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ABSTRACT 

The mathematical model of stratified deep water under modified gravity and 

Coriolis effect describes the behavior of fluid layers with different densities 

in a deep body of water. The model takes into account the effects of gravity, 

coriolis effect and other forces that can cause the fluid layers to move and 

interact with each other.  The important aspect of the model is the 

effectiveness of dimension of the Reynolds numbers as the deep water 

continuously stratifies. Reynolds number is a dimensionless quantity that 

represents the ratio of inertial forces to viscous forces in the stratified deep 

water. Reynolds number can have a significant impact on the behavior of 

the fluid layers and equally affect the stability of the stratified deep water 

layers, with higher Reynolds numbers leading to more turbulent behavior. 

Overall, the mathematical model of stratified deep water and the effect of 

the Reynolds numbers provide valuable insights into the behavior of fluid 

layers in deep bodies of water and can be used to predict and understand 

various phenomena, such as ocean currents, waves, and tides. 

1 INTRODUCTION  

The impact of Reynolds number in stratified deep water under modified gravity [1] is a complex 

and multifaceted topic that has garnered significant attention in recent years [2]. In this 

introduction, we will provide an overview of the key concepts and ideas related to this topic [3], 

and highlight some of the important findings and insights that have emerged from our recent 

research findings [4]. 

To begin with, it is important to understand what Reynolds number is and how it relates to the 

behavior of fluid layers in deep bodies of water [5][6]. The Reynolds number is a dimensionless 

quantity that represents the ratio of inertial forces to viscous forces in the fluid [7]. In the context 

of stratified deep water, the Reynolds number can have a significant impact on the behavior of the 

fluid layers [8],[9].  

 
*Corresponding author: NICHOLAS N. TOPMAN 

E-mail address: topman.nnamani@esut.edu.ng 
https://doi.org/10.60787/jnamp.vol71no.627 
1118-4388© 2025 JNAMP. All rights reserved  

The Nigerian Association of 

Mathematical Physics 

Journal homepage: https://nampjournals.org.ng 

mailto:topman.nnamani@esut.edu.ng
https://doi.org/10.60787/jnamp.vol71no.627
https://nampjournals.org.ng/


Nicholas et al. - Journal of NAMP 71, (2025) 199-210 

200 

The model shows that the Reynolds number can also affect the stability of the fluid layers [10], 

with higher Reynolds numbers leading to more turbulent behavior [11]. One important role of 

Reynolds number in stratified deep water under modified gravity is to predict the turbulence in 

deep water regime [12] [13]. In the model, modified gravity acts as a restoring force [14] that helps 

to maintain the stratification of the fluid layers. However, in situations where the gravity is 

modified [15], such as in the case of a rotating fluid owing to the coriolis effect [16] or a fluid in 

a gravitational field [17] with a non-uniform strength [18], the behavior of the fluid layers can be 

altered significantly [19]. 

Additionally, in a rotating fluid [20], the Coriolis force can act as an additional restoring force [21] 

that helps to maintain the stratification of the fluid layers [22]. This can lead to the formation of 

stable, rotating fluid layers that are characterized by a well-defined axis of rotation [23]. In a 

gravitational field with a non-uniform strength [24], the fluid layers can become unstable and start 

to oscillate, leading to the formation of waves and other complex phenomena. Another important 

aspect of the impact of Reynolds number in stratified deep water under modified gravity is the 

effect of the fluid properties on the behavior of the fluid layers [28]. The viscosity and density of 

the fluid can have a significant impact on the stability of the fluid layers and the formation of 

waves and other phenomena [18][20]. In general, fluids with higher viscosity and lower density 

tend to be more stable and less prone to turbulence [30], while fluids with lower viscosity and 

higher density tend to be more unstable and more prone to turbulence [19][25]. 

 

2.0 ASSUMPTIONS OF THE MODEL 

From the model equations we performed dimensional analysis for stratified deep water under 

modified gravity and the Coriolis effect to derive dimensionless numbers like Froude Reynolds 

number. This number is essential for understanding the dynamics of flow in stratified deep water 

environment. The assumptions: 

i. The fluid is incompressible 

 ii. The fluid is stratified, meaning that the density varies with depth. This stratification is often 

modeled as a layered fluid with different density layers, or as a continuous density gradient. 

iii. The gravity acceleration is not constant and may vary with depth or other factors. 

iv. The Coriolis force is included in the equations of motion, which is important for large-scale 

deep water flows in rotating systems. 

v. The flow is assumed to be laminar, which is a common assumption when deriving Reynolds 

numbers. But, in some cases, turbulent flow may be considered, but the Reynolds number is still 

used to characterize the flow regime. 

vi. Viscous effects are neglected in the initial analysis, and the Reynolds number is derived based 

on the balance between inertial and viscous forces. 

vii. The flow is considered to be driven by internal forces like gravity, Coriolis, and buoyancy with 

no external forces like wind, pressure gradients at the initial analysis. 
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MODEL DIAGRAM 

 

Figure 1. The geometry of stratified deep water flow under modified gravity and Coriolis effect 

The stratification occurs at thermocline regime where the 𝐻 = ℎ1 + ℎ2 + ℎ3 for the three strata 

and velocities 𝑢1, 𝑢2 𝑎𝑛𝑑 𝑢3 with varying densities, 𝜌1, 𝜌2, 𝑎𝑛𝑑 𝜌3. 

 

3.0 MODEL EQUATION 

The model equations can be scaled using the scaling procedure of 2-D incompressible continuity 

and N.-S equations. The equations as obtained and subsequently applied [16] [19]. 
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4.0 MODEL ANALYSIS 

Equation (a-i) is the model equation [16] [19] and we wish to take scale analysis for the first layer 

equation to obtain some important quantities. Independent variables of this equations are 
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𝑥, 𝑦 𝑎𝑛𝑑 𝑡, while the dependent variables are 𝑢1, 𝑣1 𝑎𝑛𝑑 𝑝1. The height of the stratified layer at 

thermocline = ℎ. 

It is of interest to note that often the correct time scale can be obtained by combining the length 

and velocity scales. Using generalized dimensions we obtain velocity 𝑎𝑠 
𝐿𝑒𝑛𝑔𝑡ℎ 

𝑇𝑖𝑚𝑒
 ⟹ 𝑢 ∽

𝐿

𝑇
⟹

𝑡𝑠 =
𝐻

𝑈𝑐
,    𝑥∗ = 𝑥

𝐻⁄   ,    𝑦∗ =
𝑦

𝐻⁄   ,    𝑡∗ = 𝑡
𝑡𝑠

⁄  

So    𝑢∗ = 𝑢
𝑈𝑐

⁄   ,    𝑣∗ = 𝑣
𝑉𝑐

⁄   ,    𝑝∗ =
𝑝

𝑃𝑠
⁄  

Consider the continuity and momentum equations of the model at first stratification under modified 

gravity which is the gravity that ensures continuous stratification and Coriolis effect. 

For the continuity equation:  

𝜕ℎ1

𝜕𝑡
+

𝜕(ℎ1𝑢1)

𝜕𝑥
= 0         (1) 

𝜕ℎ1

𝜕𝑡
+ ℎ1

𝜕𝑢1

𝜕𝑥
+ 𝑢1

𝜕ℎ1

𝜕𝑥
= 0                                 (2) 

Recall    
𝐷𝑈

𝐷𝑡
=

𝑑𝑢1

𝑑𝑡
+ 𝑢. ∇𝑈  

⇒  
𝜕ℎ1

𝜕𝑡
+ 𝑢1

𝜕ℎ1

𝜕𝑥
= −ℎ1

𝜕𝑢1

𝜕𝑥
                 (3) 

From the momentum equation: 

𝜕(ℎ1𝑢1)

𝜕𝑡
+

𝜕(ℎ1𝑢1
2+𝑔ˈℎ1

2/2)

𝜕𝑥
= −𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
− 𝑔ˈℎ1

𝜕(𝜀)

𝜕𝑥
+ 𝑓𝑢1              (4)  

This gives 

𝜕(ℎ1𝑢1)

𝜕𝑡
+

𝜕(ℎ1𝑢1
2)

𝜕𝑥
+ 𝑔ˈ 𝜕(ℎ1

2/2)

𝜕𝑥
= −𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
− 𝑔ˈℎ1

𝜕Σ

𝜕𝑥
+ 𝑓𝑢1                            (5) 

Expanding equation (5) 

𝑢1
𝜕ℎ1

𝜕𝑡
+ ℎ1

𝜕𝑢1

𝜕𝑡
+ 2𝑢1ℎ1

𝜕𝑢1

𝜕𝑥
+ 𝑢1

2 𝜕ℎ1

𝜕𝑥
+ 𝑔ˈ 𝜕ℎ1

𝜕𝑥
= −𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
− 𝑔ˈℎ1

𝜕Σ

𝜕𝑥
+ 𝑓𝑢1 (6) 

Then 

𝑢1 (
𝜕ℎ1

𝜕𝑡
+ 𝑢1

𝜕ℎ1

𝜕𝑥
) + ℎ1 (

𝜕𝑢1

𝜕𝑡
+ 2𝑢1

𝜕𝑢1

𝜕𝑥
) + 𝑔ˈ 𝜕ℎ1

𝜕𝑥
= −𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
− 𝑔ˈℎ1

𝜕Σ

𝜕𝑥
+ 𝑓𝑢1 (7) 

Substitute equation (3) into equation (7), which yields 
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𝜕𝑢1
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+ ℎ1
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𝜕𝑡
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𝜕𝑢1

𝜕𝑥
+ 𝑔ˈ 𝜕ℎ1

𝜕𝑥
= −𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
− 𝑔ˈℎ1

𝜕Σ

𝜕𝑥
+ 𝑓𝑢1               (8) 

 ℎ1
𝜕𝑢1

𝜕𝑡
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𝜕𝑢1

𝜕𝑥
+ 𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
= −𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
− 𝑔ˈℎ1

𝜕Σ

𝜕𝑥
+ 𝑓𝑢1 

ℎ1 (
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
) + 𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
= −𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
− 𝑔ˈℎ1

𝜕Σ

𝜕𝑥
+ 𝑓𝑢1                              (9) 

But  
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
=

𝑑𝑢1

𝑑𝑡
 , hence equation (9) becomes 
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ℎ1
𝑑𝑢1

𝑑𝑡
+ 𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
= −𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
− 𝑔ˈℎ1

𝜕Σ

𝜕𝑥
+ 𝑓𝑢1                               (10) 

ℎ1
𝑑𝑢1

𝑑𝑡
= −𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
− 𝑔ˈℎ1

𝜕Σ

𝜕𝑥
+ 𝑓𝑢1                                 (11) 

𝑑𝑢1

𝑑𝑡
= −𝑔ˈℎ1

𝜕ℎ1

𝜕𝑥
− 𝑔ˈℎ1

𝜕Σ

𝜕𝑥
+

1

ℎ1
𝑓𝑢1                                 (12)  

Equation (12) which is the total acceleration in the first stratified column becomes 

𝐷𝑢1

𝐷𝑡
=

𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
                       (13) 

5.0 SCALING ANALYSIS OF THE MODEL EQUATION 

We can now take scaling analysis of equation (2) using generalized dimensions to obtain: 

 
𝐿𝑒𝑛𝑔𝑡ℎ 

𝑇𝑖𝑚𝑒
 ⟹ 𝑢 ∽

𝐿

𝑇
⟹ 𝑡𝑠 =

𝐻

𝑈𝑐
 

            𝑥∗ = 𝑥
𝐻⁄   ,    𝑦∗ =

𝑦
𝐻⁄   ,    𝑡∗ = 𝑡

𝑡𝑠
⁄  

So    𝑢∗ = 𝑢
𝑈𝑐

⁄   ,    𝑣∗ = 𝑣
𝑉𝑐

⁄   ,    𝑝∗ =
𝑝

𝑃𝑠
⁄  

𝜕ℎ1

𝜕𝑡
+ 𝑢1

𝜕ℎ1

𝜕𝑥
+ ℎ1

𝜕𝑢1

𝜕𝑥
= 0                (14) 

𝜕(𝐻ℎ1
∗ )

𝜕(𝑡∗𝑡𝑠)
+ 𝑈𝐶𝑈1

∗ 𝜕(𝐻ℎ1
∗ )

𝜕(𝐻𝑥∗)
+ 𝐻ℎ1

∗ 𝜕(𝑈𝑐𝑢1
∗ )

𝜕(𝐻𝑥∗)
= 0               (15) 

𝐻

𝑡𝑠

𝜕ℎ1
∗

𝜕𝑡∗
+

𝑢𝑐𝐻𝑢1
∗

𝐻

𝜕ℎ1
∗

𝜕𝑥∗
+

𝐻ℎ1
∗ 𝑈𝑐

𝐻

𝜕𝑢1
∗

𝜕𝑥∗
= 0               (16) 

𝐻

𝑡𝑠

𝜕ℎ1
∗

𝜕𝑡∗ + 𝑈𝑐 . 𝑢1
∗ 𝜕ℎ1

∗

𝜕𝑥∗ + 𝑈𝑐 . ℎ1
∗ 𝜕𝑢1

∗

𝜕𝑥∗ = 0                (17) 

But 𝑡𝑠 =
𝐻

𝑈𝑐
                               (18) 

∴   𝑈𝑐
𝜕ℎ1

∗

𝜕𝑡∗ + 𝑈𝑐 . 𝑢1
∗ 𝜕ℎ1

∗

𝜕𝑥∗ + 𝑈𝑐  . ℎ1
∗ 𝜕𝑢1

∗

𝜕𝑥∗ = 0               (19) 

𝑈𝑐 (
𝜕ℎ1

∗

𝜕𝑡∗ +  𝑢1
∗ 𝜕ℎ1

∗

𝜕𝑥∗ + ℎ1
∗ 𝜕𝑢1

∗

𝜕𝑥∗) = 0                            (20) 

⇒  
𝜕ℎ1

∗

𝜕𝑡∗
+  𝑢1

∗ 𝜕ℎ1
∗

𝜕𝑥∗
+ ℎ1

∗ 𝜕𝑢1
∗

𝜕𝑥∗
                     (21) 

Equation 21 shows that scaled continuity equation for stratified deep water is identical to unscaled 

continuity equation (2) and equation (20) can be generally compared with equation (22) which is 

the scaled continuity equation of fluid flow. 

𝑈𝑐 (
𝜕𝑢∗

𝜕𝑥∗ 
+

𝜕𝑣∗

𝜕𝑦∗) = 0                                                                                                (22) 

We can extend the procedure to the x – momentum equation (12), here the gravity is partially 

modified and 
𝜕2

𝜕2𝑥
 = 

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
) = 

𝜕

𝜕𝐻𝑥∗(
𝜕

𝜕𝐻𝑥∗) = 
1

𝐻

𝜕

𝜕𝑥∗2 
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From equation (12), 

 
 𝑑𝑢1

𝑑𝑡
= −𝑔ˈ(

𝜕ℎ1

𝜕𝑥
+

𝜕𝜀

𝜕𝑥
)                                                                                         (23) 

Equation (23) is when the effect of coriolis is zero, since coriolis effect is fundamentally zero at 

the equator (0° 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒), here due to the vertical motion at the equator the deep water particles at 

the equator moves strictly north or south (parallel to the rotation axis), the horizontal coriolis force 

is zero. Again in the context of energy equations for waves in a rotating fluid, the coriolis terms 

perform zero work because the force acts perpendicular to the velocity of the fluid parcels.  

Now scaling the momentum equation of stratified deep water yield 

 𝑔ˈ (
𝜕ℎ1

𝜕𝑥
+

𝜕𝜀

𝜕𝑥
) =

𝜕𝑢1

𝜕𝑡
(

𝜕ℎ1

𝜕𝑥
+

𝜕𝜀

𝜕𝑥
)                                                                          (24) 

The (∗) quantites are all dimensionless. We substitute the dimensionless quantities into equation 

(24).  

  [𝑔ˈ (
𝜕ℎ1

𝜕𝑥
+

𝜕𝜀

𝜕𝑥
)]

∗

=
𝜕(𝑈𝑐𝑢1

∗ )

𝜕(𝑡∗𝑡𝑠)

𝜕(𝐻ℎ1
∗

𝜕(𝐻𝑥∗)
+

𝜕𝐻𝜀∗

𝜕(𝐻𝑥∗)
                                                       (25) 

 [𝑔ˈ (
𝜕ℎ1

𝜕𝑥
+

𝜕𝜀

𝜕𝑥
)]

∗

=
𝑈𝑐

𝑡𝑠

𝜕(𝑢1
∗ )

𝜕(𝑡∗)
 (

𝐻

𝐻

𝜕(ℎ1
∗

𝜕(𝑥∗)
+

𝐻

𝐻

𝜕𝜀∗

𝜕(𝑥∗)
)                                                 (26) 

But 
𝑈𝑐

𝑡𝑠
= 𝑈𝑐

𝐻

𝑈𝑐
⁄ = 

𝑈𝑐

𝐻
 , then equation (26) becomes 

 [𝑔ˈ (
𝜕ℎ1

𝜕𝑥
+

𝜕𝜀

𝜕𝑥
)]

∗

=
𝑈𝑐

2

𝐻

𝜕(𝑢1
∗ )

𝜕(𝑡∗)
 (

𝜕(ℎ1
∗

𝜕(𝑥∗)
+

𝜕𝜀∗

𝜕(𝑥∗)
)                                                             (27) 

Equation (26) shows that the scaled momentum equation under gravity modification is identical to 

equation (24). An important development was noticed during the scaling of momentum equation 

for stratified deep water, in equation (27), we noticed the emergence of the term 
𝑈𝑐

𝐻
 which is the 

same with the typical scaling of momentum equation: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

−1

𝜌

𝜕𝜌

𝜕𝑥
+ 𝑣 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)                                                               (28) 

𝜕𝑣

𝜕𝑡
+

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

−1

𝜌

𝜕𝜌

𝜕𝑦
+ 𝑣 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) − 𝑔ˈ                                                          (29) 

Introducing the dimensionless quantities into equation (28), gives 

𝑈𝑐
𝜕𝑢∗

𝜕𝑡
+ 𝑈𝑐

2 𝑢∗ 𝜕𝑢∗

𝜕𝑥
+ 𝑈𝑐 𝑣∗ 𝜕𝑢∗

𝜕𝑦
=

−𝑃𝑆

𝜌

𝜕𝑃

𝜕𝑥
+ 𝜈𝑈𝑐 (

𝜕2𝑢∗

𝜕𝑥2 +
𝜕2𝑢∗

𝜕𝑦2 )                             (30) 

Then the partially- scaled result of equation (28) becomes 

𝑈𝑐

𝑡𝑠

𝜕𝑢∗

𝜕𝑡∗
+

𝑈𝑐
2

𝐻
𝑢∗ 𝜕𝑢∗

𝜕𝑥
+

𝑈𝑐
2

𝐻
𝑣∗ 𝜕𝑢∗

𝜕𝑦
=

−𝑃𝑠

𝜌𝐻

𝜕𝑃∗

𝜕𝑥∗
+

𝑣𝑈𝑐

𝐻2
(

𝜕2𝑢∗

𝜕𝑥∗2 +
𝜕2𝑢∗

𝜕𝑦∗2)                                (31) 

Since 𝑡𝑠 = 𝐻/𝑈𝑐, the equation (31) becomes  

𝑈𝑐
2

𝐻
(

𝜕𝑢∗

𝜕𝑡∗
+  𝑢∗ 𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑢∗

𝜕𝑦∗
) =

−𝑃𝑠

𝜌𝐻

𝜕𝑃∗

𝜕𝑥∗
+

𝑣𝑈𝑐

𝐻2
(

𝜕2𝑢∗

𝜕𝑥∗2 +
𝜕2𝑢∗

𝜕𝑦∗2)                                    (32) 
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By inspection we can clearly see that there is a common term in equation (27) and (32) which is 
𝑈𝑐

2

𝐻
. Therefore, equation (32) becomes 

𝜕𝑢∗

𝜕𝑡∗
+  𝑢∗ 𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑢∗

𝜕𝑦∗
=

−𝑃𝑠

𝜌𝑈𝑐
2

𝜕𝑃∗

𝜕𝑥∗
+

𝜈

𝑈𝑐𝐻
(

𝜕2𝑢∗

𝜕𝑥∗2 +
𝜕2𝑢∗

𝜕𝑦∗2)                                            (33) 

 Observation from equation (33) shows that all quantities on the left- hand side are dimensionless, 

the same with all derivative terms on the right-hand side of equation (33). Hence, 
𝑃𝑠

𝜌𝑈𝑐
2 𝑎𝑛𝑑 𝑣/(𝑢𝑐𝐻) are also dimensionless. 

6.0 DIMENSIONAL ANALYSIS OF OBTAINED QUANTITIES 

The dimensional analysis of quantities obtained in equation (33) which equally correspond with 

equation (27) can now be analyzed. 

 So 𝜌𝑢𝑐
2 is dimensionally equivalent to: 

𝜌𝑢𝑐
2 ∽

𝑀𝑎𝑠𝑠

(𝐿𝑒𝑛𝑔𝑡ℎ)3 (
𝐿𝑒𝑛𝑔𝑡ℎ

𝑇𝑖𝑚𝑒
)

2

∽
𝑀

𝐿2 

𝐿

𝑇2    Where T = time, L = length and M = mass 

𝜌𝑢𝑐
 2 ∽ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ∽

𝑓𝑜𝑟𝑐𝑒

𝑎𝑟𝑒𝑎
∽

𝑚𝑎𝑠𝑠.𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑎𝑟𝑒𝑎
   

From this it is obvious that 𝑃/(𝜌𝑢𝑐
2) will be unitless. Again, this is a very important quantity in 

deep water analysis and the value is twice the dynamic pressure. Hence as known in fluid 

dynamics;  

Dynamic pressure = 
1

2
𝜌𝑈𝑐

2 

For generality the "𝑐" subscript on the velocity can be suppress. 

∴ 𝑝𝑑 =
1

2
𝜌𝑈                                                                                                                                (34) 

Equation (34) shows the validity of the model and it is very useful in study of Bernoulli’s equation 

which is important in deep water stratification because it helps to describe the relationship between 

pressure, velocity, and depth in deep water. It helps us to understand how different layers of water 

interact with each other. 

 Consider the coefficient of the second order partial differential equation in (33), 𝑣/(𝑈𝑐𝐻).  

The reciprocal of this dimensionless quantity is the Reynolds Number which is very important in 

studies of transition of turbulence in deep water regime. It is expressed as: 
1

𝑣 𝐻𝑈𝑐⁄
= 𝑅𝑒 =

𝑈𝑐𝐻

𝜈
                                                                                                                         (35) 

By suppressing the subscript "𝑐" on the velocity and 𝐻 becomes 𝐿 for generality then equation (35) 

becomes; 

𝑅𝑒 =
𝑈𝐿

𝑣
                                                                                                                                          (36) 

Equation (36) is Reynolds number, which is a dimensionless quantity used to predict the flow in 

stratified deep water regime. It is defined as the ratio of inertial forces to viscous forces in a fluid 

flow. The property parameters that Reynolds number contains are. The Reynolds number can be 

expressed as dimensionless quantity useful in predicting the flow regime in deep water. It is 

defined as the ratio of inertial forces to viscous forces in a fluid flow. The property of Reynolds 

number are: 
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• Fluid velocity: Reynolds number is proportional to the velocity of the fluid. Higher fluid 

velocities result in higher Reynolds numbers, indicating a greater tendency for turbulent 

flow. 

• Fluid viscosity: Reynolds number is inversely proportional to the viscosity of the fluid. 

Lower viscosities result in higher Reynolds numbers, indicating a greater tendency for 

turbulent flow 

• Fluid density: Reynolds number also depends on the density of the fluid. Higher fluid 

densities result in lower Reynolds numbers, indicating a greater tendency for laminar flow. 

 
RESULTS AND DISCUSSION 

 

Figure 2: The effect of Reynolds number at resonance on stratified deep water under modified 

gravity. 

From figure 2, shows the effect of resonance as the deep water stratifies leading to high amplitude 

of oscillation and this can lead to mixing and less turbulence owing to Reynolds number. There is 

symmetrical properties at this regime giving rise to dynamic pressure and the stratified deep water 

is in dynamic equilibrium. 

 

Figure 3: The simulation showing unstable and stable stratification at resonance owing to increase 

in mixing leading to turbulence due to Reynolds number. 
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Figure 4: The effect of Reynolds number as the deep water stratifies at different velocities with 

varied values of 𝛽.The Froude number is an important dimensionless number in fluid dynamics 

and is used to describe the relationship between inertial and gravitational forces in a fluid flow. 

In the context of deep water stratification, the Froude number is used to determine the stability of 

the water column and the development of internal waves. 

The analysis developed in this model demonstrates how dimensional scaling of the stratified deep 

water equations under modified gravity and Coriolis influence naturally yields key nondimensional 

quantities particularly the Reynolds number. This quantity encapsulates the balance between 

inertial and viscous forces and therefore determines whether stratified flow remains laminar, 

transitions, or evolves toward turbulent mixing. In a stratified oceanic or deep-water environment, 

this is essential because mixing, internal wave dynamics, and interlayer momentum exchange are 

highly Reynolds-number dependent. 

Deriving Reynolds number in this context is significant because it provides a rigorous theoretical 

bridge between the governing momentum equations and the observable behavior of stratified 

layers. It allows the system to be characterized without requiring specific dimensional units, 

meaning the same framework can be applied across scales from laboratory tanks to real ocean 

basins. Moreover, its emergence from the scaled momentum equation confirms internal 

consistency of the model and supports its physical realism. 

The figures presented in the manuscript illustrate how Reynolds number modifies system response, 

stratification strength, and mixing behavior. Figure 2 shows the effect of resonance under 

stratification, where elevated Reynolds values intensify oscillatory responses of the layers. This 

suggests enhanced dynamic pressure and temporary energetic equilibrium. Figure 3 demonstrates 

the evolution from stable to unstable stratification regimes as Reynolds number increases: higher 

Re produces stronger interfacial shear, enhanced mixing, and turbulence. Figure 4 complements 

this by showing how changing velocities influence Reynolds number and, consequently, the degree 

of stratification stability versus potential breakdown. Collectively, these figures visualize the 

progressive transition from orderly, laminar stratified motion to increasingly energetic, mixed, and 

turbulent states driven by Reynolds intensity. 
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The findings also relate directly to the stability of stratified flows. Stable stratification occurs when 

buoyancy forces dominate, suppressing vertical exchange; however, rising Reynolds number 

increases inertial forcing, promotes shear instabilities, and reduces stability. Thus, the analyses 

presented confirm that Reynolds number serves as a predictive stability indicator: low Re 

corresponds to stable, layered flow, while high Re aligns with instability, mixing, wave 

amplification, and turbulence consistent with modern oceanographic understanding of stratified 

flows. 

CONCLUSION 

This manuscript developed and analyzed a mathematical model of stratified deep water flow under 

modified gravity and Coriolis effects through dimensional and scaling analysis  

The study successfully derived a key nondimensional parameter, the Reynolds number from the 

scaled momentum equations and demonstrated its fundamental role in characterizing stratified 

flow behavior. The numerical simulations and graphical results showed how Reynolds number 

governs dynamic pressure, mixing tendencies, turbulence generation, and the transition between 

stable and unstable stratification regimes. Overall, the work provides theoretical and interpretive 

understanding of how inertial viscous balance influences deep water stratification dynamics, 

offering insights applicable to geophysical fluid processes in oceanographic systems. 

Conflict of interest: The authors declare no conflict of interest. 

LIST OF SYMBOLS 

  

𝜆                                             Wavelength 

𝑢 = (𝑢, 𝑣, 𝑤)   The velocity vector 

𝜌   The density of flow 

𝑔   The gravitational constant 

 𝑔ˈ                                              The modified gravity                                         

𝑓   The coriolis parameter  

𝑢   Velocity in the 𝑥-direction 

𝑣   The velocity in the 𝑦-direction 

𝐿   The length scale 

ℎ   Vertical length scale 

𝑥   𝑥 direction 

𝑦   𝑦 direction 

𝑡   The required time 
𝐷

𝐷𝑡
   The total material derivative 

𝜉(𝑥, 𝑦)   Denotes the thermocline regime 

ℎ    The water height above each stratified column 

𝑈𝑐                                              Dimensional velocity 

𝑢1   Velocity in the first layer in the 𝑥  ̶   direction 

𝑢2   Velocity in the second layer in the 𝑥  ̶   direction 

𝑣1   Velocity in the first layer in the 𝑦  ̶   direction 

𝑣2   Velocity in the second layer in the 𝑦  ̶   direction 

 𝑡∗                                              Dimensional time 

𝑡𝑠                                                Scaled time 

 𝑝∗                                             Dimensional pressure 
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𝑢1
∗                                              Dimensional velocity in the first layer   

 𝑥∗                                             Scaled x 

𝑦∗                                              Scaled y 

 𝐻   Dimensionless height 

 𝛼                                               Measure of strength of the system  

 𝛽                                                Measure of stability of the system 

𝐹   Sum of all forces 

𝑚   Mass in (Kg) 

𝑎   Acceleration in (m/𝑠2) 

L                                                Length in meter  

P                                                 Pressure in (𝐾𝑔/𝑚𝑠2) 
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