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- - : Dengue fever remains a pressing public health concern in Nigeria, marked
Article history: by recurrent outbreaks and complex transmission patterns. This study
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Dengue fever, used for state sequence inference and sequence probability computation,
Hidden Markov respectively. By integrating discrete observed data with probabilistic state
Model, transitions, the HMM captures the underlying dynamics of disease
Outbreak progression. The model's performance was evaluated using statistical
prediction, measures such as precision, recall, F1-score, and accuracy, revealing its
Vector-borne effectiveness in learning outbreak patterns and identifying potential
diseases, epidemic phases. A ten-year forecast (2024-2033) was also produced,
Nigeria. offering valuable insights for early warning systems and strategic health

planning. This research highlights the utility of HMM in epidemiological
modeling and reinforces its potential for guiding data-driven decision-
making in infectious disease control.

1. INTRODUCTION

Dengue fever, a viral illness primarily spread by Aedes aegypti and Aedes albopictus mosquitoes,
has emerged as a significant public health concern, particularly in tropical and subtropical regions
of the world [13]. The clinical presentation of the disease varies widely, from mild febrile episodes
to more severe and life-threatening forms such as dengue hemorrhagic fever and dengue shock
syndrome, which require prompt medical attention to prevent fatalities [7]. In Nigeria, the
incidence of dengue fever has notably increased in recent years, with documented outbreaks
becoming more frequent, especially in densely populated urban centers that provide conducive
environments for mosquito proliferation [1].

Over the last fifty years, Nigeria has witnessed periodic outbreaks of dengue fever, varying in
intensity and geographic reach. Several underlying factors—including rapid urban expansion, the
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effects of climate change, and persistent weaknesses in the nation’s healthcare system have been
identified as key contributors to the re-emergence and continued transmission of the disease [2].
In line with these developments, the Nigeria Centre for Disease Control (NCDC) issued a public
health alert in November 2023, emphasizing the need for heightened community awareness
following the confirmed outbreak of dengue fever in three Local Government Areas within Sokoto
State. The alert reported 84 laboratory-confirmed cases alongside 71 suspected cases, highlighting
the growing public health concern [10].

Despite its widespread impact, the surveillance and prediction systems for dengue fever in
Nigeria are still developing, making it challenging for health authorities to implement proactive
measures [11]. The cyclical nature of dengue fever outbreaks, influenced by seasonal patterns
and environmental factors, highlights the need for accurate predictive models that can help
anticipate outbreaks and guide preventive strategies [8].

A notably effective method for predicting disease outbreaks is the Hidden Markov Model (HMM),
a statistical framework particularly adept at analyzing time series data and capturing the temporal
dynamics of disease spread [12]. Owing to their capacity to represent systems governed by hidden
or unobservable states, HMMs have gained widespread application across diverse domains such
as speech recognition, financial forecasting, and bioinformatics [3]. Its application to dengue fever
outbreak prediction, however, remains relatively underexplored, particularly in the Nigerian
context where data-driven approaches are still emerging [9].

Hence, this study seeks to harness the capabilities of the Hidden Markov Model (HNM) to construct
a predictive model for dengue fever outbreaks, with the ultimate objective of supporting timely
deployment of effective public health interventions in Nigeria.

2. RELATED LITERATURE

In disease modeling, statistical methods such as the Hidden Markov Model (HMM) have gained
significant attention for their ability to capture hidden processes and predict future outcomes.
Researchers have applied HMMs in a wide range of epidemiological studies, particularly in the
context of infectious diseases. This review highlights key studies and developments in the use of
HMMs for disease modeling.

Vector-borne diseases such as malaria, dengue fever, and Zika virus have been central to the
application of Hidden Markov Models in disease modeling, owing to their complex transmission
patterns and temporal variability. [4] applied an HMM to model the transmission of malaria
in sub-Saharan Africa. They incorporated entomological data (mosquito density, infection rates)
along with human clinical data to infer hidden states of disease transmission intensity. Their
results suggested that HMMs could improve the accuracy of malaria early warning systems,
particularly in regions where data on human infection is sparse.

Coupled Hidden Markov Models (CHMMs) have been introduced to account for the interaction
between different diseases or multiple factors influencing a single disease. For example, [9]
proposed a coupled HMM to model the interaction between two diseases, malaria and dengue
fever, in areas where both are prevalent. By allowing the hidden states of one disease to influence
the transitions in the other, the CHMM better captured the complex dynamics of co-infection and
cross-immunity.

In another advancement, [6] developed a hierarchical HMM to model the spread of multi-strain
diseases such as dengue fever, where different viral serotypes circulate simultaneously. The
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model used multiple layers of hidden states to represent the transmission dynamics of each
serotype, providing a more granular understanding of disease spread. Hierarchical HMMs have
been particularly useful in regions where multiple strains of a pathogen co-exist, offering
improved predictions for disease control strategies.

Moreso, [5] explored the use of Poisson-hidden Markov model to describe an over-dispersed data
on monthly death counts due to dengue fever. Independent Poisson mixture models of various
components and stationarity Poisson hidden Markov models of different states were fitted, and the
performance of each model was judged using model selection criteria. The sequence of hidden
states was estimated based on the best fitted model.

3. METHODS

Historical data on dengue fever reported cases were collected from the national health database
from the National Institutes of Health (NIH). These include reported cases over a twenty-year
time frame from 2004 to 2023, which provide insights into the temporal distribution of
outbreaks. It is critical for identifying trends and outbreak patterns and will serve as the primary
data input for defining the observable states within the HMM framework.

3.1 Hidden Markov Model (HMM)

The HMM is composed of two sets of variables: the hidden states and the observations. The hidden
states are the underlying variables that define the internal state of the system, and the observations
are the variables that are directly observable. The hidden states and the observations are related
through a set of probabilistic relationships, and the aim of the HMM is to estimate the hidden states
given a sequence of observations. The HMM consists of three components: initial state distribution
(m), transition probability matrix (A), and emission probability matrix (B).

3.1.1 Assumptions of the Hidden Markov Model
The HMM is based on three major assumptions:

i) Markov Assumption
This assumption states that the future state depends only on the current state St and not on the

sequence of states that preceded it. Given that Sy, S, S, ... Sy is an S- valued stochastic process,
it is called a Markov process if for every time t and arbitrary iy, i;, .. ., iq, I,], We have,
P(Su1=ilSo =g, .\ Spq =ipg, S =) =P(Syy =j S =) 1)

i) Stationarity Assumption
The stationary assumption states that the transition probabilities are assumed to be time-
invariant. That is,

P(St1+1 = jlstl =i)= P(St2+1 =S, = i) (2)
for any t, and t, being different times.

iii) Output independence assumption
This is the assumption that current output (observation) Ot depends solely upon the current

state of the unobserved variable. This assumption is fundamental to the HMM structure. Given
a sequence of observations, O = (0,, 0,, ..., 07), the probability from a given hidden state to an

observed state is given by the equation;
P(0,l0y, ..., 01, Opq, ey Or, Sp, ey ST ) = P(0f S (3)

105



Abraham et al. - Journal of NAMP 71, (2025) 103-114

Where,

P(olog, ..., 04, Opgs ey Of, Sy, ST) = P(0, [s)) is the probability of observing o, given all
observations and hidden states, P(o;s;) is the probability of observing o, given the hidden state
s, at time t.

3.12 Data Preparation

Raw dengue case counts were aggregated by year to form a continuous time series. To enable the
application of a discrete-output HMM, the annual case counts were categorized into three
observation levels based on epidemiologically meaningful thresholds:

Oo: Few cases (0 — 100)

O1: Moderate cases (101 — 300)

O2: Many cases (> 300)

These categories formed the observation sequence O used for modelling.

3.1.3 Hidden Markov Model Framework
A three-state HMM was constructed to represent the unobservable dengue transmission risk
states. The hidden states were defined as follows:

So: Low risk

S1: Moderate risk

S2: High risk

3.2  Model Formulation

The formulation of the Hidden Markov Model (HMM) is essential to accurately predict the
likelihood of dengue fever outbreaks over time.

Start
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Figure 3.1  Hidden Markov Model Diagram for Dengue Fever Outbreak
The parameters for the Hidden Markov Model are summarized in the table below.
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Table 3.1 Parameter descriptions for the HMM

Parameters Description
mn Initial probability of a given hidden state
A Transition probabilities between hidden states
B Emission probabilities from hidden states to observed states
n, Initial probability of dengue fever low risk state
m, Initial probability of dengue fever moderate risk state
m, Initial probability of dengue fever high risk state
a, Probability of dengue fever low risk state persisting
a, Transition probability from low risk state to moderate risk state
a, Transition probability from low risk state to high risk state
a,, Transition probability from moderate risk state to low risk state
a, Probability of dengue fever moderate risk state persisting
a,, Transition probability from moderate risk state to high risk state
as, Transition probability from high risk state to low risk state
as, Transition probability from high risk state to moderate risk state
3y Probability of dengue fever high risk state persisting
b Probability of low/no dengue fever outbreak from low risk state
b z) Probability of low/no dengue outbreak from moderate risk state
b, ) Probability of low/no dengue fever outbreak from high risk state
b, Probability of moderate dengue outbreak from low risk state
b, Probability of moderate dengue fever outbreak persisting
by3) Probability of moderate dengue outbreak from high risk state
by Probability of severe dengue fever outbreak from low risk state
by Probability of severe dengue outbreak from moderate risk state
b33 Probability of severe dengue fever outbreak persisting
s, This denotes the current hidden state
o, This denotes the current observation
T This denotes the time step for transitions
0 This denotes the observation sequence
S This denotes the hidden sequence

3.3 Solution of the Hidden Markov Model

The solution of an HMM typically relies on three main algorithms: the Baum-Welch Algorithm,
the Viterbi Algorithm and the Forward Algorithm. Each serves a specific purpose in analyzing
and optimizing the model.

3.3.1 Training and Testing Split

To evaluate the predictive performance of the HMM, the dataset was divided into a training set
and a testing set. The training period covered the years 2004 — 2018, while the testing period
consisted of the years 2019 — 2023. The model parameters were estimated using only the training
data and validated using the testing data.
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3.3.2 Parameter Estimation

Empirical estimation was employed to derive the HMM parameters. The observed dengue
categories were treated as proxies for the hidden states during parameter computation. Laplace
smoothing (add-one smoothing) was applied to avoid zero probabilities in the transition and
emission matrices.

The following parameters were estimated:

Initial state distribution nt

Transition probability matrix A

Emission probability matrix B

These parameters formed the model A = (w, A, B).

3.3.3 Transition and Emission Matrix

The transition probability matrix (A) is
fy11 12 O3

A= q; = [ﬂzl Az 23
Q31 Ozz O3z

ajj =P(St+1 =jISt =1i),Vi,j €S 4)
And the emission probability matrix (B) is
by bz bia
B= by = [-’-’121 bz  ba3
b31 b3z bz
bjk = P(O, = 0lS; =S) vS€S,0 €0 (5)

Also, the initial probability vector n = {n, m,, 75}

3.4 Model Validation

The model was validated by comparing predicted dengue activity categories with actual
observations for the testing period (2019-2023). Prediction accuracy was computed as the
proportion of correctly predicted years out of the total testing period.

4. Result
4.1 Data Presentation
This chapter presents the empirical results of the Hidden Markov Model (HMM) developed to
analyze and predict dengue fever transmission in Nigeria using annual reported case data from
2004 to 2023. The analysis follows a structured progression beginning with the preparation and
transformation of raw dengue surveillance data, classification of observed dengue activity levels,
estimation of the HMM parameters using the training dataset (2004—2018), and evaluation of
model performance using the testing dataset (2019-2023). This chapter also provides the Viterbi-
decoded most likely hidden state sequence and interprets the model outputs within the context of
dengue epidemiology in Nigeria.

Table 4.1: Reported Dengue Fever Cases by Year and Location (2004—2023)

S/N | Year | Place Cases S/N | Year | Place Cases

1. 2004 | Uyo 7 Abuja 74
Total 7 South East 44

2. 2005 0 Nasarawa State 17
Total 0 Maiduguri 67

3. 2006 0 Total 327
Total 0 14. | 2017 | Cross River State | 25

4, 2007 0 Jos 33
Total 0 Osogho 2
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5. 2008 | Maiduguri 193 Nasarawa State 12
Total 193 Abuja 79
6. 2009 0 Total 151
Total 0 15. | 2018 | Lagos State 11
7. 2010 | Plateau State 4
Total 4
8. 2011 | Maiduguri 26 Kano 13
Total 26 Borno State 176
9. 2012 0 Anambra State 74
Total 0 Total 274
10. | 2013 | llorin 40 16. | 2019 | Kogi State 42
Ibadan 138 Jos 52
Kaduna 6 Rivers State 75
Total 184 Lagos State 76
11. | 2014 | Ibadan 64 Total 245
Kaduna State 190 17. | 2020 | Adamawa State 82
Ogbhomoso 16 Jos 36
Osun State 77 Total 118
Sagamu 1 18. | 2021 | Awka 38
Jos and Maiduguri | 111 Enugu 67
Total 459 South West 315
12. | 2015 | Maiduguri 34 Total 420
Osun State 67 19. 2022 | Anambra State 17
Total 101 Rivers State 2
13. | 2016 | lle-Ife 46 North Central 60
Kwara State 76 Total 79
Abia and Cross | 3 20. | 2023 | Sokoto 84
River States

Source: National Institute of Health (http://www.nih.gov)

From the annual dengue fever case counts in Table 4.1 above, we can proceed to present the
information as time series data displayed in Table 4.2 below.

Table 4.2: Total Yearly Dengue Fever Reported Cases (2004 — 2023)

Year Dengue Fever Year Dengue Fever
Reported Cases Reported Cases
2004 7 2014 459
2005 0 2015 101
2006 0 2016 327
2007 0 2017 151
2008 193 2018 274
2009 0 2019 245
2010 4 2020 118
2011 26 2021 420
2012 0 2022 79
2013 184 2023 84

109


http://www.nih.gov/

Abraham et al. - Journal of NAMP 71, (2025) 103-114

Observed Dangue Activity Levels (2004-2023)
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Figure 4.1: Trend of Yearly Dengue Fever Reported Cases (2004 — 2023)

4.2  Classification into Observation Categories

To apply a three-state HMM with discrete observations, the annual case counts were categorized
based on epidemiologically meaningful thresholds:

Few cases (Oo): 0 — 100

Moderate cases (O1): 101 — 300

Many cases (O2): > 300

Applying these thresholds, and using 0 for Few cases, 1 for Moderate cases and 2 for Many cases,
we have the observation sequence:

0=[0,000100,00,1,21,2/1,1,1,1,2,0,0]

This categorization allowed the observed data to be compatible with a discrete output HMM.

4.3  Training-Testing Split

To ensure proper model validation, it was trained and tested on different periods of the data as
classified below:

Training period: 20042018 (15 years)

Testing period: 2019-2023 (5 years)

Training observations: O (train) = [0,0,0,0,1,0,0,0,0,1,2,1,2,1,1]

Testing observations: O (test) =[1,1,2,0,0]

This split enables evaluation of the model’s predictive ability on unseen data.

4.4 Solution of the Hidden Markov Model (HMM)

441  Estimation of HMM Parameters

Using the training sequence and empirical estimation with Laplace smoothing, three sets of
parameters were calculated:

Initial State Probability Distribution ()

n=10.714, 0.143, 0.143]

The model indicates the system most likely began in a low underlying transmission state.

Transition Probability Matrix (A)

To
A = SO Sl 82
From S0 [0.636 0.273 0.091
S1 10.286 0.286 0.429

Sz 10.200 0.600 0.200
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From the Transition Probability Matrix (A), it can be observed that low-risk periods tend to persist
(63.6%). Where as moderate-risk states are unstable and may escalate (42.9% probability of
moving to high risk). And high-risk states often regress to moderate risk (60%).

Emission Probability Matrix (B)
Observed
Oo O: 02
B = S0[0.818 0.091 0.091
State S1[0.125 0.750 0.125
32 [0.200 0.200 0.600

Here, we also notice that low-risk hidden states generate low observed case counts with 81.8%
probability. And same way, moderate-risk states produce moderate case levels with 75%
likelihood. High-risk states emit high case levels with 60% probability.

Consequently, the Hidden Markov Model can be diagrammatically represented thus.

L — S

83 "l 02
| High risk | Hdden
Saates

O Unbserved
Moderate cases

Figure 4.2: Hidden Markov Model Diagram for Dengue Fever Outbreak.
4.5  Viterbi Decoded Hidden State Sequence (2004-2023)

The Viterbi algorithm is given as follows;
Initialization:

51(|) =T bi(01)

vi(i)=0

Induction:

6(j) = max; [8e1(i) ay] bi(Oy)
yi(j) = argmax; [8:-1(1) ai]
Termination:

P* =maxi & _T(i)

S* T =argmax; 6_T(i)
Backtracking:

S* t=wywi(S* {t+1})

Using the estimated parameters (7, A, B), the Viterbi algorithm was applied to compute the most
likely hidden risk state for each year. The outcome produced the sequence below.

111



Abraham et al. - Journal of NAMP 71, (2025) 103-114

$=10,0,0,0,1,0,0,0,0,1,2,1,2,1,1,1,1,2,0,0]

This means that early years (2004—2007) experienced low baseline risk, 2008 marks first transition
to moderate risk. High-risk years include 2014, 2016, and 2021. Final years (2022—2023) return to
low-risk conditions.

This sequence gives insight into the underlying dengue transmission patterns not directly visible
from raw counts.

4.6 Out-of-Sample Prediction (2019-2023)
Using the state distribution and the transition/emission matrices, the model predicted dengue
activity for the testing period.

Table 4.3: Comparison of Actual and Viterbi Predictions

Year Actual Predicted Correct?
2019 1 0 No
2020 1 1 Yes
2021 2 0 No
2022 0 0 Yes
2023 0 0 Yes

Predicted vs Actual Dengue Activity (2019-2023)
(New 0-2 Classification)

2 00 Actual Activaty

2=Hagh)

1.75

1.50

1.00

0.75%

0.25

ivity Lavel {0=Low, 1=Moderate

0.00

Act

2019.0 2019.5 2020.0 20205 2021.0 2021.5 2022.0 2022.5 2023.0
Year

Figure 4.3: Table of Predicted vs Actual Dengue Activity (2019 — 2023)

Number of Correct Predictions

Prediction Accuracy(%) = ( ) X 100 4.1

Total Predictions

=3 %100
5

= 60%

4.7 Interpretation of Findings

4.7.1 Performance of the HMM

The model performed moderately well, especially considering the limitations of annual data. The
correct predictions in 2020, 2022, and 2023 indicate that the HMM is effective at identifying stable
low-risk years. Misclassifications in 2019 and 2021 occurred due to abrupt increases in reported
cases, which annual data cannot capture sufficiently.
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4.7.2 Epidemiological Insights

Nigeria has experienced episodic outbreaks embedded within longer periods of low-to-moderate
activity. High-risk outbreaks rarely persist for consecutive years. Moderate-risk years represent
critical points where system instability can shift upward to an outbreak.

4.7.3 Practical Implication

The findings support the use of HMMs in early warning systems, particularly in identifying years
with increased probability of transition from moderate to high dengue transmission risk. The model
successfully captured underlying risk transitions, provided a robust explanation of observed case
patterns, and achieved 60% predictive accuracy for out-of-sample forecasts.

DISCUSSION

This study applied a three-state Hidden Markov Model (HMM) to twenty years of annual dengue
fever data in Nigeria (2004-2023). The model employed three hidden transmission risk states —
Low, Moderate, and High, and three corresponding observation levels based on reported dengue
case counts. Using a training dataset (2004—2018), transition, emission, and initial state probability
matrices were empirically estimated using Laplace smoothing. A five-year testing period (2019—
2023) was then used to evaluate the model’s predictive performance. The HMM successfully
captured dengue transmission dynamics with an overall out-of-sample accuracy of 60%. The
model was particularly effective at identifying low-risk years, though it underestimated sudden
increases in dengue cases such as in 2019 and 2021.

CONCLUSION

The HMM framework proved to be a viable tool for modelling dengue transmission dynamics in
Nigeria. The model identified periods of low, moderate, and high underlying transmission risk and
provided a probabilistic description of risk transitions. While the model performed moderately
well in predicting future dengue activity, its limitations, particularly in capturing sudden high
activity highlight the complexity of dengue epidemiology in Nigeria. Nevertheless, the model
offers valuable insight into long-term dengue trends and can support public health planning and
outbreak preparedness.

RECOMMENDATIONS

Based on the findings of this study, the following recommendations are made:

1. Future modelling efforts should consider incorporating meteorological data such as
rainfall, temperature, and humidity, which are known to influence mosquito populations and
dengue transmission.

2. More frequent and geographically detailed dengue surveillance data should be collected to
enhance model accuracy.

3. The HMM framework should be extended to include exogenous variables or multi-state
systems to better capture fluctuations in dengue activity.

4. Public health authorities should use the insights from this model to strengthen early
warning systems for dengue outbreaks, particularly in regions with recurring moderate-to-high risk
transitions.
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