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ABSTRACT 

In this paper, standard collocation approximation method is proposed for 

solving three-dimensional integral equations. New orthogonal polynomials 

were constructed and used as basis function that gives less rigorous works 

in terms of computational efforts and enhanced accuracy, Power series and 

Legendre Polynomials were used as alternative basis functions to 

checkmate the results of the new Orthogonal Polynomials constructed and 

used; therefore, three variants of basis functions were used in this work. The 

proposed methods changed the three-dimensional Volterra and Fredholm 

integral equations into algebraic system of equations with some unknown 

constants that were obtained by using MAPLE 18 software. Some numerical 

examples were solved and less computational works were achieved and the 

results obtained were in good agreements using three variants with the 

results available in the literature using different approaches. 

 

 

 

1 INTRODUCTION  

Three dimensional Volterra and Fredholm integral equations reformulated many varied problems 

in engineering and physics. It is being utilized as mathematical models for many different science 

applications such as plasma physics. So, it very important to get some information about the 

analytical solutions of these problems because these solutions give significant information about 

the character of the modeled event. But in some cases, it is more difficult to obtain analytical 

solutions of these models. These are usually difficult to solve analytically and in many cases their 

solutions must be approximated. To approximate the solutions of these models, in recent years 

several numerical approaches have been proposed. 
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In this paper, we consider the three-dimensional Volterra and Fredholm integral equations of the 

form: 

                          (1) 

and The functions f(x,t,z) and k(x,t,z,h,w,l) were assumed to be given smooth real valued functions 

on (x,t,z) ∈ [a,b] × [c,d] × [e,f] and d = (x,t,z,h,w,l);a ≤ h ≤ x ≤ b, c ≤ w ≤ t ≤ d and e ≤ l ≤ z ≤ f 

respectively and u(x,t,z) is the unknown solution to be determined. 

 

Three-dimensional Volterra and Fredholm integral equations often pose significant analytical 

challenges due to their complex nature, especially when involving nonlinearities or fractional 

orders. As a result, obtaining exact or closed-form solutions is rarely feasible. This has led to the 

development and application of various numerical methods to approximate their solutions with 

acceptable accuracy. Such equations arise frequently in mathematical modeling of physical, 

engineering, and biological systems, where multi-dimensional dependencies and memory effects 

must be considered. Numerous researchers have contributed to the numerical treatment of these 

integral equations. For instance, [1] introduced numerical methods for solving linear Fredholm-

Volterra integral equations, which combine characteristics of both Fredholm and Volterra types. 

In another approach, [2] employed the moving least squares (MLS) method in conjunction with 

Chebyshev polynomials to address Volterra-Fredholm integral equations, enhancing 

computational efficiency and approximation accuracy. Furthermore, [3] focused on the numerical 

solution of nonlinear Volterra-Fredholm equations, emphasizing iterative and projection-based 

methods for improved convergence. More recently, [4] discussed the construction and application 

of orthogonal polynomials in solving fractional-order integro-Volterra-Fredholm differential 

equations, offering a framework to tackle the added complexity introduced by fractional 

derivatives. These studies highlight the growing importance of robust numerical techniques in 

addressing multi-dimensional integral equations in modern scientific and engineering problems. 

 

The meshless methods have gained more attention, particularly moving least squares method, it 

has been applied in many branches of modern sciences, such as surface construction [5-6]. 

Recently, numerous approaches have been used to solve nonlinear computation of the three-

dimensional Volterra and Fredholm integral equations such as [7] Beinstein approximation, [8] 

presented muchled homotopy perturbation method for solving the nonlinear mixed Volterra-

Fredholm Integral equations, [9] proposed iterative method and convergence analysis for a kind of 

mixed non-linear Volterra-Fredholm Integral equations, [10] applied of Homotopy analysis 

method for solving a class of non-linear Volterra-Fredholm Integro-differential, [11] employed the 

petrov-Gerlerkin Method for numerical solution of stochastic Volterra Integral equations, and [12] 

applied shifted Chebyshev polynomials for solving three dimensional Volterra Integral equations 

of the second kind. 

 

The aim of this paper is to develop an effective and efficient collocation schemes to solve three 

dimensional Volterra and Fredholm integral equations. One great advantage of our schemes is that 

it reduces the problems under consideration to system of algebraic equations by using the 

constructed orthogonal polynomials as basis function. However, in this paper, orthogonal 

collocation techniques were used as basis function to obtain the numerical solution of linear three-

dimensional Volterra and Fredholm integral and the zeros of the constructed orthogonal 

polynomials were used as the collocation points. Thereafter, the results obtained were compared 

with the analytic solution where such exists. 
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Description of the numerical techniques 

General problems considered 

 

In this section, two types of three-dimensional integral equations are considered. 

Type 1: The three-dimensional Volterra integral equation of the form; 

 

             (3) 

where (x,t,z) ∈ D = {O,X} × {O,T} × {O,Z} and u(x,t,z) is unknown function to be determined; 

f(x,t,z) and k(x,t,z,h,w,l) are given functions defined respectively on D. 

 

Type 2: The three-dimensional Fredholm integral equation of the form; 

𝑢(𝑥, 𝑡, 𝑧) = 𝑓(𝑥, 𝑡, 𝑧) + ∫ ∫ ∫ 𝑘(𝑥, 𝑡, 𝑧, ℎ, 𝑤, 𝑡)
𝑓

𝑒

𝑑

𝑐

𝑏

𝑎

𝑢(ℎ, 𝑤, 𝑙)𝑑ℎ𝑑𝑤𝑑𝑙                     (4) 

Where (x,t,z) ∈ D = {O,X}×{O,T}×{O,Z}, u(x,t,z) is unknown function f(x,t,z) and k(x,t,z,h,w,l) 

are given functions defined respectively on D. 

 

Construction of orthogonal polynomial (CP) 

 

Let Qn(x) be a polynomial of exact degree n, then Qn is said to be orthogonal with respect to a 

weight function w(x) within the interval [a,b] ∈ R with a < b if 

   ∫ 𝑄𝑛(𝑥)𝑄𝑚(𝑥)
𝑏

𝑎

𝑤(𝑥)𝑑𝑥 = 𝛿𝑚,𝑛                                                         (5) 

With δm,n is the Kronecker symbol defined by 

                                      (6) 

The weight function w(x) is continuous and also positive on [a,b] such that the moments 

    ∫ 𝑤(𝑥)
𝑏

𝑎

𝑥𝑛𝑑𝑥;    𝑛 ∈ 𝑁                                         (7) 

exist and finite, then 

             (8) 

defines the inner product of the polynomials Qn and Qm. We adopted the weight function w(x) = 

1−x2  in the interval [0,1]. Hence, we use the property below to construct our basis function 

  {
𝑄𝑛(𝑥) = ∑ 𝐶𝑟

(𝑛)𝑥𝑟
𝑛

𝑟=0

< 𝑄𝑛, 𝑄𝑚 >= 0
𝑄𝑛 = 1

                             (9) 

leading terms xr;r ≥ 0 for 

 
Therefore, 
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Q0(x) = 1 

For Q1(x), we have 

 

When x = 1, implies 

= 1                                           (10) 

= 0                                                                

(11) 

Solving equation 10 and equation 11, we obtain 

 

Hence,  

 3) (12) 

Similarly, for Q2(x), we have 

 = 1 (13) 

For x = 1, we obtain 

= 1 

and, 

= 0 (14) 

= 0  

 (15) 

Solving equation (13), equation (14) and equation (15), we obtain 

 

Hence, 
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                       (16) 

Following the same procedure, the following orthogonal polynomials were obtained for r ≥ 3. 

 

Standard collocation method by Constructed orthogonal polynomial (CP) basis function 

The orthogonal polynomials were constructed by using the Gram-Schmidt principle as a basis 

function in the approximating solution in this section. Thus, the infinite series solution is of the 

form 

𝑢(𝑥, 𝑡, 𝑧) = ∑ ∑ ∑ 𝑎𝑖,𝑤,𝑤

∞

𝑤=0

∞

𝑗=0

∞

𝑖=0

𝑄𝑖(𝑥)𝑄𝑤(𝑥)𝑄𝑤(𝑧)                        (𝑥, 𝑡, 𝑧) ∈ 𝐷                (18) 

The infinite series solution in equation (18) is truncated as finite series of the form 

𝑢(𝑥, 𝑡, 𝑧) ≈ 𝑢𝑁(𝑥, 𝑡, 𝑧) = ∑ ∑ ∑ 𝑎𝑖,𝑗,𝑤

𝑁

𝑤=0

𝑁

𝑗=0

𝑁

𝑖=0

𝑄𝑖(𝑥)𝑄𝑗(𝑥)𝑄𝑤(𝑧)       (𝑥, 𝑡, 𝑧) ∈ 𝐷        (19) 

Here, ai,j,w are the unknown to be determined and Qi(x) (i ≥ 0) are the orthogonal polynomials 

constructed above. N is the degree of approximant. Substituting equation (19) into equation (3) to 

obtain 

∑ ∑ ∑ 𝑎𝑖,𝑗,𝑤

𝑁

𝑤=0

𝑁

𝑗=0

𝑁

𝑖=0

𝑄𝑖(𝑥)𝑄𝑗(𝑡)𝑄𝑤(𝑧)

− ∫ ∫ ∫ 𝑘(𝑥, 𝑡, 𝑧, ℎ, 𝑤, 𝑙) (∑ ∑ ∑ 𝑎𝑖,𝑗,𝑤

𝑁

𝑤=0

𝑁

𝑗=0

𝑁

𝑖=0

)
𝑧

0

𝑡

0

𝑥

0

 (𝑄𝑖(ℎ)𝑄𝑗(𝑘)𝑄𝑤(𝑙))   𝑑ℎ𝑑𝑤𝑑𝑙

= 𝑓(𝑥, 𝑡, 𝑧)                                                                                                                   (20)   

Thus, equation (20) is collocated using the zeroes of the orthogonal polynomials constructed at x 

= xr, t = tq and z = zs to obtain (see [13]) 

∑ ∑ ∑ (𝑄𝑖(𝑥𝑤)𝑄𝑗(𝑡𝑞)𝑄𝑤(𝑧𝑚)

𝑁

𝑤=0

𝑁

𝑗=0

𝑁

𝑖=0

− ∫ ∫ ∫ 𝑘(𝑥𝑟 , 𝑡𝑞 , 𝑧𝑠, ℎ, 𝑤, 𝑙) (∑ ∑ ∑ 𝑎𝑖,𝑗,𝑤

𝑁

𝑤=0

𝑁

𝑗=0

𝑁

𝑖=0

)
𝑧𝑤

0

𝑡𝑤

0

𝑥𝑤

0

)

= 𝑓(𝑥𝑟 , 𝑡𝑞 , 𝑧𝑠)                  (21)  

Where 
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            (22) 

Using the collocation points in equation (21) gives system of linear algebraic equations contains 

(N +1)2 equations in the same number of given constants. Solving this system of linear algebraic 

equations to obtain the values of the constants ai,j,k such that i,j,k = 0,1,··· ,N. 

 

Standard collocation method by power series (PS) basis function 

The power series (PS) method is used in approximating the unknown function u(x,t,z) as : 

; (x,t,z) ∈ D 

Where ai,j,w are constants to be determined. If the infinite series in equation (23) is truncated into 

finite series, then equation (23) is written as: 

𝑢(𝑥, 𝑡, 𝑧) ≈ 𝑢𝑁(𝑥, 𝑡, 𝑧) = ∑ ∑ ∑ 𝑎𝑖,𝑗,𝑤𝑥𝑖

𝑁

𝑤=0

𝑁

𝑗=0

𝑁

𝑖=0

𝑡𝑗𝑧𝑧                              (24) 

Where N is any natural number. Substituting equation (24) into equation (3) to obtain 

∑ ∑ ∑ 𝑎𝑖,𝑗,𝑤

𝑁

𝑤=0

𝑁

𝑗=0

𝑁

𝑖=0

𝑥𝑖𝑡𝑗𝑧𝑤 − ∫ ∫ ∫ 𝑘(𝑥, 𝑡, 𝑧, ℎ, 𝑤, 𝑙) (∑ ∑ ∑ 𝑎𝑖,𝑗,𝑤

𝑁

𝑝=0

𝑁

𝑗=0

𝑁

𝑖=0

)
𝑧

0

𝑡

0

𝑥

0

 ℎ𝑖𝑤𝑗𝑙𝑤 𝑑ℎ𝑑𝑤𝑑𝑙

= 𝑓(𝑥, 𝑡, 𝑧)                                                                                                  (25)   
Hence, the residual equation is defined as 

𝑅𝑁(𝑥, 𝑡, 𝑧) = ∑ ∑ ∑ 𝑎𝑖,𝑗,𝑤

𝑁

𝑘=0

𝑁

𝑗=0

𝑁

𝑖=0

𝑥𝑖𝑡𝑗𝑧𝑤

− ∫ ∫ ∫ 𝑘(𝑥, 𝑡, 𝑧, ℎ, 𝑘, 𝑙) (∑ ∑ ∑ 𝑎𝑖,𝑗,𝑘

𝑁

𝑝=0

𝑁

𝑗=0

𝑁

𝑖=0

)
𝑧

0

𝑡

0

𝑥

0

 ℎ𝑖𝑤𝑗𝑙𝑘 𝑑ℎ𝑑𝑘𝑑𝑙 − 𝑓(𝑥, 𝑡, 𝑧)

= 0                                                                                                           (26)                  

Collocating equation (26) using the zeroes of the constructed orthogonal polynomials as 

collocation points as discussed by author [14], gives 

                                                                                                 (27) 

Equation (26)  is written as 
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∑ ∑ ∑ 𝑎𝑖,𝑗,𝑤

𝑁

𝑘=0

𝑁

𝑗=0

𝑁

𝑖=0

(𝑥𝑟
𝑖𝑡𝑞

𝑗𝑧𝑠
𝑤

− ∫ ∫ ∫ 𝑘(𝑥𝑟
𝑖, 𝑡𝑞

𝑗, 𝑧𝑠
𝑘, ℎ, 𝑘, 𝑙) (∑ ∑ ∑ 𝑎𝑖,𝑗,𝑤

𝑁

𝑝=0

𝑁

𝑗=0

𝑁

𝑖=0

)
𝑧𝑠

0

𝑡𝑞

0

𝑥𝑟

0

 ℎ𝑖𝑘𝑗𝑙𝑘 𝑑ℎ𝑑𝑘𝑑𝑙

− 𝑓(𝑥𝑟 , 𝑡𝑞 , 𝑧𝑠)) = 0                                       (28) 

Thus, equation (28) resulted to system of linear algebraic equations contain (N + 1)2 equations in 

the same number as the unknowns. Solving this system of algebraic equations to obtain the values 

of the constants ai,j,k such that i,j,k = 0,1,··· ,N 

Standard collocation method by shifted Legendre Polynomial (LP) basis function 

 

In this section, the infinite series solutions given in power series (PS) is replaced as 

𝑢(𝑥, 𝑡, 𝑧) ≈ 𝑢𝑁(𝑥, 𝑡, 𝑧) = ∑ ∑ ∑ 𝑎𝑖,𝑗,𝑘𝐿𝑖

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

(𝑥)𝐿𝑗(𝑡)𝐿𝑘(𝑧);                                (24) 

Where ai,j,k are already defined and Li(x) Lj(t) Lk(z) are the Legendre polynomials and the infinite 

series in equation (24) is truncated, then equation (24) is written as 

𝑢(𝑥, 𝑡, 𝑧) ≈ 𝑢𝑁(𝑥, 𝑡, 𝑧) = ∑ ∑ ∑ 𝑎𝑖,𝑗,𝑘𝐿𝑖

𝑁

𝑘=0

𝑁

𝑗=0

𝑁

𝑖=0

(𝑥)𝐿𝑗(𝑡)𝐿𝑘(𝑧);                (25)  

Thus, substituting equation (25) into equation (3) to obtain 

∑ ∑ ∑ 𝑎𝑖,𝑗,𝑘𝐿𝑖

𝑁

𝑘=0

𝑁

𝑗=0

𝑁

𝑖=0

(𝑥)𝐿𝑗(𝑡)𝐿𝑘(𝑧)

− ∫ ∫ ∫ 𝑘(𝑥, 𝑡, 𝑧, ℎ, 𝑘, 𝑙) (∑ ∑ ∑ 𝑎𝑖,𝑗,𝑘

𝑁

𝑝=0

𝑁

𝑗=0

𝑁

𝑖=0

)
𝑧

0

𝑡

0

𝑥

0

 𝐿𝑖(ℎ)𝐿𝑗(𝑘)𝐿𝑘(𝑙) 𝑑ℎ𝑑𝑘𝑑𝑙

= 𝑓(𝑥, 𝑡, 𝑧)                                                                             (26) 

Hence, the same procedure used in case of power series basis function is then employed to get the 

appropriate approximate solution for various values of N. 

 

Numerical Examples 

In this section, we consider three examples to illustrate the efficiency of the proposed methods and 

absolute errors are obtained for all examples considered. 

 

Example 1. Consider the following three-dimensional Volterra integral equation 

𝑢(𝑥, 𝑡, 𝑧) + 24 ∫ ∫ ∫ (𝑥2, 𝑡)
𝑧

0

𝑥

0

𝑡

0

𝑢(ℎ, 𝑤, 𝑙)𝑑ℎ𝑑𝑤𝑑𝑙

= 4𝑥5𝑡3𝑧 + 4𝑥3𝑡3𝑧3 +  3𝑥4𝑡3𝑧2 + 𝑥2𝑡 +  𝑧2𝑡 + 𝑥𝑡𝑧              

𝑥, 𝑡, 𝑧 ∈ [0,1]                                                                         (27)      
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With the exact solution given as  

𝑢(𝑥, 𝑡, 𝑧) = 𝑥2𝑡 + 𝑧2𝑡 + 𝑥𝑡𝑧                     (28) 

Applying the proposed methods in section (2.3), (2.4), and (2.5), we present the numerical 

solutions obtained as follows: 

          Table 1:          Approximate solutions Example 1 for N = 4 

(x,t,z) Exact Constructed 

Polynomial CP 

Legendre 

polynomial LP 

Power Series 

PS 

(0,0,0) 0.0000000 0.0000000 0.0000000 0.000000000 

(0.1,0.1,0.1) 0.0030000 0.0030029560 0.0030029559 0.0030029561 

(0.2,0.2,0.2) 0.0240000 0.0238079835 0.0238079831 0.0238079835 

(0.3,0.3,0.3) 0.0810000 0.0817371413 0.0797371406 0.0797371413 

(0.4,0.4,0.4) 0.1920000 0.1929874913 0.1889874905 0.1889874920 

(0.5,0.5,0.5) 0.3750000 0.3751089704 0.3753089696 0.3753089720 

(0.6,0.6,0.6) 0.6480000 0.6477203242 0.6477203242 0.6477203242 

(0.7,0.7,0.7) 1.0290000 1.0288998997 1.0288998997 1.0288998997 

(0.8,0.8,0.8) 1.5360000 1.5357176538 1.5297176538 1.5297176538 

(0.9,0.9,0.9) 2.1870000 2.1865900000 2.1865900000 2.1865900000 

(1.0,1.0,1.0) 3.0000000 3.0000000000 2.9962340828 2.9962340828 

 

 

 
Figure 1: Depict 3D plots surface for the comparison between exact solutions (blue), Constructed 

Polynomial (red), Power Series (yellow), Legendre polynomial (green) at x = 2 on interval z = −π 

···π, t = −π ···π space domain of three-dimensional Volterra integral equation coordinates. 

 

Example 2.  Consider the following two-dimensional Fredholm integral equation 

𝑢(𝑥, 𝑡, 𝑧) +
1

5
∫ ∫ ∫ 𝑥𝑢

1

0

1

0

1

0

(ℎ, 𝑤, 𝑙)𝑑ℎ𝑑𝑤𝑑𝑙 =
1

180
 + 𝑥𝑡(𝑥 − 𝑡)            (29)    
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With the exact solution given as 

𝑢(𝑥, 𝑡, 𝑧) = 𝑥𝑡(𝑧 − 𝑡)                                                 (30) 

Applying the proposed methods in section (2.3), (2.4), and (2.5), we present the numerical 

solutions obtained as follows: 

             Table 2:          Approximate solutions Example 2 for N = 4 

(x,t,z) 

𝑧 = 2 

Exact Constructed 

Polynomial 

CP 

Legendre 

polynomial 

LP 

Power Series 

SP 

(0,0) 0.00000000 0.000000000 0.000000000 0.000000000 

(0.1,0.1) 0.01900000 0.019245000 0.01826000 0.018230000 

(0.2,0.2) 0.07200000 0.071578000 0.07132000 0.071451000 

(0.3,0.3) 0.15300000 0.153256000 0.15246000 0.152410000 

(0.4,0.4) 0.25600000 0.25559000 0.25541000 0.255431000 

(0.5,0.5) 0.37500000 0.37473000 0.37342000 0.374321000 

(0.6,0.6) 0.50400000 0.50423000 0.50324000 0.503256000 

(0.7,0.7) 0.63700000 0.63745000 0.63652000 0.636342000 

(0.8,0.8) 0.76800000 0.76761000 0.76734000 0.767415000 

(0.9,0.9) 0.89100000 0.89123000 0.89781000 0.882312000 

(1.0,1.0) 1.00000000 1.00000000 1.89152000 1.861241000 

 
Figure 2: Depict 3D plots surface for the comparison between exact solutions (blue), Constructed 

Polynomial (red), Power Series (yellow), Legendre polynomial (green) at x = 2 on interval z = −π 

···π, t = −π ···π space domain of two-dimensional Fredholm integral equation coordinates.  
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Example 3. Consider the following three-dimensional Volterra integral equation 

𝑢(𝑥, 𝑡, 𝑧) +
1

20
∫ ∫ ∫ 𝑧𝑢

𝑧

0

𝑡

0

𝑥

0

(ℎ, 𝑤, 𝑙)𝑑ℎ𝑑𝑤𝑑𝑙 −
1

20
∫ ∫ ∫ (𝑥 + ℎ)

1

0

1

0

1

0

(ℎ, 𝑤, 𝑙)𝑑ℎ𝑑𝑤𝑑𝑙

= −
1

5
(𝑥 + 2𝑥)𝑠𝑖𝑛 (

1

2
)

2

sin(1) +  
1

20
 𝑥𝑧(sin(𝑡) + sin(𝑧) − sin(𝑡 + 𝑧))

+ sin(𝑡 + 𝑧)                          𝑥, 𝑡, 𝑧 ∈ [0,1]                                 (31) 

with the exact solution given as 

   𝑢(𝑥, 𝑡, 𝑧) = 𝑠𝑖𝑛(𝑡 + 𝑧)                                         (32)   

Applying the proposed methods in section (2.3), (2.4), and (2.5), we present the numerical 

solutions obtained as follows: 

                           Table 3:          Approximate solutions Example 3 for N = 4 

(t,z) Exact Constructed 

Polynomial 

CP 

Legendre 

polynomial 

LP 

Power Series 

PS 

(0,0) 0.000000000 0.000000000 0.000000000 0.000000000 

(0.1,0.1) 0.198669330 0.198669330 0.198669330 0.198669330 

(0.2,0.2) 0.389418342 0.389418342 0.389418342 0.389418342 

(0.3,0.3) 0.564642423 0.564642423 0.564642423 0.564642423 

(0.4,0.4) 0.717356093 0.717356093 0.717356093 0.717356093 

(0.5,0.5) 0.841470921 0.841470921 0.841470921 0.841470921 

(0.6,0.6) 0.932039083 0.932039083 0.932039083 0.932039083 

(0.7,0.7) 0.98544971 0.98544971 0.98544971 0.98544971 

(0.8,0.8) 0.99957360 0.99957360 0.99957360 0.99957360 

(0.9,0.9) 0.97384762 0.97384762 0.97384762 0.97384762 

(1.0,1.0) 0.90929742 0.90929742 0.90929742 0.90929742 

 

        
Figure 3: Depict 3D plots surface for the comparison between exact solutions (blue), Constructed 

Polynomial (red), Power Series (yellow), Legendre polynomial (green) on interval z = −π ···π, t = 

−π ···π space domain three-dimensional Volterra integral equation coordinates. 
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CONCLUSION  

In this study, we proposed and applied standard collocations techniques using three basic 

functions: Constructed polynomial (CP), Power series (PS), and shifted Legendre polynomial (LP) 

for the numerical solutions of the three-dimensional Volterra and Fredholm integral equations 

occur in applied mathematics and engineering sciences. From the three examples considered, the 

solutions are presented and compared with exact solutions which demonstrated the efficiency of 

the constructed polynomial (CP) as the closest to the exact solutions (red), followed by shifted 

Legendre polynomial (yellow) and least by Power series (PS) (green). Therefore, the present 

numerical techniques are proposed to serve as good tools to solve several problems in applied 

mathematics. 
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