

𝑄+𝜇𝜏

𝜏
)𝐸  ⇒  𝐸(𝑡) = (

𝛬𝜏

𝜇𝜏+𝑄
) (

𝑄

𝜏
) ∙ (

𝜏

𝑄+𝜇𝜏
)  

⇒  𝐸(𝑡) = (
𝛬𝜏

𝜇𝜏+𝑄
) (

𝑄

𝜇𝜏+𝑄
)  

 ⇒ 𝐸(𝑡) =
𝛬𝜏𝑄

(𝜇𝜏+𝑄)2
           (2.25) 

From equation (2.3), we have that  
⇒ 0 = 𝜆𝑃𝐸 − (𝜇 + 𝜎1)𝐼1 − (𝛽1 +𝜛𝛼1)𝐼1   ⇒ 0 = 𝑃𝐸 − (𝜇 + 𝜎1)𝐼1 − (𝛽1 +𝜛𝛼1)𝐼1  

⇒ 0 = 𝑃𝐸 − (𝜇 + 𝜎1 + 𝛽1 +𝜛𝛼1)𝐼1   ⇒ 𝑃𝐸 = (𝜇 + 𝜎1 + 𝛽1 +𝜛𝛼1)𝐼1 

⇒ 𝐼1 =
𝑃𝐸

𝜇+𝜎1+𝛽1+𝜛𝛼1
  

Substituting 𝑆(𝑡) and 𝐸(𝑡), we have  

⇒ 𝐼1 = (
𝑄

𝜏
) (

𝛬𝜏𝑄

(𝜇𝜏+𝑄)2
) (

1

𝜇+𝜎1+𝛽1+𝜛𝛼1
)  

𝐼1(𝑡) =
𝛬𝑄2

(𝜇𝜏+𝑄)2(𝜇+𝜎1+𝛽1+𝜛𝛼1)
         (2.26) 

From equation (2.4), we have that  

⇒  0 = 𝛽1𝐼1 − (𝜇 + 𝜎2)𝐼2 − (𝛽2 +𝜛𝛼2)𝐼2    ⇒  0 = 𝛽1𝐼1 − (𝜇 + 𝜎2 + 𝛽2 +𝜛𝛼2)𝐼2 

⇒ 𝐼2 =
𝛽1𝐼1

𝜇+𝜎2+𝛽2+𝜛𝛼2
  

Substituting 𝐼1(𝑡), we have 

𝐼2(𝑡) =
𝛽1𝛬𝑄

2

(𝜇+𝜎2+𝛽2+𝜛𝛼2)(𝜇𝜏+𝑄)2(𝜇+𝜎1+𝛽1+𝜛𝛼1)
       (2.27) 

From equation (2.5), we have that  

 ⇒  0 = 𝛽2𝐼2 − (𝜇 + 𝜎3)𝐼3 − (𝛽3 +𝜛𝛼3)𝐼3    ⇒  𝛽2𝐼2 = (𝜇 + 𝜎3 + 𝛽3 +𝜛𝛼3)𝐼3 

⇒ 𝐼3 =
𝛽2𝐼2

𝜇+𝜎3+𝛽3+𝜛𝛼3
  

Substituting 𝐼2(𝑡), we hav2 

𝐼3(𝑡) =
𝛽2𝛽1𝛬𝑄

2

(𝜇+𝜎3+𝛽3+𝜛𝛼3)(𝜇+𝜎2+𝛽2+𝜛𝛼2)(𝜇𝜏+𝑄)2(𝜇+𝜎1+𝛽1+𝜛𝛼1)
     (2.28) 

From equation (2.6), we have that  

⇒  0 = 𝛽3𝐼3 − (𝜇 + 𝜎4)𝐼4 −𝜛𝛼4𝐼4    ⇒ 𝛽3𝐼3 = (𝜇 + 𝜎4 +𝜛𝛼4)𝐼4    

⇒ 𝐼4 =
𝛽3𝐼3

𝜇+𝜎4+𝜛𝛼4
  

Substituting 𝐼3(𝑡), we have 

𝐼4(𝑡) =
𝛽3𝛽2𝛽1𝛬𝑄

2

(𝜇+𝜎4+𝜛𝛼4)(𝜇+𝜎3+𝛽3+𝜛𝛼3)(𝜇+𝜎2+𝛽2+𝜛𝛼2)(𝜇𝜏+𝑄)2(𝜇+𝜎1+𝛽1+𝜛𝛼1)
   (2.29) 

From equation (2.7), we have that  

⇒ 0 = 𝜛𝛼4𝐼4 +𝜛𝛼3𝐼3 +𝜛𝛼2𝐼2 +𝜛𝛼1𝐼1 − (𝜇 + 𝜎5)𝑅  

⇒ 𝜛𝛼4𝐼4 +𝜛𝛼3𝐼3 +𝜛𝛼2𝐼2 +𝜛𝛼1𝐼1 = (𝜇 + 𝜎5)𝑅  

⇒ 𝑅(𝑡) =
𝜛𝛼4𝐼4+𝜛𝛼3𝐼3+𝜛𝛼2𝐼2+𝜛𝛼1𝐼1

𝜇+𝜎5
  

Substituting 𝐼1(𝑡), 𝐼2(𝑡), 𝐼3(𝑡) and 𝐼4(𝑡), we have 

𝑅(𝑡) =
𝜛𝛬𝑄2

𝑊
(
𝛼1

𝑁2𝑀1
+

𝛼2𝛽1

𝑁2𝑀1𝑀2
+

𝛼3𝛽1𝛽2

𝑁2𝑀1𝑀2𝑀3
+

𝛼4𝛽1𝛽2𝛽3

𝑁2𝑀1𝑀2𝑀3𝑀4
)  

were   
𝑁 = 𝜇𝜏 + 𝑄,                                      𝑀2 = 𝜇 + 𝜎2 + 𝛽2 +𝜛𝛼2
𝑊 = 𝜇 + 𝜎5,                                      𝑀3 = 𝜇 + 𝜎3 + 𝛽3 +𝜛𝛼3
𝑀1 = 𝜇 + 𝜎1 + 𝛽1 +𝜛𝛼1,   𝑀4 = 𝜇 + 𝜎4 +𝜛𝛼4                    

}      (2.30) 

Therefore, the endemic equilibrium (𝐸0
∗) is given as 𝐸0

∗ = (𝑆∗, 𝐸∗, 𝐼1
∗, 𝐼2

∗, 𝐼3
∗ , 𝐼4

∗ , 𝑅∗, 𝑃∗) 
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𝐸0
∗ = (

𝛬𝜏

𝑁
,
𝛬𝜏𝑄

𝑁2
,
𝛬𝑄2

𝑁2𝑀1
,
𝛽1𝛬𝑄

2

𝑁2𝑀1𝑀2
,
𝛽1𝛽2𝛬𝑄

2

𝑁2𝑀1𝑀2𝑀3
 ,

𝛽1𝛽2𝛽3𝛬𝑄
2

𝑁2𝑀1𝑀2𝑀3𝑀4
 ,
𝜛𝛬𝑄2

𝑊
(
𝛼1

𝑁2𝑀1
+

𝛼2𝛽1

𝑁2𝑀1𝑀2
+

𝛼3𝛽1𝛽2

𝑁2𝑀1𝑀2𝑀3
+

                                                                                                                         
𝛼4𝛽1𝛽2𝛽3

𝑁2𝑀1𝑀2𝑀3𝑀4
) ,
𝑄

𝜏
 )    

𝑆∗(𝑡) =
𝛬𝜏

𝜇𝜏+𝑄
                                                                                                                                 (2.31) 

𝐸∗(𝑡) =
𝛬𝜏𝑄

(𝜇𝜏+𝑄)2
  

𝐼1
∗(𝑡) =

𝛬𝑄2

(𝜇𝜏+𝑄)2(𝜇+𝜎1+𝛽1+𝜛𝛼1)
  

𝐼2
∗(𝑡) =

𝛽1𝛬𝑄
2

(𝜇+𝜎2+𝛽2+𝜛𝛼2)(𝜇𝜏+𝑄)2(𝜇+𝜎1+𝛽1+𝜛𝛼1)
  

𝐼3
∗(𝑡) =

𝛽2𝛽1𝛬𝑄
2

(𝜇+𝜎3+𝛽3+𝜛𝛼3)(𝜇+𝜎2+𝛽2+𝜛𝛼2)(𝜇𝜏+𝑄)2(𝜇+𝜎1+𝛽1+𝜛𝛼1)
  

𝐼4
∗(𝑡) =

𝛽3𝛽2𝛽1𝛬𝑄
2

(𝜇+𝜎4+𝜛𝛼4)(𝜇+𝜎3+𝛽3+𝜛𝛼3)(𝜇+𝜎2+𝛽2+𝜛𝛼2)(𝜇𝜏+𝑄)2(𝜇+𝜎1+𝛽1+𝜛𝛼1)
  

𝑅∗(𝑡) =
𝜛𝛬𝑄2

𝑊
(
𝛼1

𝑁2𝑀1
+

𝛼2𝛽1

𝑁2𝑀1𝑀2
+

𝛼3𝛽1𝛽2

𝑁2𝑀1𝑀2𝑀3
+

𝛼4𝛽1𝛽2𝛽3

𝑁2𝑀1𝑀2𝑀3𝑀4
)  

𝑃∗(𝑡) =
𝑄

𝜏
  

3.0 COMPUTATION OF THE BASIC REPRODUCTION NUMBER (𝑹𝟎) OF THE 

MODEL 

The number of secondary infections that one infectious person might cause during the infectious 

period, assuming that everyone else is susceptible, is known as the Basic Reproductive Number 
(𝑅0) The production of secondary cases is insufficient to sustain the infection in the human 

community below a certain threshold, known as 𝑅0. If 𝑅0 is less than 1, the disease will die out 

and fewer people will be infected from generation to generation; if 𝑅0 is greater than 1, the disease 

will continue to exist and more people will be affected.  

The Next Generation Matrix (NGM) method, developed by van den Driessche and Watmough 

(2022), is a standard approach used to compute the basic reproductive number (R₀) in 

compartmental epidemic models. It works by dividing the system into two main components: F(x), 

representing the rate of new infections, and V(x), representing the rate of transitions between 

compartments. Matrices F and V are then constructed using partial derivatives of these 

components. However, this method is unsuitable for the current asthma–pollution model because 

the model’s infection process depends on an environmental variable (P)—pollution—which lies 

outside the infected subsystem. In this model, new infections are driven by contact between 

susceptible individuals and environmental pollutants, rather than by contact between infectious 

individuals, violating a fundamental assumption of the NGM approach that requires infection 

terms to depend solely on infected compartments. 

Furthermore, the environmental variable P maintains a nonzero value even at the disease-free 

equilibrium (DFE), since it is sustained by continuous emissions from human activities. This 

persistence means that the infection term γSP does not vanish at DFE, making linearization in 

terms of infected states invalid. Because the NGM framework assumes internal disease 

transmission—where infection arises endogenously from infected individuals—the exogenous and 

constant nature of pollution disrupts the feedback structure required for accurate R₀ estimation. 

Consequently, the NGM method cannot be applied to this model. Instead, a mechanistic derivation 

of R₀, based on transition probabilities and average duration within disease states, provides a more 

accurate and epidemiologically meaningful approach for capturing asthma dynamics driven by 

environmental pollution 
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3.2 Mechanistic/Pathway-Based Approach for the Computation of 𝑹𝟎 

The Mechanistic/Partway-Based Approach is based on the principle of tracking a single infected 

individual through all disease stages accounting for the probabilities of progression, duration in 

each stage and the rate of transmission in each stage. This approach is best suited for nonlinear 

models with exogenous drivers such as environmental pollution, external sources, multiple stages 

or progression chain. Example of this approach is seen in Martcheva (2015) and van den Driesshe 

(2007) respectively. [2] The model consider in this work includes external environmental pollution 

as the infection driver, multiple sequential disease stages and no internal transmission between 

human, hence the next generation matrix method is not applicable. The Mechanistic/Pathway-

Based approach is best appropriate as it track the progression from exposure to chronic infection 

and sum all contributions to get the 𝑅0.  

Using the Mechanistic/Partway-Based Approach, we follow the steps below  

Step 1: Define your Infected Subsystem 

From our model, the infected compartments are   𝑥 = [𝐸 𝐼1 𝐼2 𝐼3 𝐼4]𝑇 

Step 2: Extract New Infections 𝓕(𝒙) 
From our model equation, other compartments do not receive new infection. The only new 

infection term is found in equation (3.1) given below 

𝐸′ = 𝛾𝑆𝑃 − 𝜆𝑃𝐸 − 𝜇𝐸  

The only new infection term is ℱ1 = 𝛾𝑆𝑃 

Step 3: Define the Progression and Removal Terms 𝓥(𝒙) 

From the model equation (3.1) - (3.5), selecting only infected compartment, we have  

𝐸′ = 𝛾𝑆𝑃 − (𝜆𝑃 + 𝜇)𝐸         (3.1) 

𝐼1
′ = 𝜆𝑃𝐸 − (𝜇 + 𝜎1)𝐼1 − 𝛽1𝐼1 −𝜛𝛼1𝐼1         (3.2) 

𝐼2
′ = 𝛽1𝐼1 − (𝜇 + 𝜎2)𝐼2 − 𝛽2𝐼2 −𝜛𝛼2𝐼2        (3.3) 

 𝐼3
′ = 𝛽2𝐼2 − (𝜇 + 𝜎3)𝐼3 − 𝛽3𝐼3 −𝜛𝛼3𝐼3      (3.4) 

𝐼4
′ = 𝛽3𝐼3 − (𝜇 + 𝜎4)𝐼4 −𝜛𝛼4𝐼4       (3.5) 

The progression and removal terms define by 

𝒱(𝑥) =

(

 
 

−(𝜆𝑃 + 𝜇)𝐸

𝜆𝑃𝐸 − (𝜇 + 𝜎1 + 𝛽1 +𝜛𝛼1)𝐼1
𝛽1𝐼1 − (𝜇 + 𝜎2 + 𝛽2 +𝜛𝛼2)𝐼2
𝛽2𝐼2 − (𝜇 + 𝜎3 + 𝛽3 +𝜛𝛼3)𝐼3
𝛽3𝐼3 − (𝜇 + 𝜎4 +𝜛𝛼4)𝐼4 )

 
 

       (3.6) 

We now compute the expected number of secondary infections by tracking how one exposed 

individual enters 𝐸  through 𝛾𝑆𝑃, how they progress 𝐸 ⟶ 𝐼1   ⟶ 𝐼2   ⟶ 𝐼3   ⟶ 𝐼4 and how long 

they stay in each compartment.  

Step 4: We now Compute 𝑹𝟎 as a Product of Probabilities and Durations. 

We now compute the average number of new infections caused by one exposed individual from 

the susceptible contact through all the disease compartments. The following formula will be used:  
 

Duration in the compatment = Progression and Removal term−1              (3.7) 

Probability to progress =
Rate of Entering a
Compartment

  ×
Duration in the
Compartment

                      (3.8) 

(a).  From Susceptible Contact (New Exposure) 



Balogun et al. - Journal of NAMP 71, (2025) 85-102 

93 

At Disease-Free Equilibrium (DFE), we have that 𝑆∗ =
𝛬

𝜇
  and 𝑃∗ =

𝑄

𝛿+𝜏
 

 force of infection is given by 𝛾𝑆∗𝑃∗ = 𝛾 ∙
𝛬

𝜇
∙
𝑄

𝛿+𝜏
                       (3.9) 

Equation (3.7) shows how someone enters the exposed compartment 𝐸, which is the start of 

transmission. Now from one exposed individual, we follow their trajectory through the other 

compartments.  

(b). Expected Transition Path from E 

 (I).  From 𝑬 to 𝑰𝟏   

 Rate of transition from  𝐸 to 𝐼1 is  𝜆𝑃∗ 

 Duration in 𝐸:    
1

𝜆𝑃∗+𝜇
 

 Probability to Progress from  𝐸 to 𝐼1 is  
𝜆𝑃∗

𝜆𝑃∗+𝜇
 

 (ii).  From 𝑰𝟏 to 𝑰𝟐   

 Rate of transition from  𝐼1 to 𝐼2 is  𝛽1 

Probability to reach 𝐼1 is  
𝜆𝑃∗

𝜆𝑃∗+𝜇
 

 Duration in 𝐼1:    
1

𝜇+𝜎1+𝛽1+𝜛𝛼1
 

 Probability to Progress from  𝐼1 t o 𝐼2 is  
𝛽1

𝜇+𝜎1+𝛽1+𝜛𝛼1
 

 (iii).  From 𝑰𝟐 to 𝑰𝟑   

 Rate of transition from  𝐼2 to 𝐼3 is  𝛽2 

Probability to reach 𝐼2 is   
𝛽1

𝜇+𝜎1+𝛽1+𝜛𝛼1
 

 Duration in 𝐼2:    
1

𝜇+𝜎2+𝛽2+𝜛𝛼2
 

 Probability to Progress from  𝐼2 to 𝐼3 is  
𝛽2

𝜇+𝜎2+𝛽2+𝜛𝛼2
 

 (iv).  From 𝑰𝟑 to 𝑰𝟒   

 Rate of transition from  𝐼3 to 𝐼4 is  𝛽3 

Probability to reach 𝐼3 is   
𝛽2

𝜇+𝜎2+𝛽2+𝜛𝛼2
 

 Duration in 𝐼3:    
1

𝜇+𝜎3+𝛽3+𝜛𝛼3
 

 Probability to Progress from  𝐼3 to 𝐼4 is  
𝛽3

𝜇+𝜎3+𝛽3+𝜛𝛼3
 

Step 5 Multiply all the Probabilities with the Force of Infection 

The formula for the Mechanistic/Partway-Based approach for computing 𝑅0 is given below  

𝑅0 =
Force of 

Infection at DFE
  ×
Probability of Progress

from 𝐸 to 𝐼1
×
Probability of Progress

from 𝐼1 to 𝐼2
 

 ×
Probability of Progress

from 𝐼2 to 𝐼3
×
Probability of Progress

from 𝐼3 to 𝐼4
 

              (3.10) 

According to our model formulation, we have the Reproduction number (𝑅0) as  

𝑅0 = 𝛾 ∙ 𝑆
∗ ∙ 𝑃∗ × (

𝜆𝑃∗

𝜆𝑃∗+𝜇
) × (

𝛽1

𝜇+𝜎1+𝛽1+𝜛𝛼1
) × (

𝛽2

𝜇+𝜎2+𝛽2+𝜛𝛼2
) × (

𝛽3

𝜇+𝜎3+𝛽3+𝜛𝛼3
)          (3.11) 

where 

𝛾 ∙ 𝑆∗ ∙ 𝑃∗ =
Force of 

Infection at DFE
 

𝜆𝑃∗

𝜆𝑃∗ + 𝜇
= Probability of Progress from 𝐸 to 𝐼1 
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𝛽1
𝜇 + 𝜎1 + 𝛽1 +𝜛𝛼1

= Probability of Progress from 𝐼1 to 𝐼2 

𝛽2
𝜇 + 𝜎2 + 𝛽2 +𝜛𝛼2

= Probability of Progress from 𝐼2 to 𝐼3 

𝛽3
𝜇 + 𝜎3 + 𝛽3 +𝜛𝛼3

= Probability of Progress from 𝐼3 to 𝐼4 

Substituting the value at DFE 𝐸ₒ = (
Λ

𝜇+𝛾𝑃
, 0, 0, 0, 0 ,0 ,0,

Q

𝛿+𝜏
) in equation (3.11), we have  

𝑅0 =
𝛾𝜆𝛬𝑄2

(𝛾𝑄+𝜇(𝛿+𝜏))(𝜆𝑄+𝜇(𝛿+𝜏))
× (

𝛽1

𝑀1
) × (

𝛽2

𝑀2
) × (

𝛽3

𝑀3
)                        (3.12) 

𝑅0 =
𝛾𝜆𝛬𝑄2𝛽1𝛽2𝛽3

𝑀1𝑀2𝑀3𝑀6𝑀7
                                 (3.13) 

where  𝑀1 = 𝜇 + 𝜎1 + 𝛽1 +𝜛𝛼1, 𝑀2 = 𝜇 + 𝜎2 + 𝛽2 +𝜛𝛼2, 𝑀3 = 𝜇 + 𝜎3 + 𝛽3 +𝜛𝛼3 

𝑀6 = 𝛾𝑄 + 𝜇(𝛿 + 𝜏),  𝑀7 = 𝜆𝑄 + 𝜇(𝛿 + 𝜏) 

 

3.2 Local Stability of Disease -Free Equilibrium (𝑬𝟎) of the Asthma Disease Model   

Theorem 3.1  

The disease- free equilibrium (𝐸0) is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 >
1. Then the theorem implies that the disease will die out in the community at time 𝑡. 
Proof: 

To prove the local stability of the disease-free equilibrium (𝐸0), we use the variational matrix 

obtained at the DFE in section 2.6 

Let the variational matrix as in section 2.6.4 given below  







































−

−

−

−

−

−


−


−−

=

5

4321

43

32

21

1

5

6

5

5

7

5

6

5

5

6

0000000

000

000000

000000

000000

000000

00000

000000

0

M

W

M

M

M

M
M

Q

M

M

M

M

M

Q

M

M

M

M

J E















           

(3.14) 

where  𝑀1 = 𝜇 + 𝜎1 + 𝛽1 +𝜛𝛼1, 𝑀2 = 𝜇 + 𝜎2 + 𝛽2 +𝜛𝛼2, 𝑀3 = 𝜇 + 𝜎3 + 𝛽3 +𝜛𝛼3 

𝑀4 = 𝜇 + 𝜎4 +𝜛𝛼4, 𝑀5 = 𝛿 + 𝜏,𝑀6 = 𝛾𝑄 + 𝜇(𝛿 + 𝜏),  𝑀7 = 𝜆𝑄 + 𝜇(𝛿 + 𝜏) and  

𝑊 = 𝜇 + 𝜎5 

The characteristics equation corresponding to the variational matrix (𝐽𝐸0) is given by 

𝜆8 + 𝑘1𝜆
7 + 𝑘2𝜆

6 + 𝑘3𝜆
5 + 𝑘4𝜆

4 + 𝑘5𝜆
3 + 𝑘6𝜆

2 + 𝑘7𝜆 + 𝑘8 = 0                      (3.15) 

where 𝑘1 =
1

𝑀5
[𝑊𝑀5 +𝑀1𝑀5 +𝑀2𝑀5 +𝑀3𝑀5 +𝑀4𝑀5 +𝑀5

2 +𝑀6 +𝑀7] 
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𝑘2 =
1

𝑀5
2 [𝑊𝑀5

2(𝑀1 +𝑀2 +𝑀3 +𝑀4) +𝑊𝑀5
3 +𝑀1𝑀5

2(𝑀2 +𝑀3 +𝑀4) + 𝑀1𝑀5
3 +𝑀2𝑀5

2(𝑀3 +𝑀4)

+ 𝑀2𝑀5
3 +𝑀3(𝑀4𝑀5

2 +𝑀5
3) + 𝑀4𝑀5

3

+ (𝑀6 +𝑀7)(𝑀2𝑀5 +𝑀3𝑀5 +𝑀4𝑀5 +𝑀5
2 + 1)] 

𝑘3 =
1

𝑀5
2 [𝑊𝑀1𝑀5

2(𝑀2 +𝑀3) + (𝑀4𝑀5
2 +𝑀5

3)(𝑊𝑀1 +𝑊𝑀3 +𝑀1𝑀3 +𝑀2𝑀3)

+ (𝑀3𝑀5
2 +𝑀4𝑀5

2 +𝑀5
3)(𝑊𝑀2 +𝑀1𝑀2) +𝑀4𝑀5

3(𝑊 +𝑀1 +𝑀2 +𝑀3)

+ (𝑀6 +𝑀7)(𝑊𝑀1𝑀5 +𝑊𝑀2𝑀5 +𝑊𝑀3𝑀5 +𝑊𝑀4𝑀5 +𝑊𝑀5
2 +𝑀1𝑀2𝑀5

+𝑀1𝑀3𝑀5 +𝑀1𝑀4𝑀5 +𝑀1𝑀5
2 +𝑀2𝑀3𝑀5 +𝑀2𝑀4𝑀5 +𝑀2𝑀5

2 +𝑀3𝑀4𝑀5 +𝑀3𝑀5
2

+𝑀4𝑀5
2) + (𝑀6𝑀7)(𝑊 +𝑀1 +𝑀2 +𝑀3 +𝑀4 +𝑀5)] 

𝑘4 =
1

𝑀5
2
[(𝑊𝑀1𝑀2𝑀5

2 +𝑊𝑀1𝑀5
3)(𝑀3 +𝑀4) + (𝑀2 +𝑀3)(𝑊𝑀4𝑀5

3 +𝑀1𝑀4𝑀5
3) +𝑊𝑀2𝑀5

3(𝑀1 +𝑀3)

+𝑊𝑀3𝑀4𝑀5
2(𝑀1 +𝑀2 +𝑀1𝑀2) + 𝑀2𝑀3𝑀5

3(𝑀1 +𝑀4)
+ (𝑀6 +𝑀7)(𝑊𝑀1𝑀2𝑀5 +𝑊𝑀1𝑀3𝑀5 +𝑊𝑀1𝑀4𝑀5 +𝑊𝑀1𝑀5

2 +𝑊𝑀2𝑀3𝑀5 +𝑊𝑀2𝑀4𝑀5
+𝑊𝑀2𝑀5

2 +𝑊𝑀3𝑀4𝑀5 +𝑊𝑀3𝑀5
2 +𝑊𝑀4𝑀5

2 +𝑀1𝑀2𝑀3𝑀5 +𝑀1𝑀2𝑀4𝑀5 +𝑀1𝑀2𝑀5
2

+𝑀1𝑀3𝑀4𝑀5 +𝑀1𝑀3𝑀5
2 +𝑀1𝑀4𝑀5

2 +𝑀2𝑀3𝑀4𝑀5 +𝑀2𝑀3𝑀5
2 +𝑀2𝑀4𝑀5

2 +𝑀3𝑀4𝑀5
2)

+ (𝑀6𝑀7)(𝑊𝑀1 +𝑊𝑀2 +𝑊𝑀3 +𝑊𝑀4 +𝑊𝑀5 +𝑀1𝑀2 +𝑀1𝑀3 +𝑀1𝑀4 +𝑀1𝑀5 +𝑀2𝑀3
+𝑀2𝑀4 +𝑀2𝑀5 +𝑀3𝑀4 +𝑀3𝑀5 +𝑀4𝑀5)] 

𝑘5 =
1

𝑀5
2 [𝑊𝑀1𝑀2𝑀3(𝑀4𝑀5

2 +𝑀5
3) +𝑊𝑀1𝑀4𝑀5

3(𝑀2 +𝑀3) +𝑀2𝑀3𝑀4𝑀5
3(𝑊 +𝑀1)

+ (𝑀6 +𝑀7)(𝑊𝑀1𝑀2𝑀3𝑀5 +𝑊𝑀1𝑀2𝑀4𝑀5 +𝑊𝑀1𝑀2𝑀5
2 +𝑊𝑀1𝑀3𝑀4𝑀5

+𝑊𝑀1𝑀3𝑀5
2 +𝑊𝑀1𝑀4𝑀5

2 +𝑊𝑀2𝑀3𝑀4𝑀5 +𝑊𝑀2𝑀3𝑀5
2 +𝑊𝑀2𝑀4𝑀5

2

+𝑊𝑀3𝑀4𝑀5
2 +𝑀1𝑀2𝑀3𝑀4𝑀5 +𝑀1𝑀2𝑀3𝑀5

2 +𝑀1𝑀2𝑀4𝑀5
2 +𝑀1𝑀3𝑀4𝑀5

2

+𝑀2𝑀3𝑀4𝑀5
2)

+ (𝑀6𝑀7)(𝑊𝑀1𝑀2 +𝑊𝑀1𝑀3 +𝑊𝑀1𝑀4 +𝑊𝑀1𝑀5 +𝑊𝑀2𝑀3 +𝑊𝑀2𝑀4
+𝑊𝑀2𝑀5 +𝑊𝑀3𝑀4 +𝑊𝑀3𝑀5 +𝑊𝑀4𝑀5 +𝑀1𝑀2𝑀3 +𝑀1𝑀2𝑀4 +𝑀1𝑀2𝑀3
+𝑀1𝑀3𝑀4 +𝑀1𝑀3𝑀5 +𝑀1𝑀4𝑀5 +𝑀2𝑀3𝑀4 +𝑀2𝑀3𝑀5 +𝑀2𝑀4𝑀5 +𝑀3𝑀4𝑀5)] 

𝑘6 =
1

𝑀5
2 [𝑊𝑀1𝑀2𝑀3𝑀4𝑀5(𝑀6 +𝑀7) + 𝑀2𝑀3𝑀4𝑀6𝑀7(𝑊 +𝑀1) + +𝑊𝑀1𝑀2𝑀5(𝑀4𝑀5

3 +𝑀6𝑀5
2)

+𝑊𝑀1𝑀2𝑀5
2(𝑀3𝑀7 +𝑀4𝑀6) +𝑊𝑀1𝑀4𝑀5

2(𝑀2𝑀7 +𝑀3𝑀6)

+𝑊𝑀3𝑀4𝑀5
2(𝑀1𝑀7 +𝑀2𝑀6) +𝑊𝑀2𝑀3𝑀4𝑀5

2(𝑀7 +𝑀1𝑀6)

+ 𝑀1𝑀2𝑀7(𝑀3𝑀4𝑀5
2 +𝑊𝑀5𝑀6) +𝑊𝑀5𝑀6𝑀7(𝑀3 +𝑀4)(𝑀1 +𝑀2)

+ 𝑀3𝑀5𝑀6𝑀7(𝑊𝑀4 +𝑀1𝑀2) +𝑀4𝑀6𝑀7(𝑀2 +𝑀3)(𝑀1𝑀5 +𝑊𝑀1)

+ 𝑀2𝑀3𝑀6𝑀7(𝑀4𝑀5 +𝑊𝑀1)] 

𝑘7 =
1

𝑀5
2 [𝑊𝑀1𝑀2𝑀3𝑀4𝑀5

2(𝑀6 +𝑀7)

+ 𝑀6𝑀7[𝑊𝑀1𝑀2𝑀5(𝑀3 +𝑀4) +𝑊𝑀3𝑀4𝑀5(𝑀1 +𝑀2) + 𝑀1𝑀2𝑀3𝑀4(𝑊 +𝑀5)]] 

𝑘8 =
1

𝑀5
(𝑊𝑀1𝑀2𝑀3𝑀4𝑀6𝑀7) 

By using the Routh-Hurwitz criteria, the equilibrium point 𝐸𝑜 is locally asymptotically stable if 

the all the coefficients 𝑘𝑖 > 0, all the first column of the Routh table are positive and there is no 

sign changes in the first column. 

Theorem 3.2  

The disease-free equilibrium (𝐸0) is locally asymptotically stable if (a). the determinant of the 

Jacobian matrix (also known as variational matrix) is positive and the trace is negative. (b). on 

solving the characteristics equation, the roots (eigen values) are all negative. 
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Proof: 

Solving the equation |𝐽𝐸0 − 𝜂𝐼| = 0, we have  

0

0000000

000

000000

000000

000000

000000

00000

000000

5

4321

43

32

21

1

5

6

5

5

7

5

6

5

5

6

=

−−

−−

−−

−−

−−

−−


−−


−−−






















M

W

M

M

M

M
M

Q

M

M

M

M

M

Q

M

M

M

M

 (3.16) 

The Determinant of the Jacobian matrix above is |𝐽𝐸0| =
1

𝑀5
(𝑊𝑀1𝑀2𝑀3𝑀4𝑀6𝑀7) and  

 Trace = −(𝑀1 +𝑀2 +𝑀3 +𝑀4 +𝑀5 +
𝑀6

𝑀5
+
𝑀7

𝑀5
+𝑊) 

Also solving the characteristics equation given in equation (3.15), we have the eigen values as   

𝜂1 = −𝑀5,   𝜂2 = −
𝑀7

𝑀5
, 𝜂3 = −

𝑀6

𝑀5
,  𝜂4 = −𝑀4,  𝜂5 = −𝑀3, 𝜂6 = −𝑀2 

𝜂7 = −𝑀1,   𝜂8 = −𝑊 

With the proof of Theorem 3.1 and Theorem 3.2, we can adequately confirm that the equilibrium 

point 𝐸𝑜 is locally asymptotically stable if  𝑅0 < 1, else it is unstable if 𝑅0 > 1 

 

3.4       Sensitivity Analysis of the Model Parameters 

To determine the most influential parameters driving asthma transmission dynamics due to 

environmental pollution, a local sensitivity analysis was performed using the mechanistic 

reproduction number (R₀) derived in Section 3.2. The analysis quantifies how proportional changes 

in each model parameter affect R₀, allowing prioritization of intervention strategies. 

Using the mechanistic form:  

R₀ =  𝛾 𝑥 𝑃 ∗  𝑥 (𝐶1 + 𝐶₂ + 𝐶₃), where P* = 
𝑞

𝜂  +𝑝
 and pathway contributions: 

𝐶₁ =  
𝜆

𝜆 + 𝜇
   𝑥 

1

𝑟ₗ + 𝛼₁ +  𝜇
 

𝐶₂ =  
𝛼₁

𝛼₁ + 𝜇
   𝑥 

1

𝑟₂ + 𝛼₂ +  𝜇
 

𝐶₃ =  
𝛼₂

𝛼₂ + 𝜇
   𝑥 

1

𝑟₃ + 𝛼₃ +  𝜇
 

Finite-difference elasticity indices were computed for each parameter using baseline values from 

Table 3.1. The elasticity (Sᵢ)of a parameter measures the proportional change in R₀ resulting 

from a 1% change in that parameter, defined as: 

𝑆ᵢ =  
𝛿𝑅₀

𝛿𝑝ᵢ
   𝑥 

𝑝ᵢ

𝑅₀
  

 

Table 3.1 summarizes the local sensitivity indices obtained from the analysis. 
Parameter Baseline Value Elasticity (Sensitivity Index) 

𝑄 5.0 +1.00 

𝛾 0.05 +1.00 
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𝜂 0.08 −0.92 

𝜇 0.01067 −0.20 

𝑟₁ 0.065 −0.12 

𝑟₂ 0.065 −0.12 

𝑟₃ 0.065 −0.08 

𝛼₁ 0.02 −0.05 

𝛼₂ 0.02 −0.04 

 𝑝 0.01 −0.03 

The results in Table 3.1 show that the aggregate emission rate of pollutants (𝑞) and the 

environmental transmission coefficient (𝛾) have the highest positive elasticities, indicating that 

small increases in these parameters significantly raise 𝑅₀. In contrast, the pollutant attenuation rate 

(𝜂) and recovery rates (𝑟₁  − 𝑟ₛ) exhibit negative elasticities, showing that improving pollution 

removal or enhancing recovery interventions effectively reduce 𝑅₀. Thus, pollution control and 

behavioral interventions remain the most effective strategies for asthma mitigation. These findings 

corroborate the numerical results in Section 3.4 and reinforce the model’s recommendation for 

policies targeting emission reduction, increased public awareness, and improved healthcare 

management. 

 

3.5 Numerical Experiment of the Model 

The Asthma Disease model due to environmental pollution in section 2.5, demonstrated in the 

model equation (2.1) - (2.8) was solved numerically using Runge-Kutta-Fehllberg 4-5th order 

method and implemented using Maple 17 Software (Maplesoft, Waterloo Maple Inc, 2017). The 

parameters used in the implementation of the model are shown in Table 3.1 below. Parameters 

were chosen in consonance with the threshold values obtained in the stability analysis of both the 

disease-free equilibrium and the endemic equilibrium state of the model. 

Table 3.2   Estimated values of the parameters used in the Numerical experiments 

Parameters Values Source  Parameters Values Source 

𝑺(𝒕) 48,714 Ozoh, et al. (2019) 𝛼₁ 0.05 Assumed 

𝑬(𝒕) 20,063 Ozoh, et al. (2019) 𝛼₂ 0.02 Assumed 

𝑰𝟏(𝒕) 8,530 Ozoh, et al. (2019) 𝛼₃ 0.02 Assumed 

𝑰𝟐(𝒕) 4,720 Ozoh, et al. (2019) 𝛼₄ 0.05 Assumed 

𝑰𝟑(𝒕) 3,560 Ozoh, et al. (2019) 𝜎1 0.065 LHT (2025) 

𝑰𝟒(𝒕) 3,273 Ozoh, et al. (2019) 𝜎2 0.065 LHT (2025) 

𝑹(𝒕) 2,560 Ozoh, et al. (2019) 𝜎3 0.065 LHT (2025) 

𝑷(𝒕) 1000.3 Ram & Agraj (2009) 𝜎4 0.065 LHT (2025) 

𝑵(𝒕) 92,420.3 NACA (2011) 𝜎5 0.005 LHT (2025) 

Ʌ 100 Ram & Agraj (2009) 𝜛 0.6 Assumed 

𝜸 0.0002 Olukayode et al, (2024) 𝜏 0.5 Assumed 

𝝀 0.0003 Olukayode et al, (2024) 𝛿 0.01 Junehyul, et al (2017) 

𝜷𝟏 0.08 Wenjia Chen et al. (2018) 𝜇 0.01067 NACA (2011) 

𝜷𝟐 0.08 Wenjia Chen et al. (2018) 𝑄 5 ton/year Ram & Agraj (2009) 

𝜷𝟑 0.08 Wenjia Chen et al. (2018)     

 

3.4.1 List of Numerical Experiments 

The following numerical experiment were carried out 
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1) To determine the effect of varying transmission rate (𝜸) on the prevalence of asthmatic 

infection on the Exposed class 𝐸(𝑡) due to interaction of susceptible with environmental 

pollutants. (𝛾 = 0.002, 0.004, 0.006, 0.008)   
2) To determine the effect of varying transmission rate (𝜆) on prevalence of asthmatics infection 

on the Infectious class (𝐼1)due to interaction of Exposed individuals with environmental 

pollutants (𝜆 = 0.002, 0.004, 0.006, 0.008). 
3) To determine the effect of successful asthma control due to public awareness (𝜛) on 

prevalence of asthmatics infection in the Infectious class (𝐼1) due to various strategies of 

interventions  (𝜛 = 0.2, 0.4, 0.6, 0.8, 1.0) . 
4) To determine the effect of successful asthma control due to public awareness (𝜛) on recovered 

class 𝑅(𝑡) due to various probability of interventions  

 𝜛 = (0.2, 0.4, 0.6, 0.8, 1.0) 

5) To determine the effect of varying Aggregate emission rate (𝑄) of pollutants on pollution over 

time (𝑄 = 5, 10, 15, 20, 25). 
6) To determine the effect of Aggregate emission rate (𝑄) of pollutants on the susceptible 

population over time (𝑄 = 5, 10, 15, 20, 25) 
7) To determine the effect of Aggregate emission rate (𝑄) of pollutants on the Infected population 

over time (𝑄 = 10, 15, 20, 25, 𝜆 = 0.003, 𝛾 = 0.002) 
 

3.4.2 Graphical Representation of Results 

Experiment 1: The effect of varying transmission rate (𝜸) on prevalence of asthmatics 

infection on the Exposed class due to interaction of susceptible with the environmental 

pollutant. (𝜸 = 𝟎. 𝟎𝟎𝟐, 𝟎. 𝟎𝟎𝟒, 𝟎. 𝟎𝟎𝟔, 𝟎. 𝟎𝟎𝟖)  

 

 

Figure 3.1  Prevalence of asthmatic infection in the exposed class with varying transmission 

rate of due to interaction of susceptible with environmental pollution. (𝛾 =
0.002, 0.004, 0.006, 0.008).  

 

Experiment 2: The effect of varying transmission rate (𝝀) on prevalence of asthmatics 

infection in the Infectious class (𝐼1) due to interaction of Exposed individuals with 

environmental pollution (𝝀 = 𝟎. 𝟎𝟎𝟐, 𝟎. 𝟎𝟎𝟒, 𝟎. 𝟎𝟎𝟔, 𝟎. 𝟎𝟎𝟖)  
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Figure 3.2  Prevalence of asthmatic infection in the Infectious class (𝐼1 ) - Mild Asthma with 

varying rate of interaction of exposed individuals with the environment. (𝛾 =
0.002, 0.004, 0.006, 0.008).  

Experiment 3: The effect of successful asthma control due to public awareness (𝜛) on 

prevalence of asthmatics infection in the Infectious class (𝐼1) due to various strategies of 

interventions  (𝝕 = 𝟎. 𝟐, 𝟎. 𝟒, 𝟎. 𝟔, 𝟎. 𝟖, 𝟏. 𝟎)  

 

Figure 3.3  Prevalence of asthmatic infection in the Infectious class (𝐼1 ) - Mild Asthma with 

varying rate asthmatic control (𝜛 = 0.2, 0.4, 0.6, 0.8, 1.0).  

Experiment 4: The effect of successful asthma control due to public awareness (𝜛) on 

recovered class (𝑅(𝑡))due to various probability of interventions  (𝝕 =
𝟎. 𝟐, 𝟎. 𝟒, 𝟎. 𝟔, 𝟎. 𝟖, 𝟏. 𝟎)  

 

Figure 3.4  Impact of successful asthma control due to public awareness in the Recovered class 
(𝑅 ) with varying control rate (𝜛 = 0.2, 0.4, 0.6, 0.8, 1.0).  
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Experiment 5: The effect of Aggregate emission rate (𝑄) of pollutants on pollution over time 

(𝑸 = 𝟓, 𝟏𝟎, 𝟏𝟓, 𝟐𝟎, 𝟐𝟓)  

 

Figure 3.5  Impact of Cumulative density of pollutants on the pollution class (𝑃 ) with varying 

aggregate emission rate (𝑞) (𝑞 = 5, 10, 15, 20, 25).  

Experiment 6: The effect of Aggregate emission rate (𝑄) of pollutants on the susceptible 

population over time (𝑸 = 𝟓, 𝟏𝟎, 𝟏𝟓, 𝟐𝟎, 𝟐𝟓)  

 
Figure 3.6  Impact of Cumulative density of pollutants on the Susceptible population class 

(𝑆(𝑡) ) with varying aggregate emission rate (𝑞) (𝑞 = 10, 15, 20, 25).  

Experiment 7: The effect of Aggregate emission rate (𝑄) of pollutants on the Infected 

population over time (𝑸 = 𝟏𝟎, 𝟏𝟓, 𝟐𝟎, 𝟐𝟓, 𝝀 = 𝟎. 𝟎𝟎𝟑, 𝜸 = 𝟎. 𝟎𝟎𝟐) 

 

Figure 3.7  Impact of Cumulative density of pollutants on the Infected population class (𝐼(𝑡) ) 

with varying aggregate emission rate (𝑞) (𝑞 = 10, 15, 20, 25). 
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DISCUSSION  

This study analyzed the impact of environmental pollution on asthma dynamics using a 

compartmental mathematical model, integrating findings from numerical simulations with existing 

scholarly research to provide deeper insights into asthma transmission and control. The results 

demonstrated that as the environmental transmission coefficient (γ) increased, the number of 

exposed individuals rose exponentially, underscoring the significant role of pollution in asthma 

progression. This finding aligns with the work of Naresh and Tripathi (2009), who linked pollutant 

concentrations to increased asthma prevalence, and with the WHO (2016) report attributing 43% 

of global asthma cases to air pollution [1]. Thus, γ serves as a crucial determinant of exposure 

levels, emphasizing the importance of pollution reduction in mitigating asthma risks. 

Furthermore, the study revealed that higher exposure transmission rates (λ) substantially increased 

all infected classes, ranging from mild to chronic asthma. This supports the findings of Olukayode 

et al. (2024) and other empirical studies (Chen et al., 2013; Liu et al., 2018), which showed that 

prolonged exposure to pollutants accelerates disease manifestation and hospital admissions. By 

dividing infected individuals into multiple severity stages, this model enhances precision and 

captures the heterogeneous nature of asthma progression more effectively than previous models. 

[2] 

The model also examined the influence of public health awareness and behavioral change (ϖ), 

demonstrating that increased awareness leads to a significant decline in infection rates and a 

corresponding rise in recovery levels. This mirrors the results of Bateman et al. (2018) and Zhang 

and Jiang (2014), who observed notable improvements in asthma control following targeted 

awareness campaigns. [3] The inclusion of ϖ as a behavioral control parameter represents an 

important innovation, as it quantifies the impact of soft interventions—such as education and 

preventive behaviors—on disease dynamics, highlighting the need for continuous community 

outreach and education.  

Additionally, the pollutant emission rate (q) was shown to drive an increase in environmental load 

(P(t)), which in turn decreased the susceptible population and increased both exposure and 

infection rates. This outcome aligns with the findings of Naresh and Tripathi (2009) and the Global 

Burden of Disease (2019) report, which identified fine particulate matter as a leading cause of 

asthma morbidity. [4] The model thereby quantifies the feedback loop between pollutant emissions 

and asthma prevalence, emphasizing that controlling emission rates is vital for reducing 

environmental health risks. Long-term analysis further revealed that under conditions of high 

pollution and weak intervention (low ϖ), the infected population fails to reach a disease-free 

equilibrium, instead stabilizing at an endemic state. This aligns with global observations in highly 

industrialized regions such as Nigeria, India, and China (WHO, 2021; Adewale et al., 2023), where 

chronic asthma remains persistent without sustained intervention. [5] Overall, this study 

contributes significantly to existing literature by extending earlier models through the integration 

of multiple infection stages, recovery dynamics, and pollution feedback mechanisms. By 

introducing control parameters such as ϖ, q, γ, and λ, the model establishes a direct link between 

public health actions, pollution control policies, and asthma outcomes. These innovations enhance 

the model’s realism and provide valuable guidance for designing effective intervention strategies, 

particularly in pollution-prone and resource-limited settings. 

 

CONCLUSION 

In conclusion, this research reinforces the well-established but often underappreciated link 

between environmental pollution and asthma dynamics. Through the use of a robust mathematical 

framework and simulations, it was demonstrated that pollution not only increases the rate of 

asthma incidence but also makes eradication more difficult unless strong and sustained 
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interventions are adopted. The disease-free equilibrium is only attainable when key parameters, 

such as pollutant load (𝑞), exposure rates (𝛾, 𝜆)are reduced and and public awareness 
(𝜛)enhanced to maintain thresholds that bring the basic reproduction number and public 

awareness (𝑅0)below unity. The model emphasizes that asthma is not only a biomedical condition 

but also a socio-environmental one that requires interdisciplinary strategies for control and 

prevention. This study validates existing literature while offering new contributions, especially the 

inclusion of behavior-based intervention strategies and feedback loops involving environmental 

pollutants. It underlines the potential of mathematical modeling in health forecasting and the 

formulation of data-driven policies in environmental and respiratory health. 
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