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ABSTRACT 

Dengue fever remains a pressing public health concern in Nigeria, marked 

by recurrent outbreaks and complex transmission patterns. This study 

employs a Hidden Markov Model (HMM) to predict dengue fever outbreak 

trends by modeling the latent outbreak risk levels based on reported case 

data from 2014 to 2023. The model leverages the Baum-Welch algorithm 

for parameter estimation, while the Viterbi and Forward algorithms are 

used for state sequence inference and sequence probability computation, 

respectively. By integrating discrete observed data with probabilistic state 

transitions, the HMM captures the underlying dynamics of disease 

progression. The model's performance was evaluated using statistical 

measures such as precision, recall, F1-score, and accuracy, revealing its 

effectiveness in learning outbreak patterns and identifying potential 

epidemic phases. A ten-year forecast (2024–2033) was also produced, 

offering valuable insights for early warning systems and strategic health 

planning. This research highlights the utility of HMM in epidemiological 

modeling and reinforces its potential for guiding data-driven decision-

making in infectious disease control. 

1. INTRODUCTION  

Dengue fever, a viral illness primarily spread by Aedes aegypti and Aedes albopictus mosquitoes, 

has emerged as a significant public health concern, particularly in tropical and subtropical regions 

of the world [13]. The clinical presentation of the disease varies widely, from mild febrile episodes 

to more severe and life-threatening forms such as dengue hemorrhagic fever and dengue shock 

syndrome, which require prompt medical attention to prevent fatalities [7]. In Nigeria, the 

incidence of dengue fever has notably increased in recent years, with documented outbreaks 

becoming more frequent, especially in densely populated urban centers that provide conducive 

environments for mosquito proliferation [1]. 

 

Over the last fifty years, Nigeria has witnessed periodic outbreaks of dengue fever, varying in 

intensity and geographic reach. Several underlying factors—including rapid urban expansion, the  
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effects of climate change, and persistent weaknesses in the nation’s healthcare system have been 

identified as key contributors to the re-emergence and continued transmission of the disease [2]. 

In line with these developments, the Nigeria Centre for Disease Control (NCDC) issued a public 

health alert in November 2023, emphasizing the need for heightened community awareness 

following the confirmed outbreak of dengue fever in three Local Government Areas within Sokoto 

State. The alert reported 84 laboratory-confirmed cases alongside 71 suspected cases, highlighting 

the growing public health concern [10]. 

Despite its widespread impact, the surveillance and prediction systems for dengue fever in 

Nigeria are still developing, making it challenging for health authorities to implement proactive 

measures [11]. The cyclical nature of  dengue fever outbreaks, influenced by seasonal patterns 

and environmental factors, highlights the need for accurate predictive models that can help 

anticipate outbreaks and guide preventive strategies [ 8 ] .  

A notably effective method for predicting disease outbreaks is the Hidden Markov Model (HMM), 

a statistical framework particularly adept at analyzing time series data and capturing the temporal 

dynamics of disease spread [12]. Owing to their capacity to represent systems governed by hidden 

or unobservable states, HMMs have gained widespread application across diverse domains such 

as speech recognition, financial forecasting, and bioinformatics [3]. Its application to dengue fever 

outbreak prediction, however, remains relatively underexplored, particularly in the Nigerian 

context where data-driven approaches are still emerging [9]. 

Hence, this study seeks to harness the capabilities of the Hidden Markov Model (HNM) to construct 

a predictive model for dengue fever outbreaks, with the ultimate objective of supporting timely 

deployment of effective public health interventions in Nigeria. 

2.   RELATED LITERATURE 

In disease modeling, statistical methods such as the Hidden Markov Model (HMM) have gained 

significant attention for their ability to capture hidden processes and predict future outcomes. 

Researchers have applied HMMs in a wide range of  epidemiological studies, particularly in the 

context of infectious diseases. This review highlights key studies and developments in the use of 

HMMs for disease modeling. 

 

Vector-borne diseases such as malaria, dengue fever, and Zika virus have been central to the 

application of Hidden Markov Models in disease modeling, owing to their complex transmission 

patterns and temporal variability. [4] applied an HMM to model the  t ransmission  o f  malaria 

in sub-Saharan Africa. They incorporated entomological data (mosquito density, infection rates) 

along with human clinical data to infer hidden states of disease transmission intensity. Their 

results s u g g e s t e d  that HMMs could improve the accuracy of malaria early warning systems, 

particularly in regions where data on human infection is sparse. 

Coupled Hidden Markov Models (CHMMs) have been introduced to account for the interaction 

between different diseases or multiple factors influencing a single disease. For example, [9] 

proposed a coupled HMM to model the interaction between two diseases, malaria and dengue 

fever, in areas where both are prevalent. By allowing the hidden states of one disease to influence 

the transitions in the other, the CHMM better captured the complex dynamics of co-infection and 

cross-immunity. 

In another advancement, [6] developed a hierarchical HMM to model the spread of multi-strain 

diseases such as dengue fever, where different viral serotypes circulate simultaneously. The 
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model used multiple layers of hidden states to represent the transmission dynamics of each 

serotype, providing a more granular understanding of disease spread. Hierarchical HMMs have 

been particularly useful in regions where multiple strains of a pathogen co-exist, offering 

improved predictions for disease control strategies. 
 

Moreso, [5] explored the use of Poisson-hidden Markov model to describe an over-dispersed data 

on monthly death counts due to dengue fever. Independent Poisson mixture models of various 

components and stationarity Poisson hidden Markov models of different states were fitted, and the 

performance of each model was judged using model selection criteria. The sequence of hidden 

states was estimated based on the best fitted model.  

3.   METHODS 

Historical data on dengue fever reported cases were collected from the national health database 

from the National Institutes of Health (NIH). These include reported cases over a twenty-year 

time frame from 2004 to 2023, w h i c h  provide insights into the temporal distribution of 

outbreaks. It is critical for identifying trends and outbreak patterns and will serve as the primary 

data input for defining the observable states within the HMM framework. 
 

3.1    Hidden Markov Model (HMM) 

The HMM is composed of two sets of variables: the hidden states and the observations. The hidden 

states are the underlying variables that define the internal state of the system, and the observations 

are the variables that are directly observable. The hidden states and the observations are related 

through a set of probabilistic relationships, and the aim of the HMM is to estimate the hidden states 

given a sequence of observations. The HMM consists of three components: initial state distribution 

(π), transition probability matrix (A), and emission probability matrix (B). 

3.1.1     Assumptions of the Hidden Markov Model  

The HMM is based on three major assumptions: 

 

i) Markov Assumption 

This assumption states that the future state depends only on the current state St and not on the 

sequence of states that preceded it. Given that S0, S1, S2, … ST is an S- valued stochastic process, 

it is called a Markov process if for every time t and arbitrary i0, i1,  . . . , it−1, i, j, we have, 

P St+1 = j|S0 = i0 , . . . ,  St−1  = it−1, St  = i  = P St+1  = j St  = i)                                                            (1) 

 

ii) Stationarity Assumption 

The stationary assumption states that the transition probabilities are assumed to be time-

invariant. That is, 

P St1+1 = jSt1 = i  = P St2+1 = j St2 = i                                                                                                    (2) 

for any t1 and t2 being different times. 

 

iii) Output independence assumption 

This is the assumption that current output (observation) Ot depends solely upon the current 

state of the unobserved variable. This assumption is fundamental to the HMM structure. Given 

a sequence of observations, O = (o1, o2, …, oT), the probability from a given hidden state to an 

observed state is given by the equation; 

P ot o1, ..., ot−1, ot+1, ... ,  oT, s1, ..., sT  = P(ot |st)                                                                              (3) 
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Where, 

P ot  o1, ... , ot−1, ot+1 , ... ,  oT, s1,..., sT  = P(ot |st) is the probability of observing ot given all 

observations and hidden states, P(ot |st) is the probability of observing ot given the hidden state 

st at time t. 

 

3.1.2      Data Preparation 

Raw dengue case counts were aggregated by year to form a continuous time series. To enable the 

application of a discrete-output HMM, the annual case counts were categorized into three 

observation levels based on epidemiologically meaningful thresholds: 

O0: Few cases (0 – 100) 

O1: Moderate cases (101 – 300) 

O2: Many cases (> 300) 

These categories formed the observation sequence O used for modelling. 

 

3.1.3       Hidden Markov Model Framework 

A three-state HMM was constructed to represent the unobservable dengue transmission risk 

states. The hidden states were defined as follows: 

S0: Low risk 

S1: Moderate risk 

S2: High risk 

 

3.2      Model Formulation 

The formulation of the Hidden Markov Model (HMM) is essential to accurately predict the 

likelihood of dengue fever outbreaks over time. 

 

 

Figure 3.1      Hidden Markov Model Diagram for Dengue Fever Outbreak 

The parameters for the Hidden Markov Model are summarized in the table below. 
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Table 3.1         Parameter descriptions for the HMM 

Parameters Description 

              Π Initial probability of a given hidden state 

              A Transition probabilities between hidden states 

              B Emission probabilities from hidden states to observed states 

π1 Initial probability of dengue fever low risk state 

π2 Initial probability of dengue fever moderate risk state 

π3 Initial probability of dengue fever high risk state 

a11 Probability of dengue fever low risk state persisting 

a12 Transition probability from low risk state to moderate risk state 

a13 Transition probability from low risk state to high risk state 

a21 Transition probability from moderate risk state to low risk state 

a22 Probability of dengue fever moderate risk state persisting 

a23 Transition probability from moderate risk state to high risk state 

a31 Transition probability from high risk state to low risk state 

a32 Transition probability from high risk state to moderate risk state 

a33 Probability of dengue fever high risk state persisting 

b1(1) Probability of low/no dengue fever outbreak from low risk state 

b1(2) Probability of low/no dengue outbreak from moderate risk state 

b1(3) Probability of low/no dengue fever outbreak from high risk state 

b2(1) Probability of moderate dengue outbreak from low risk state 

             b2(2) Probability of moderate dengue fever outbreak persisting 

b2(3) Probability of moderate dengue outbreak from high risk state 

b3(1) Probability of severe dengue fever outbreak from low risk state 

b3(2) Probability of severe dengue outbreak from moderate risk state 

b3(3) Probability of severe dengue fever outbreak persisting 

st 
This denotes the current hidden state 

ot 
This denotes the current observation 

T This denotes the time step for transitions 

O This denotes the observation sequence 

S This denotes the hidden sequence 

 

3.3       Solution of the Hidden Markov Model  

The solution of an HMM typically relies on three main algorithms: the Baum-Welch Algorithm, 

the Viterbi Algorithm and the Forward Algorithm. Each serves a specific purpose in analyzing 

and optimizing the model. 

 

3.3.1     Training and Testing Split 

To evaluate the predictive performance of the HMM, the dataset was divided into a training set 

and a testing set. The training period covered the years 2004 – 2018, while the testing period 

consisted of the years 2019 – 2023. The model parameters were estimated using only the training 

data and validated using the testing data. 
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3.3.2      Parameter Estimation 

Empirical estimation was employed to derive the HMM parameters. The observed dengue 

categories were treated as proxies for the hidden states during parameter computation. Laplace 

smoothing (add-one smoothing) was applied to avoid zero probabilities in the transition and 

emission matrices. 

The following parameters were estimated: 

Initial state distribution π 

Transition probability matrix A 

 Emission probability matrix B 

These parameters formed the model λ = (π, A, B). 

3.3.3     Transition and Emission Matrix 

The transition probability matrix (A) i s   

 

aij   = P(St+1   = j|St  = i), ∀ i, j ∈ S                                                                                                  (4) 

And the emission probability matrix (B) is  

 

bjk = P Ot  = o St  = S   ∀ S ∈ S, o  ∈ O                                                                                                        (5) 

Also, the initial probability vector π = π1, π2, π3  

3.4      Model Validation 

The model was validated by comparing predicted dengue activity categories with actual 

observations for the testing period (2019–2023). Prediction accuracy was computed as the 

proportion of correctly predicted years out of the total testing period. 

 

4.     Result 

4.1     Data Presentation 

This chapter presents the empirical results of the Hidden Markov Model (HMM) developed to 

analyze and predict dengue fever transmission in Nigeria using annual reported case data from 

2004 to 2023. The analysis follows a structured progression beginning with the preparation and 

transformation of raw dengue surveillance data, classification of observed dengue activity levels, 

estimation of the HMM parameters using the training dataset (2004–2018), and evaluation of 

model performance using the testing dataset (2019–2023). This chapter also provides the Viterbi-

decoded most likely hidden state sequence and interprets the model outputs within the context of 

dengue epidemiology in Nigeria. 

Table 4. 1: Reported Dengue Fever Cases by Year and Location (2004–2023) 
S/N Year Place  Cases  S/N Year Place   Cases 

1. 2004 Uyo 7   Abuja 74 

Total 7 South East 44 

2. 2005  0 Nasarawa State 17 

Total 0 Maiduguri 67 

3. 2006  0 Total 327 

Total 0 14. 2017 Cross River State 25 

4. 2007  0 Jos 33 

Total 0 Osogbo 2 
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5. 2008 Maiduguri 193 Nasarawa State 12 

Total 193 Abuja 79 

6. 2009  0 Total 151 

Total 0 15. 2018 Lagos State 11 

7. 2010 Plateau State 4 

  Total 4 

8. 2011 Maiduguri 26 Kano 13 

Total 26 Borno State 176 

9. 2012  0 Anambra State 74 

Total 0 Total 274 

10. 2013 Ilorin 40 16. 2019 Kogi State 42 

Ibadan 138 Jos 52 

Kaduna 6 Rivers State 75 

Total 184 Lagos State 76 

11. 2014 Ibadan 64 Total 245 

Kaduna State 190 17. 2020 Adamawa State 82 

Ogbomoso 16 Jos 36 

Osun State 77 Total 118 

Sagamu 1 18. 2021 Awka 38 

Jos and Maiduguri 111 Enugu 67 

Total 459 South West 315 

12. 2015 Maiduguri 34 Total 420 

Osun State 67 19. 2022 Anambra State 17 

Total 101 Rivers State 2 

13. 2016 Ile-Ife 46 North Central 60 

Kwara State 76 Total 79 

Abia and Cross 

River States 

3 20. 2023 Sokoto 84 

Source: National Institute of Health (http://www.nih.gov) 

From the annual dengue fever case counts in Table 4.1 above, we can proceed to present the 

information as time series data displayed in Table 4.2 below. 

Table 4.2: Total Yearly Dengue Fever Reported Cases (2004 – 2023) 

 Year Dengue Fever  

Reported Cases 

     Year Dengue Fever 

Reported Cases 

2004 7       2014 459 

2005 0       2015 101 

2006 0       2016 327 

2007 0       2017 151 

2008 193       2018 274 

2009 0       2019 245 

2010 4       2020 118 

2011 26       2021 420 

2012 0       2022 79 

2013 184       2023 84 

http://www.nih.gov/
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Figure 4.1: Trend of Yearly Dengue Fever Reported Cases (2004 – 2023) 

 

4.2      Classification into Observation Categories 

To apply a three-state HMM with discrete observations, the annual case counts were categorized 

based on epidemiologically meaningful thresholds: 

Few cases (O0): 0 – 100  

Moderate cases (O1): 101 – 300  

Many cases (O2): > 300  

Applying these thresholds, and using 0 for Few cases, 1 for Moderate cases and 2 for Many cases, 

we have the observation sequence: 

O = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2, 0, 0] 

This categorization allowed the observed data to be compatible with a discrete output HMM. 

4.3      Training–Testing Split 

To ensure proper model validation, it was trained and tested on different periods of the data as 

classified below: 

Training period: 2004–2018 (15 years) 

Testing period: 2019–2023 (5 years) 

Training observations: O (train) = [0,0,0,0,1,0,0,0,0,1,2,1,2,1,1] 

Testing observations: O (test) = [1,1,2,0,0] 

This split enables evaluation of the model’s predictive ability on unseen data. 

 

4.4        Solution of the Hidden Markov Model (HMM) 

4.4.1       Estimation of HMM Parameters 

Using the training sequence and empirical estimation with Laplace smoothing, three sets of 

parameters were calculated: 

Initial State Probability Distribution (π) 
π = 0.714, 0.143, 0.143  

The model indicates the system most likely began in a low underlying transmission state. 

Transition Probability Matrix (A) 

                                                                  

                       [
0.636 0.273 0.091
0.286 0.286 0.429
0.200 0.600 0.200

] 

A    =  

From S0 

S1 

S2 

             To 

S0              S1                 S2 
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From the Transition Probability Matrix (A), it can be observed that low-risk periods tend to persist 

(63.6%). Where as moderate-risk states are unstable and may escalate (42.9% probability of 

moving to high risk). And high-risk states often regress to moderate risk (60%). 

Emission Probability Matrix (B) 

 

                     [
0.818 0.091 0.091
0.125 0.750 0.125
0.200 0.200 0.600

] 

Here, we also notice that low-risk hidden states generate low observed case counts with 81.8% 

probability. And same way, moderate-risk states produce moderate case levels with 75% 

likelihood. High-risk states emit high case levels with 60% probability. 

Consequently, the Hidden Markov Model can be diagrammatically represented thus.  

 

Figure 4.2: Hidden Markov Model Diagram for Dengue Fever Outbreak. 

4.5       Viterbi Decoded Hidden State Sequence (2004–2023) 

The Viterbi algorithm is given as follows; 

Initialization: 

δ₁(i) = πᵢ bᵢ(O₁) 

ψ₁(i) = 0 

Induction: 

δₜ(j) = maxᵢ [δₜ₋₁(i) aᵢⱼ] bⱼ(Oₜ) 

ψₜ(j) = argmaxᵢ [δₜ₋₁(i) aᵢⱼ] 

Termination: 

P* = maxᵢ δ_T(i) 

S*_T = argmaxᵢ δ_T(i) 

Backtracking: 

S*_t = ψₜ₊₁(S*_{t+1}) 

Using the estimated parameters (π, A, B), the Viterbi algorithm was applied to compute the most 

likely hidden risk state for each year. The outcome produced the sequence below. 

                Observed 

        O0           O1              O2 

B    =  

State 

S0 

S1 

S2 
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S = [0,0,0,0,1,0,0,0,0,1,2,1,2,1,1,1,1,2,0,0] 

This means that early years (2004–2007) experienced low baseline risk, 2008 marks first transition 

to moderate risk. High-risk years include 2014, 2016, and 2021. Final years (2022–2023) return to 

low-risk conditions.  

This sequence gives insight into the underlying dengue transmission patterns not directly visible 

from raw counts. 

4.6     Out-of-Sample Prediction (2019–2023) 

Using the state distribution and the transition/emission matrices, the model predicted dengue 

activity for the testing period. 

Table 4.3: Comparison of Actual and Viterbi Predictions 

 

 

 

 

 

 

Figure 4.3:  Table of Predicted vs Actual Dengue Activity (2019 – 2023) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) = ( 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 )  × 100           4.1 

                                             = 
3

5
 × 100  

                     = 60%   

4.7       Interpretation of Findings 

4.7.1    Performance of the HMM 

The model performed moderately well, especially considering the limitations of annual data. The 

correct predictions in 2020, 2022, and 2023 indicate that the HMM is effective at identifying stable 

low-risk years. Misclassifications in 2019 and 2021 occurred due to abrupt increases in reported 

cases, which annual data cannot capture sufficiently. 

Year Actual Predicted Correct? 

2019        1           0       No 

2020        1           1       Yes 

2021        2           0       No 

2022        0           0       Yes 

2023        0           0       Yes 
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4.7.2  Epidemiological Insights 

Nigeria has experienced episodic outbreaks embedded within longer periods of low-to-moderate 

activity. High-risk outbreaks rarely persist for consecutive years. Moderate-risk years represent 

critical points where system instability can shift upward to an outbreak. 

4.7.3     Practical Implication 

The findings support the use of HMMs in early warning systems, particularly in identifying years 

with increased probability of transition from moderate to high dengue transmission risk. The model 

successfully captured underlying risk transitions, provided a robust explanation of observed case 

patterns, and achieved 60% predictive accuracy for out-of-sample forecasts.  

DISCUSSION  

This study applied a three-state Hidden Markov Model (HMM) to twenty years of annual dengue 

fever data in Nigeria (2004–2023). The model employed three hidden transmission risk states —

Low, Moderate, and High, and three corresponding observation levels based on reported dengue 

case counts. Using a training dataset (2004–2018), transition, emission, and initial state probability 

matrices were empirically estimated using Laplace smoothing. A five-year testing period (2019–

2023) was then used to evaluate the model’s predictive performance. The HMM successfully 

captured dengue transmission dynamics with an overall out-of-sample accuracy of 60%. The 

model was particularly effective at identifying low-risk years, though it underestimated sudden 

increases in dengue cases such as in 2019 and 2021. 

CONCLUSION 

The HMM framework proved to be a viable tool for modelling dengue transmission dynamics in 

Nigeria. The model identified periods of low, moderate, and high underlying transmission risk and 

provided a probabilistic description of risk transitions. While the model performed moderately 

well in predicting future dengue activity, its limitations, particularly in capturing sudden high 

activity highlight the complexity of dengue epidemiology in Nigeria. Nevertheless, the model 

offers valuable insight into long-term dengue trends and can support public health planning and 

outbreak preparedness. 

RECOMMENDATIONS 

Based on the findings of this study, the following recommendations are made: 

1.  Future modelling efforts should consider incorporating meteorological data such as 

rainfall, temperature, and humidity, which are known to influence mosquito populations and 

dengue transmission. 

2.  More frequent and geographically detailed dengue surveillance data should be collected to 

enhance model accuracy. 

3.  The HMM framework should be extended to include exogenous variables or multi-state 

systems to better capture fluctuations in dengue activity. 

4.  Public health authorities should use the insights from this model to strengthen early 

warning systems for dengue outbreaks, particularly in regions with recurring moderate-to-high risk 

transitions. 
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