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- - In this paper, standard collocation approximation method is proposed for
Article history: solving three-dimensional integral equations. New orthogonal polynomials
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Accepted  XXXXX in terms of computational efforts and enhanced accuracy, Power series and
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technique, proposed methods changed the three-dimensional Volterra and Fredholm
Volterra integral integral equations into algebraic system of equations with some unknown
equations, constants that were obtained by using MAPLE 18 software. Some numerical
Fredholm examples were solved and less computational works were achieved and the
integral results obtained were in good agreements using three variants with the
equations, results available in the literature using different approaches.
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1 INTRODUCTION

Three dimensional Volterra and Fredholm integral equations reformulated many varied problems
in engineering and physics. It is being utilized as mathematical models for many different science
applications such as plasma physics. So, it very important to get some information about the
analytical solutions of these problems because these solutions give significant information about
the character of the modeled event. But in some cases, it is more difficult to obtain analytical
solutions of these models. These are usually difficult to solve analytically and in many cases their
solutions must be approximated. To approximate the solutions of these models, in recent years
several numerical approaches have been proposed.
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In this paper, we consider the three-dimensional Volterra and Fredholm integral equations of the
form:

o o E
ulxr, t, z) flx, t,z) + / / / Bl t, = h,w, Dulh, w, Ddhdwd!
SO S0 SO (l)
and The functions f(x,t,z) and k(x,t,z,h,w,l) were assumed to be given smooth real valued functions
on (xtz) € [a,b] x [c,d] x [e,fland d = (X,t,z,hwI);a<h<x<b,c<w<t<dande<I<z<f
respectively and u(x,t,z) is the unknown solution to be determined.

Three-dimensional Volterra and Fredholm integral equations often pose significant analytical
challenges due to their complex nature, especially when involving nonlinearities or fractional
orders. As a result, obtaining exact or closed-form solutions is rarely feasible. This has led to the
development and application of various numerical methods to approximate their solutions with
acceptable accuracy. Such equations arise frequently in mathematical modeling of physical,
engineering, and biological systems, where multi-dimensional dependencies and memory effects
must be considered. Numerous researchers have contributed to the numerical treatment of these
integral equations. For instance, [1] introduced numerical methods for solving linear Fredholm-
Volterra integral equations, which combine characteristics of both Fredholm and Volterra types.
In another approach, [2] employed the moving least squares (MLS) method in conjunction with
Chebyshev polynomials to address Volterra-Fredholm integral equations, enhancing
computational efficiency and approximation accuracy. Furthermore, [3] focused on the numerical
solution of nonlinear Volterra-Fredholm equations, emphasizing iterative and projection-based
methods for improved convergence. More recently, [4] discussed the construction and application
of orthogonal polynomials in solving fractional-order integro-Volterra-Fredholm differential
equations, offering a framework to tackle the added complexity introduced by fractional
derivatives. These studies highlight the growing importance of robust numerical techniques in
addressing multi-dimensional integral equations in modern scientific and engineering problems.

The meshless methods have gained more attention, particularly moving least squares method, it
has been applied in many branches of modern sciences, such as surface construction [5-6].
Recently, numerous approaches have been used to solve nonlinear computation of the three-
dimensional Volterra and Fredholm integral equations such as [7] Beinstein approximation, [8]
presented muchled homotopy perturbation method for solving the nonlinear mixed Volterra-
Fredholm Integral equations, [9] proposed iterative method and convergence analysis for a kind of
mixed non-linear Volterra-Fredholm Integral equations, [10] applied of Homotopy analysis
method for solving a class of non-linear Volterra-Fredholm Integro-differential, [11] employed the
petrov-Gerlerkin Method for numerical solution of stochastic VVolterra Integral equations, and [12]
applied shifted Chebyshev polynomials for solving three dimensional Volterra Integral equations
of the second kind.

The aim of this paper is to develop an effective and efficient collocation schemes to solve three
dimensional Volterra and Fredholm integral equations. One great advantage of our schemes is that
it reduces the problems under consideration to system of algebraic equations by using the
constructed orthogonal polynomials as basis function. However, in this paper, orthogonal
collocation techniques were used as basis function to obtain the numerical solution of linear three-
dimensional Volterra and Fredholm integral and the zeros of the constructed orthogonal
polynomials were used as the collocation points. Thereafter, the results obtained were compared
with the analytic solution where such exists.
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Description of the numerical techniques
General problems considered

In this section, two types of three-dimensional integral equations are considered.
Type 1: The three-dimensional Volterra integral equation of the form;

w(r,t,z) = flz,f.2) 4 / / j.fm'i vtz how, Dulh, w, Ddhdwdl
J0 J0 S0 (3)

where (x,t,z) € D = {O,X} x {O,T} x {O,Z} and u(x,t,z) is unknown function to be determined;
f(x,t,z) and k(x,t,z,h,w,l) are given functions defined respectively on D.

Type 2: The three-dimensional Fredholm integral equation of the form;

b rd (f
u(x, t,z) = f(x, t,z) + j j f k(x,t,z,h,w,t) u(h,w, )dhdwdl (4)
a (o e

Where (x,t,z2) € D = {O,X}*x{O,T}x{0,Z}, u(x,t,z) is unknown function f(x,t,z) and k(x,t,z,h,w,I)
are given functions defined respectively on D.

Construction of orthogonal polynomial (CP)

Let Qn(X) be a polynomial of exact degree n, then Qn is said to be orthogonal with respect to a
weight function w(x) within the interval [a,b] € R witha < b if
b
| ex@en@weidx = b, 5)
a

With dmn is the Kronecker symbol defined by

5 Lif wm—n
T evif moAn (6)

The weight function w(x) is continuous and also positive on [a,b] such that the moments
f w(x)x"dx; n€N (7
a
exist and finite, then

ofa
< Gy O = / Qn(x)Qu()w(x)dr
Ja ®)
defines the inner product of the polynomials Qnand Qm. We adopted the weight function w(x) =
1-x2 in the interval [0,1]. Hence, we use the property below to construct our basis function

n
Qu(x) = C"MxT

< Q@ >= 0 ©)

Q=1

U

Qu [_.-L' :] Z {-.En j.lf.__-- Cll-ln-l

(hill=1= 'f'\ﬁm =1

leading terms x";r > 0 for

Therefore,
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Qo(x) =1

For Q1(x), we have
1
Qi(x) =Y M =V + CVx
r={)
When x = 1, implies .
(hil) = (1[11 + oM .

1
< Qo () = = [ ] — x* Q.;, e ) (x)de =0

0

—:-/ | — 22 J(fl',”+(| .)rh —0

J
(- 1] ( (1)

370 T3 =0
(11)
Solving equation 10 and equation 11, we obtain
o 3 ol
0 T TR 1T =
Hence,

v by
() (x) = z (8r 3

Similarly, for Q2(x), we have | :
Q1) = CFF e 4 P2 g
For x = 1, we obtain | )
)=+ o 0Pz
and,

1
< Q. Qs > = [ (1 — 22)Qu(2)Qa(x)dx = 0

=% |—:] f“a+fzr)n’.r 0

?l

1

<), Qs _-.~.~=/ (1 - 22)Q,(2)Qs(x)dr =0

1! . i P
v = [ (1 —a%)(8x —3) ({:1‘[‘-1 + e+ (gz'.r"] dr
b

2 Jo

19 ey 2 e
= 350 (
(15)
Solving equation (13), equation (14) and equation (15), we obtain
+(2) R R (2] _ 99
Cy = 56 C) 2%’ Cy 55
Hence,

(10)
(12)
(13)
(14)
0
=0
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1 . .
(Q2(r) 26 (952° — 80x + 11) (16)

Following the same procedure, the following orthogonal polynomials were obtained for r > 3.

Q) = & (4482° — 50527 + 208z — 15)

Qilz) = =5 (210427* — 383042° + 22232x% — 44247 + 197)

Qx) (3521762 — 8154302 + 6669 — 22932027 + 29840z — 903)

Qulx) = (618060325 — 1737964827 + 1844023527 — 91449602% 4 21169352° — 195264x 4 4279)
(17)

1043

1
22180

Standard collocation method by Constructed orthogonal polynomial (CP) basis function

The orthogonal polynomials were constructed by using the Gram-Schmidt principle as a basis
function in the approximating solution in this section. Thus, the infinite series solution is of the
form

uGrt)=) > Z Gaww Qi) Q@ ()0 (2) (x,6,2) €D (18)
i=0 j=0w=0
The infinite series solution in equation (18) is truncated as finite series of the form
N N N
uGot2) S up(r 1) = ) ) Z Qi GQG@WE () ED  (19)
i=0 j=0w=

Here, aijw are the unknown to be determined and Qi(x) (i > 0) are the orthogonal polynomials
constructed above. N is the degree of approximant. Substituting equation (19) into equation (3) to

obtain .
Zz Z @i jw Qi(x)Q;()Qw (2)

i=0 j=0w=0
x pt rz N N N
N k h,w,1 i jw mQ(k)Q,, (1)) dhdwdl
J, [ e W);;Z;aj (QuMQ; (WD) dhdw
= f(x,t,2) 20)

Thus, equation (20) is collocated using the zeroes of the orthogonal polynomials constructed at x
=Xr, t = tgand z = zsto obtain (see [13])

ZNZEN: N Qi(xw)Q;j(tq)Quw (Zm)

i=0 j=0 w=0
— N N N
f f f k(xr, tq, Zs, h, w, l) ZZ Z ai,jw

= f(x, tg, 25) (21)
Where
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(Ha,) =10 }
L, 0
(MNze) =10 (22)

Using the collocation points in equation (21) gives system of linear algebraic equations contains
(N +1)? equations in the same number of given constants. Solving this system of linear algebraic
equations to obtain the values of the constants ajjksuch thati,j,k =0,1,--- ,N.

Standard collocation method by power series (PS) basis function

The power series (PS) method is used in approximating the unknown function u(x,t,z) as :

ulr, t,z) = Z Z Z s PG, oy
am() |I 0 w=) ; (X;tyz) E D
Where aijw are constants to be determined. If the infinite series in equation (23) is truncated into
finite series, then equation (23) is written as:

N N N
u(x,t,z) ~ uy(x,t,z) = ZZ Z a; jwx' t/z” (24)
i=0 j=0 w=0
Where N is any natural number. Substituting equation (24) into equation (3) to obtain
N N N N N N
z Qyj X" j f f k(x,t, 2, h,w, 1) z Qi | KW dhdwal
i=0 j=0w=0 i=0 j=0p=0
=f(xt,2) (25)
Hence, the residual equation is defined as
N N N
Ry(x,t,2) —ZZZauwx t/z%
i=0 j=0k=
X ot ~z N N N
—f f f k(x,t,2,h kD) Zza”" hiwilk dhdkdl — f(x,t,2)
0 70 -0 i=0 j=0 p=0
=0 (26)

Collocating equation (26) using the zeroes of the constructed orthogonal polynomials as
collocation points as discussed by author [14], gives

Q) =0

Q) — 0 }

(Qza) =0 (27)
Equation (26) is written as
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N N N
ZZZai,j,w X'ty zg"
Xy tq Zg ] ] N N N o
—f f f k(xt t), 25 bk, 1) 222““’” hik/IX dhdkdl
0 0 0 n n

i=0 j=0p=0

— f(xrtgz5) | =0 (28)

Thus, equation (28) resulted to system of linear algebraic equations contain (N + 1)? equations in
the same number as the unknowns. Solving this system of algebraic equations to obtain the values
of the constants a;ksuch that i,j,k =0,1,--- ,N

Standard collocation method by shifted Legendre Polynomial (LP) basis function

In this section, the infinite series solutlons glven in power series (PS) is replaced as

u(x, t,2) ~ uy(x, t,2) = zz z a;jLi (COL (O Li (2); (24)
i=0 j=0 k=0
Where ajjkare already defined and Li(x) Lj(t) Lk(z) are the Legendre polynomials and the infinite
series in equation (24) is truncated, then equation (24) is written as

N N N
u(x,t,z) = uy(x,t,z) = Z Z Z a; Ll (X)Lij(t) L (2); (25)
i=0 j=0 k=0
Thus, substituting equation (25) into equation (3) to obtain
N N N
D ki DL OL)
i=0 j=0k=0
X ot ~z N N N
_ j j J k(x,t,2,h k, D) Zz aijx | Li(R)L ()L (1) dhdkdl
0 0 J0 i=0 j=0 p=0
= f(x,t,2) (26)

Hence, the same procedure used in case of power series basis function is then employed to get the
appropriate approximate solution for various values of N.

Numerical Examples

In this section, we consider three examples to illustrate the efficiency of the proposed methods and
absolute errors are obtained for all examples considered.

Example 1. Consider the following three-dimensional Volterra integral equation
t rx rz
u(x, t,z)+24f f f (x2,t) u(h,w, )dhdwdl
0o Y0 YO

=4x°t37 4+ 4x3t323 4+ 3x*t32% + x%t + Z%t + xtz
x,t,z €[0,1] (27)
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With the exact solution given as

u(x, t,z) = x’t + z%t + xtz

(28)

Applying the proposed methods in section (2.3), (2.4), and (2.5), we present the numerical

solutions obtained as follows:

Table 1: Approximate solutions Example 1 for N =4
(x,t,2) Exact Constructed Legendre Power Series
Polynomial CP polynomial LP PS
(0,0,0) 0.0000000 0.0000000 0.0000000 0.000000000
(0.1,0.1,0.1) | 0.0030000 0.0030029560 0.0030029559 0.0030029561
(0.2,0.2,0.2) | 0.0240000 0.0238079835 0.0238079831 0.0238079835
(0.3,0.3,0.3) | 0.0810000 0.0817371413 0.0797371406 0.0797371413
(0.4,0.4,0.4) | 0.1920000 0.1929874913 0.1889874905 0.1889874920
(0.5,0.5,0.5) | 0.3750000 0.3751089704 0.3753089696 0.3753089720
(0.6,0.6,0.6) | 0.6480000 0.6477203242 0.6477203242 0.6477203242
(0.7,0.7,0.7) | 1.0290000 1.0288998997 1.0288998997 1.0288998997
(0.8,0.8,0.8) | 1.5360000 1.5357176538 1.5297176538 1.5297176538
(0.9,0.9,0.9) | 2.1870000 2.1865900000 2.1865900000 2.1865900000
(1.0,1.0,2.0) | 3.0000000 3.0000000000 2.9962340828 2.9962340828
U(t,z)
Comparison
Solutions Exact
CP,LP,PS
Example 1

Figure 1: Depict 3D plots surface for the comparison between exact solutions (blue), Constructed
Polynomial (red), Power Series (yellow), Legendre polynomial (green) at x = 2 on interval z = —x
-7, t =—m -7 Space domain of three-dimensional Volterra integral equation coordinates.

Example 2. Consider the following two-dimensional Fredholm integral equation

1 1 1 1 1
u(lx,t,z) + gfo fo fo xu (h,w, )dhdwdl = 180 +xt(x —1t)

(29)

194



Babatunde et al. - Journal of NAMP 71, (2025) 187-198

With the exact solution given as

u(x, t,z) = xt(z—t)
Applying the proposed methods in section (2.3), (2.4), and (2.5), we present the numerical
solutions obtained as follows:

(30)

Table 2: Approximate solutions Example 2 for N =4

(x,t,2) Exact Constructed Legendre | Power Series

z=2 Polynomial | polynomial | SP
CP LP

(0,0) | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000
(0.1,0.1) | 0.01900000 | 0.019245000 | 0.01826000 | 0.018230000
(0.2,0.2) | 0.07200000 | 0.071578000 | 0.07132000 | 0.071451000
(0.3,0.3) | 0.15300000 | 0.153256000 | 0.15246000 | 0.152410000
(0.4,0.4) | 0.25600000 | 0.25559000 | 0.25541000 | 0.255431000
(0.5,0.5) | 0.37500000 | 0.37473000 | 0.37342000 | 0.374321000
(0.6,0.6) | 0.50400000 | 0.50423000 | 0.50324000 | 0.503256000
(0.7,0.7) | 0.63700000 | 0.63745000 | 0.63652000 | 0.636342000
(0.8,0.8) | 0.76800000 | 0.76761000 | 0.76734000 | 0.767415000
(0.9,0.9) | 0.89100000 | 0.89123000 | 0.89781000 | 0.882312000
(1.0,1.0) | 1.00000000 | 1.00000000 | 1.89152000 | 1.861241000

U(t,z)
Comparison

Solutions Exact _,(|

CP,LP,PS
Example 2

Figure 2: Depict 3D plots surface for the comparison between exact solutions (blue), Constructed

Polynomial (red), Power Series (yellow), Legendre polynomial (green) at x =2 on interval z = —x
-1, t = —7 ---7r Space domain of two-dimensional Fredholm integral equation coordinates.
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Example 3. Consider the following three-dimensional Volterra integral equation

1 X pt rz 1 1 1 1
u(x,t,z)+—fffzu(h,w,l)dhdwdl——f ff(x+h)(h,w,l)dhdwdl
20Jy Jo Jo 20Jy Jo Jo
2

=— 1 (x + 2x)sin (1) sin(1) + i xz(sin(t) + sin(z) — sin(t + 2))
-5 2 20

+ sin(t + 2)

with the exact solution given as
u(x, t,z) = sin(t + z)

Applying the proposed methods in section (2.3), (2.4), and (2.5), we present the
solutions obtained as follows:

Table 3:

x,t,z €[0,1]

(3D

(32)

Approximate solutions Example 3 for N =4

(t.2)

Exact

Constructed
Polynomial
CP

Legendre
polynomial
LP

Power Series
PS

(0,0)

0.000000000

0.000000000

0.000000000

0.000000000

(0.1,0.1)

0.198669330

0.198669330

0.198669330

0.198669330

(0.2,0.2)

0.389418342

0.389418342

0.389418342

0.389418342

(0.3,0.3)

0.564642423

0.564642423

0.564642423

0.564642423

(0.4,0.4)

0.717356093

0.717356093

0.717356093

0.717356093

(0.5,0.5)

0.841470921

0.841470921

0.841470921

0.841470921

(0.6,0.6)

0.932039083

0.932039083

0.932039083

0.932039083

(0.7,0.7)

0.98544971

0.98544971

0.98544971

0.98544971

(0.8,0.8)

0.99957360

0.99957360

0.99957360

0.99957360

(0.9,0.9)

0.97384762

0.97384762

0.97384762

0.97384762

(1.0,1.0)

0.90929742

0.90929742

0.90929742

0.90929742

U(t;2)
Comparison

Solutions Exact

CP,LP,PS
Example 3

numerical

Figure 3: Depict 3D plots surface for the comparison between exact solutions (blue), Constructed
Polynomial (red), Power Series (yellow), Legendre polynomial (green) on interval z=-x -7, ¢ =
—r ---7r Space domain three-dimensional Volterra integral equation coordinates.
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CONCLUSION

In this study, we proposed and applied standard collocations techniques using three basic
functions: Constructed polynomial (CP), Power series (PS), and shifted Legendre polynomial (LP)
for the numerical solutions of the three-dimensional Volterra and Fredholm integral equations
occur in applied mathematics and engineering sciences. From the three examples considered, the
solutions are presented and compared with exact solutions which demonstrated the efficiency of
the constructed polynomial (CP) as the closest to the exact solutions (red), followed by shifted
Legendre polynomial (yellow) and least by Power series (PS) (green). Therefore, the present
numerical techniques are proposed to serve as good tools to solve several problems in applied
mathematics.
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