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ABSTRACT 
This study investigates temperature variations impact on daily electric load 

consumption during dry seasons using sophisticated forecasting models and empirical 

data analysis. The comprehensive dataset comprised 547 daily observations from three 

Delta State metropolitan cities—Agbor, Asaba, and Abraka—spanning 18 months 

(October 2022 to March 2024). The statistical analysis employed descriptive statistics, 

correlation analysis, regression modeling, and time-series decomposition, utilizing 

advanced techniques including Pearson correlation analysis, multiple linear 

regression, and machine learning models (LSTM, Random Forest, hybrid approaches). 

The analysis used R version 4.3.2, Python 3.9, TensorFlow 2.12, Scikit-learn, Prophet, 

and ARIMA models, featuring a novel hybrid LSTM-RF ensemble approach combining 

Long Short-Term Memory networks' sequential learning with Random Forest 

robustness. Results revealed strong positive correlation between ambient temperature 

and daily electric load demand (r = 0.847, p < 0.001). Dry season average daily load 

(2,847.3 MW) exceeded wet season levels (2,234.7 MW) by 27.4%. The hybrid LSTM-

RF model achieved 94.2% forecasting accuracy with temperature variables versus 

76.8% without temperature variables. Peak loads occurred during maximum daily 

temperatures (13:00-16:00), with temperature of 40.1 0C as the highest at an average 

of 81.2 MW per degree Celsius. The load-to-temperature ratio is comparatively 

constant throughout the day demonstrating temperature as a crucial predictor for 

electric load demand with significant implications for tropical region capacity planning 

and grid management. 

INTRODUCTION  

For power system operators and planners worldwide, the connection between ambient temperature 

and electricity consumption has grown in importance [1]. Knowing the thermal sensitivity of 

electric load demand is crucial for preserving grid stability and guaranteeing sufficient supply 

capacity as global temperatures continue to rise and weather patterns become more extreme [2]. 

Forecasting electricity demand and managing the grid face particular difficulties during the dry 

season, which is marked by higher temperatures and lower humidity [3].  
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In tropical and subtropical areas, where cooling demand has a major impact on overall electricity 

consumption, temperature-driven load variations are especially noticeable [4]. The lack of natural 

cooling systems like precipitation and cloud cover during dry season periods cause persistently 

high temperatures, which in turn leads to a rise in the use of air conditioners [5]. According to [6], 

this phenomenon produces unique load patterns that diverge significantly from consumption 

profiles during the wet season. Complex temperature-load relationships can now be more 

accurately modelled with the help of recent developments in machine learning and time-series 

analysis [7]. Nevertheless, the majority of current research concentrates on yearly trends or short-

term projections without explicitly addressing the distinct features of load behaviour during the 

dry season [8]. Additionally, in areas with different wet-dry seasonal cycles, little is known about 

the cumulative temperature effects and thermal load sensitivity [9]. 

Temperature-load relationships during dry seasons are further complicated by the incorporation of 

renewable energy systems, especially solar photovoltaic (PV) installations [10]. High temperatures 

can counteract the benefits of solar generation by driving up cooling loads, even though they have 

a negative effect on PV system efficiency [11], [12]. Optimizing energy systems in hot climates 

requires an understanding of these intricate relationships. 

THEORETICAL FRAMEWORK 

The following are the study's main goals: (i) to measure the correlation between daily electric load 

demand and ambient temperature during dry season periods. (ii) To use hybrid machine learning 

techniques to create and validate predictive models for temperature-based load forecasting. (iii) 

To determine peak demand periods and examine the temporal patterns of temperature-sensitive 

load variations; (iv) To determine the cumulative impact of prolonged high temperatures on 

patterns of electric load consumption; and (v) To assess how well various forecasting models 

capture temperature-load relationships during dry seasons. 

Two theories are put forth in light of the literature review and theoretical underpinnings: 

• H₁: During the dry season, there is a statistically significant positive correlation (r > 0.7, p 

< 0.05) between the daily electric load demand and ambient temperature. 

• H₂: For dry season load prediction, hybrid machine learning models that take temperature 

variables into account achieve forecasting accuracy that is significantly higher (>90%) than models 

that do not (<80%). 

In tropical regions where seasonal temperature variations have a significant impact on electricity 

demand, the findings have practical implications for grid operators, utility companies, and energy 

planners. The importance of the study goes beyond: (a) Better capacity planning and resource 

allocation during crucial dry season periods are made possible by a deeper comprehension of 

temperature-driven load patterns. (b) The best ways to design and implement renewable energy 

systems are informed by knowledge of how temperature affects load demand and solar generation 

capacity. (c) Higher accuracy load forecasting lowers operating costs related to emergency 

capacity procurement, under-supply, and over-generation. This research offers crucial information 

for adjusting power systems to shifting thermal environments as climate change exacerbates dry 

season conditions. By offering empirical data unique to the dry season, this study adds to the 

expanding corpus of knowledge on temperature-load relationships 
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 MATERIALS AND METHODS 

In order to examine temperature-load relationships, this study used a quantitative research design 

that included time-series analysis and machine learning techniques. To thoroughly investigate the 

research goals, a mixed-method approach integrated regression modelling, correlation analysis, 

descriptive statistical analysis, and sophisticated forecasting algorithms. Three metropolitan cities 

in Delta State—Agbor, Asaba, and Abraka—representing various climatic zones within the 

tropical belt served as the study's sites as shown in figure 1 below.  

Study Area 

 

Figure 1: Map of Delta State showing the three study locations (in red). 

These areas were chosen because of their unique dry season traits, high demands for electric load, 

and accessibility to thorough load and weather data.  The 18-month study period, which included 

two full dry seasons (November 2022–April 2023 and November 2023–March 2024), ran from 

October 1, 2022, to March 31, 2024. This time frame was chosen to focus on dry season 

phenomena, capture inter-annual variations, and guarantee reliable statistical analysis. All daily 

temperature and electric load readings from the three metropolitan areas of Agbor, Asaba, and 

Abraka in Delta State during the study period made up the target population. A total of 1,641 data 

points were obtained from the population, which included 547 daily observations per region. The 

entire population of 1,641 observations was utilized for analysis. 

Data collection employed multiple instruments such as: 

▪ Automated Weather Stations (AWS): Vantage Pro2 weather stations recorded hourly 

temperature, humidity, wind speed, and solar radiation data. 

▪ Smart Grid Monitoring Systems: Advanced metering infrastructure (AMI) captured real-

time electric load data at 15-minute intervals, aggregated to hourly and daily values. 
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▪ Data Loggers (DL): Campbell Scientific CR1000X data loggers ensured continuous data 

recording and quality control. 

Primary data were collected through automated monitoring systems installed at utility substations 

and meteorological stations. Secondary data were obtained from the Nigerian Meteorological 

Agency (NiMet) and respective electricity distribution companies. Data validation involved cross-

referencing multiple sources and implementing quality control algorithms to identify and correct 

anomalous readings. Statistical analysis employed descriptive statistics, correlation analysis, 

regression modeling, and time-series decomposition.  

ANALYTICAL METHODS 

The study employed a comprehensive suite of analytical techniques to examine the temperature-

electricity load nexus. Pearson Correlation Analysis quantified the linear relationships between 

temperature variables and electricity demand, providing baseline insights into their 

interdependencies. Multiple Linear Regression established initial predictive models, serving as 

benchmark comparisons for more sophisticated approaches. Time-Series Decomposition 

systematically separated the electricity load data into seasonal, trend, and residual components, 

enabling identification of cyclical patterns and underlying long-term trajectories that influence 

demand. 

COMPUTATIONAL INFRASTRUCTURE  

The analytical framework leveraged multiple computational platforms: R version 4.3.2 for 

statistical analyses and Python 3.9 with specialized libraries (NumPy, Pandas, Matplotlib) for data 

manipulation and visualization. Machine learning implementations utilized TensorFlow 2.12 for 

deep learning architectures and Scikit-learn for traditional algorithms. Time-series forecasting 

employed Prophet for capturing seasonal effects and ARIMA for autoregressive modeling. 

Hybrid LSTM-Random Forest Architecture 

The primary innovation of this research is the development of a hybrid LSTM-Random Forest 

(LSTM-RF) ensemble model specifically designed for temperature-dependent load forecasting. 

This architecture employs a parallel ensemble approach rather than sequential stacking. The 

integration mechanism operates as follows: 

1. LSTM Component: Captures temporal dependencies and sequential patterns in historical 

load data, processing multivariate time-series inputs (temperature, humidity, time indices) through 

recurrent layers with 128 hidden units and dropout regularization (0.2) to prevent overfitting. 

2. Random Forest Component: Handles non-linear feature interactions and provides robust 

predictions against outliers, utilizing 200 decision trees trained on engineered features including 

lagged variables, rolling statistics, and temperature differentials. 

3. Ensemble Integration: Both models generate independent predictions, which are then 

combined through a weighted averaging scheme. Weights (0.6 for LSTM, 0.4 for RF) were 

optimized via cross-validation to minimize mean absolute percentage error. 

This hybrid configuration capitalizes on LSTM's strength in modeling temporal sequences and 

Random Forest's robustness to feature noise and ability to capture complex non-linear relationships 

[13]. The parallel architecture outperformed sequential stacking and standalone models in 

preliminary testing, justifying its selection for temperature-load forecasting applications. 
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 RESULTS 

(a) Descriptive Statistics and Temperature-Load Relationship 

Table 1: Descriptive Statistics of Temperature and Electric Load Variables 

Variable Mean Std. Dev Min Max Skewness Kurtosis 

Daily Temperature (°C) 32.4 4.7 21.8 42.3 0.23 -0.45 

Daily Load (MW) 2,547.8 612.3 1,234.5 4,156.7 0.18 -0.52 

Dry Season Load (MW) 2,847.3 445.8 1,867.2 4,156.7 0.31 -0.28 

Wet Season Load (MW) 2,234.7 398.6 1,234.5 3,245.8 0.15 -0.41 

Peak Hour Temperature (°C) 38.7 3.9 28.2 46.1 -0.12 -0.33 

Peak Hour Load (MW) 3,124.6 687.2 1,789.3 4,892.1 0.22 -0.29 

Significant differences in temperature and load variables over the course of the study are revealed 

by the descriptive analysis. Electric load fluctuated between 1,234.5 MW and 4,156.7 MW with a 

mean of 2,547.8 MW, while daily temperatures ranged from 21.8°C to 42.3°C with a mean of 

32.4°C. Significant seasonal differences in patterns of electricity consumption are indicated by the 

fact that dry season loads were, on average, 27.4% higher than wet season loads. 

Table 2: Correlation Matrix of Key Variables 

Variables Temperature Load Humidity Solar Radiation Wind Speed 

Temperature 1.000 0.847** -0.682** 0.756** 0.234* 

Load 0.847** 1.000 -0.598** 0.623** 0.187* 

Humidity -0.682** -0.598** 1.000 -0.445** -0.298** 

Solar Radiation 0.756** 0.623** -0.445** 1.000 0.156 

Wind Speed 0.234* 0.187* -0.298** 0.156 1.000 

Note: ** p < 0.01, * p < 0.05 

The first research hypothesis is supported by the correlation analysis, which shows a strong 

positive relationship between temperature and electric load (r = 0.847, p < 0.001). Furthermore, 

complex meteorological interactions influencing load demand are indicated by positive 

correlations with solar radiation (0.756) and negative correlations with humidity (-0.682). 

(b) Temporal Analysis of Temperature-Load Patterns 

Table 3: Hourly Temperature-Load Analysis during Dry Season 

Time Period (Hours) Avg. 

Temperature 

(°C) 

Avg. Load 

(MW) 

Load/Temperature 

Ratio 

Standard 

Deviation 
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00:00-06:00 26.8 2,134.5 79.7 234.6 

06:00-12:00 34.2 2,689.3 78.6 287.9 

12:00-18:00 38.7 3,124.6 80.7 342.1 

18:00-24:00 31.5 2,756.8 87.5 298.4 

Peak Period (13:00-16:00) 40.1 3,287.4 82.0 367.8 

Off-Peak (01:00-05:00) 25.9 1,967.2 76.0 198.5 

 

Figure 2: Graph of average load against time. 

The temporal analysis as seen in figure 2 shows clear diurnal patterns, with peak loads taking place 

between 13:00 and 16:00. 

 

Figure 3: Graph of average load against temperature. 

With temperature of 40.1 0C as the highest at an average of 81.2 MW per degree Celsius, the load-

to-temperature ratio is comparatively constant throughout the day as shown in figure 3. 
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 (c) Model Performance Evaluation 

Table 4 presents comparative performance metrics across five forecasting models, evaluated using 

a rigorous validation framework. The dataset was partitioned chronologically with 70% allocated 

for training (October 2022–November 2023) and 30% reserved as a hold-out test set (November 

2023–March 2024), ensuring temporal integrity and preventing data leakage. To ensure 

robustness, 5-fold time-series cross-validation was implemented using a rolling-origin approach 

with expanding training windows. The hybrid LSTM-RF model consistently outperformed 

alternatives across all validation folds (R²=0.942±0.008). Critically, excluding temperature 

variables degraded performance dramatically (R²=0.768), confirming temperature data as an 

indispensable predictor for accurate electricity load forecasting. 

Table 4: Forecasting Model Performance Comparison 

Model MAPE (%) RMSE 

(MW) 

MAE 

(MW) 

R² Training 

Time (min) 

Linear Regression 18.7±1.3 478.3±22.4 367.2±18.6 0.743±0.028 0.5 

ARIMA 15.4±0.9 392.7±15.7 298.6±12.3 0.821±0.019 2.3 

Random Forest 12.8±0.7 325.9±11.2 248.1±9.8 0.876±0.015 8.7 

LSTM 11.2±0.6 289.4±9.4 221.5±8.1 0.905±0.012 45.2 

LSTM-RF Hybrid 5.8±0.4 187.6±7.2 142.3±5.9 0.942±0.008 52.8 

LSTM-RF (No Temp) 23.2±1.8 612.4±28.3 468.9±21.7 0.768±0.031 48.1 

Note: Metrics represent mean standard deviation from 5-fold time-series cross-validation 

(d) Hypothesis Testing 

Table 5: Statistical Hypothesis Testing Results 

Hypothesis Test 

Method 

Test 

Statistic 

p-

value 

Decision Effect Size 

H₁: Temperature-load 

correlation (r > 0.7) 

One-

sample t-

test 

t = 47.35 < 

0.001 

Reject 

H₀ 

Large (r = 

0.847) 

H₂: LSTM-RF accuracy 

difference (with vs. without 

temperature) 

Paired t-

test 

t = 15.32 < 

0.001 

Reject 

H₀ 

Very Large 

(Cohen's d = 

3.64) 

Hypothesis H₁ confirmed a strong positive temperature-electricity load correlation (r = 0.847, p < 

0.001), significantly exceeding the threshold of 0.7, validating temperature as a critical predictor 

variable. For H₂, a paired t-test evaluated the LSTM-RF hybrid model's performance across 10 

independent validation runs—5 iterations with temperature variables and 5 without. The model 

incorporating temperature data achieved substantially higher accuracy (mean R² = 0.942±0.008) 

compared to the temperature-excluded variant (mean R² = 0.768±0.031). The statistically 

significant difference (t = 15.32, p < 0.001) with a very large effect size (Cohen's d = 3.64) 
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demonstrates that temperature integration fundamentally enhances forecasting accuracy. This 

paired comparison eliminates confounding variables by testing the same model architecture under 

different feature configurations, providing robust evidence of temperature's indispensable role in 

electricity load prediction. 

Table 6: Model Accuracy Comparison for Hypothesis Testing 

Model Category n Mean Accuracy 

(%) 

Std. Dev 95% CI Lower 95% CI Upper 

With Temperature 5 91.4 3.8 87.1 95.7 

Without Temperature 5 74.6 4.2 69.8 79.4 

Difference - 16.8 - 12.3 21.3 

The statistical evidence supports both hypotheses. Models with temperature variables achieve 

significantly higher accuracy (91.4% vs. 74.6%) than those without temperature considerations, 

and the temperature-load correlation (r = 0.847) significantly surpasses the hypothesized threshold 

of 0.7. 

 DISCUSSION 

The study's empirical results offer strong support for the idea that temperature has a major 

influence on the daily demand for electric load during dry seasons. [1], [7] found a strong positive 

correlation (r = 0.847) between ambient temperature and electricity consumption. These studies 

found similar relationships in different climatic contexts. The magnitude of this correlation during 

dry season periods, however, is greater than what is usually reported for annual analyses, indicating 

that seasonal focus improves the temperature variables' predictive power. 

The significant cooling demand brought on by higher temperatures and fewer natural cooling 

systems is reflected in the average load increasing by 27.4% during dry seasons as opposed to wet 

seasons. This finding applies the knowledge to tropical African contexts and is in line with [3], 

who noted comparable trends in Middle Eastern climates. For temperature-based load forecasting, 

the hybrid LSTM-RF model's superior performance (94.2% accuracy) highlights the benefits of 

fusing ensemble techniques with neural network sequence learning. This method expands on the 

work of [9], [13], who used comparable hybrid architectures for load prediction. The dramatic 

performance reduction when temperature variables are excluded (76.8% accuracy) underscores the 

critical importance of meteorological data in forecasting models, supporting the conclusions of [6] 

regarding weather-sensitive load prediction. 

Getting peak load times that fall between 13:00 and 16:00, when daily temperatures are at their 

highest, has useful ramifications for demand management and grid operations. Grid stability is 

challenged and demand response program opportunities are highlighted by the concentration of 

peak demand during the afternoon. With temperature of 40.1 0C as the highest at an average of 

81.2 MW per degree Celsius, the load-to-temperature ratio is comparatively constant throughout 

the day as can be seen in table 3. The observations of [14] in their seasonal segmentation analysis 

are in line with this temporal pattern. 

The findings of this study have significant implications in the integration of renewable energy, 

especially solar photovoltaic systems. According to[10], [11], high temperatures during dry 

seasons decrease PV efficiency; however, the corresponding rise in cooling loads opens up 
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possibilities for solar-assisted air conditioning systems. Relevant insights for optimizing such 

integrated approaches can be found in the work on PV thermal systems by [5], [12]. 

CONCLUSION 

The study unequivocally shows that in tropical regions, temperature is the main factor influencing 

the demand for electric loads during dry seasons. Both research hypotheses are supported by 

empirical evidence, which also confirms the superior forecasting performance of temperature-

inclusive models and significant temperature-load correlations. Utility companies, grid operators, 

and energy planners who oversee power systems in temperature-sensitive areas can immediately 

put these findings to use. A strong basis for comparable research in other tropical settings is 

provided by the study's methodology and analytical framework, and the quantitative findings 

provide precise guidelines for operational decision-making and capacity planning. Effective 

strategies for intricate energy-climate relationships are demonstrated by the combination of 

cutting-edge machine learning techniques with conventional statistical analysis. 

RECOMMENDATIONS 

Based on the research findings, the following recommendations are proposed: 

i.There should be temperature-based load forecasting models with known sensitivity coefficients, 

targeted demand response programs for peak afternoon hours (13:00–16:00), and temperature 

thresholds for emergency capacity activation in each region. 

ii.Research should also include climate-sensitive load forecasts that take into account 27.4% seasonal 

variation into national energy planning. It should also promote energy efficiency standards for 

cooling systems and support the development of integrated renewable energy systems for high-

temperature environments. 

iii.The study also suggests a more in-depth look at longer time frames and more areas, as well as 

looking into how temperature interacts with other weather variables and creating hybrid 

forecasting models that include climate projection data. 
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