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ARTICLE INFO ABSTRACT
- - The mathematical model of stratified deep water under modified gravity and
Article history: Coriolis effect describes the behavior of fluid layers with different densities
Eg\cl?s“efgd oo in a deep body of water. The model takes into account the effects of gravity,
Accepted  XXXXX coriolis effect and other forces that can cause the fluid layers to move and
Available online xxxxx ~ Interact with each other. The important aspect of the model is the
Keywords: effectiveness of dimension of the Reynolds numbers as the deep water
Dimensionless continuously stratifies. Reynolds number is a dimensionless quantity that
Number; represents the ratio of inertial forces to viscous forces in the stratified deep
Laminar Flow; water. Reynolds number can have a significant impact on the behavior of
Turbulence; the fluid layers and equally affect the stability of the stratified deep water
Fluid layers, with higher Reynolds numbers leading to more turbulent behavior.
Mechanics; Overall, the mathematical model of stratified deep water and the effect of
Modified the Reynolds numbers provide valuable insights into the behavior of fluid
Gravity. layers in deep bodies of water and can be used to predict and understand

various phenomena, such as ocean currents, waves, and tides.

1 INTRODUCTION

The impact of Reynolds number in stratified deep water under modified gravity [1] is a complex
and multifaceted topic that has garnered significant attention in recent years [2]. In this
introduction, we will provide an overview of the key concepts and ideas related to this topic [3],
and highlight some of the important findings and insights that have emerged from our recent
research findings [4].

To begin with, it is important to understand what Reynolds number is and how it relates to the
behavior of fluid layers in deep bodies of water [5][6]. The Reynolds number is a dimensionless
quantity that represents the ratio of inertial forces to viscous forces in the fluid [7]. In the context
of stratified deep water, the Reynolds number can have a significant impact on the behavior of the
fluid layers [8],[9].
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The model shows that the Reynolds number can also affect the stability of the fluid layers [10],
with higher Reynolds numbers leading to more turbulent behavior [11]. One important role of
Reynolds number in stratified deep water under modified gravity is to predict the turbulence in
deep water regime [12] [13]. In the model, modified gravity acts as a restoring force [14] that helps
to maintain the stratification of the fluid layers. However, in situations where the gravity is
modified [15], such as in the case of a rotating fluid owing to the coriolis effect [16] or a fluid in
a gravitational field [17] with a non-uniform strength [18], the behavior of the fluid layers can be
altered significantly [19].

Additionally, in a rotating fluid [20], the Coriolis force can act as an additional restoring force [21]
that helps to maintain the stratification of the fluid layers [22]. This can lead to the formation of
stable, rotating fluid layers that are characterized by a well-defined axis of rotation [23]. In a
gravitational field with a non-uniform strength [24], the fluid layers can become unstable and start
to oscillate, leading to the formation of waves and other complex phenomena. Another important
aspect of the impact of Reynolds number in stratified deep water under modified gravity is the
effect of the fluid properties on the behavior of the fluid layers [28]. The viscosity and density of
the fluid can have a significant impact on the stability of the fluid layers and the formation of
waves and other phenomena [18][20]. In general, fluids with higher viscosity and lower density
tend to be more stable and less prone to turbulence [30], while fluids with lower viscosity and
higher density tend to be more unstable and more prone to turbulence [19][25].

2.0 ASSUMPTIONS OF THE MODEL

From the model equations we performed dimensional analysis for stratified deep water under
modified gravity and the Coriolis effect to derive dimensionless numbers like Froude Reynolds
number. This number is essential for understanding the dynamics of flow in stratified deep water
environment. The assumptions:

i. The fluid is incompressible

ii. The fluid is stratified, meaning that the density varies with depth. This stratification is often
modeled as a layered fluid with different density layers, or as a continuous density gradient.

iii. The gravity acceleration is not constant and may vary with depth or other factors.

iv. The Coriolis force is included in the equations of motion, which is important for large-scale
deep water flows in rotating systems.

v. The flow is assumed to be laminar, which is a common assumption when deriving Reynolds
numbers. But, in some cases, turbulent flow may be considered, but the Reynolds number is still
used to characterize the flow regime.

vi. Viscous effects are neglected in the initial analysis, and the Reynolds number is derived based
on the balance between inertial and viscous forces.

vii. The flow is considered to be driven by internal forces like gravity, Coriolis, and buoyancy with
no external forces like wind, pressure gradients at the initial analysis.
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MODEL DIAGRAM
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Figure 1. The geometry of stratified deep water flow under modified gravity and Coriolis effect

The stratification occurs at thermocline regime where the H = h; + h, + h; for the three strata
and velocities u,, u, and u; with varying densities, p;, p,, and ps.

3.0 MODEL EQUATION
The model equations can be scaled using the scaling procedure of 2-D incompressible continuity
and N.-S equations. The equations as obtained and subsequently applied [16] [19].
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4.0 MODEL ANALYSIS

Equation (a-i) is the model equation [16] [19] and we wish to take scale analysis for the first layer
equation to obtain some important quantities. Independent variables of this equations are
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x,y and t, while the dependent variables are u,, v; and p;. The height of the stratified layer at

thermocline = h.

It is of interest to note that often the correct time scale can be obtained by combining the length

and velocity scales. Usmg generalized dimensions we obtain velocity as
_H * _ X _y —t
tS_UC' = /H' = /H’ t* = /ts

So u*z'U,/UC’ v*ZU/VC, p*zp/PS

Len gth

L
= Uu "‘;=>

Consider the continuity and momentum equations of the model at first stratification under modified
gravity which is the gravity that ensures continuous stratification and Coriolis effect.

For the continuity equation:

dhy + d(hiuq)

at dx =0
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From the momentum equation:
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Substitute equation (3) into equation (7), which yields
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But ——=+u; — , hence equation (9) becomes

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

202



Nicholas et al. - Journal of NAMP 71, (2025) 199-210

h1 dul +g h1 ahl =-g h1 ahl —gh Z_i + fuy (10)
d an 8%
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Equation (12) which is the total acceleration in the first stratified column becomes

D'Ll.]_ — 6u1 + 1 6u1
Dt dx

5.0 SCALING ANALYSIS OF THE MODEL EQUATION

(13)

We can now take scaling analysis of equation (2) using generalized dimensions to obtain:

Length L H
- DU - — = tS = —
Time T Uc

=%y, yv=Yly, =

* I *_p
so w =YYy, v ="fy . v =P

Tipu S hy 22 =0 (14)

6(Hh1) « 0(HR]) a(Ucu1)

a(t*ts) +UcUi a(Hx*) +Hh S a(Hx*) =0 (15)

Hohy | ucHuj 0hy | HhiUc uj _

ts Ot* Ty Ax* tT ax* 0 (16)

Eahi ahl aul _

e U uig U Rt =0 (17)

H

But £ = - (18)

U285+ U g S5 4 U hj 24 = 0 (19)
oh} 6h ou
U (S2+ ui S+ by 1) 0 (20)
N % +u ‘”‘1 L4 hpsd 6”1 (21)

Equation 21 shows that scaled continuity equation for stratified deep water is identical to unscaled
continuity equation (2) and equation (20) can be generally compared with equation (22) which is
the scaled continuity equation of fluid flow.

Ue (55 +55) = 0 (22)

We can extend the procedure to the x — momentum equation (12), here the gravity is partially
modified and 2 = () = 9 )12
82x  9x'0x aHx*‘aHx H 9x*
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From equation (12),

d‘u.1 ' 6h1 de
—1 = _ (_ =

- ax 6x)

dt (23)

Equation (23) is when the effect of coriolis is zero, since coriolis effect is fundamentally zero at
the equator (0° latitude), here due to the vertical motion at the equator the deep water particles at
the equator moves strictly north or south (parallel to the rotation axis), the horizontal coriolis force
IS zero. Again in the context of energy equations for waves in a rotating fluid, the coriolis terms
perform zero work because the force acts perpendicular to the velocity of the fluid parcels.

Now scaling the momentum equation of stratified deep water yield
' 6h1 de 6u1 6h1 de
9 (E + 6x) o Gox T30 (24)

The (*) quantites are all dimensionless. We substitute the dimensionless quantities into equation
(24).
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Equation (26) shows that the scaled momentum equation under gravity modification is identical to
equation (24). An important development was noticed during the scaling of momentum equation

for stratified deep water, in equation (27), we noticed the emergence of the term % which is the
same with the typical scaling of momentum equation:
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Introducing the dimensionless quantities into equation (28), gives
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Then the partially- scaled result of equation (28) becomes
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By inspection we can clearly see that there is a common term in equation (27) and (32) which is
2
%C. Therefore, equation (32) becomes

ou* ou* ou* —Pg OP* v [(9%u*  9%u*
+ u'—+v = (— —)
ax*z ay*Z

at* ox* dy*  pU2 ax* U:H (33)

Observation from equation (33) shows that all quantities on the left- hand side are dimensionless,

the same with all derivative terms on the right-hand side of equation (33). Hence,

P

p;z and v/(u.H) are also dimensionless.
c

6.0 DIMENSIONAL ANALYSIS OF OBTAINED QUANTITIES

The dimensional analysis of quantities obtained in equation (33) which equally correspond with
equation (27) can now be analyzed.

So pu? is dimensionally equivalent to:

2 Mass Length 2 M L
T2 T2

PUE ™ Congts \ Time ——  Where T =time, L = length and M = mass

orce mass.acceleration
u? ressure
plUc p area area

From this it is obvious that P/(pu?) will be unitless. Again, this is a very important quantity in
deep water analysis and the value is twice the dynamic pressure. Hence as known in fluid
dynamics;

. _1 2
Dynamic pressure = EpUC
For generality the "c" subscript on the velocity can be suppress.
~pd = %pU (34)
Equation (34) shows the validity of the model and it is very useful in study of Bernoulli’s equation
which is important in deep water stratification because it helps to describe the relationship between
pressure, velocity, and depth in deep water. It helps us to understand how different layers of water
interact with each other.
Consider the coefficient of the second order partial differential equation in (33), v/(U.H).
The reciprocal of this dimensionless quantity is the Reynolds Number which is very important in

studies of transition of turbulence in deep water regime. It is expressed as:
1 _UH

v/HU, — e = v (35)
By suppressing the subscript "c" on the velocity and H becomes L for generality then equation (35)
becomes;

R, = Ut (36)

v
Equation (36) is Reynolds number, which is a dimensionless quantity used to predict the flow in
stratified deep water regime. It is defined as the ratio of inertial forces to viscous forces in a fluid
flow. The property parameters that Reynolds number contains are. The Reynolds number can be
expressed as dimensionless quantity useful in predicting the flow regime in deep water. It is
defined as the ratio of inertial forces to viscous forces in a fluid flow. The property of Reynolds
number are:
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e Fluid velocity: Reynolds number is proportional to the velocity of the fluid. Higher fluid
velocities result in higher Reynolds numbers, indicating a greater tendency for turbulent
flow.

e Fluid viscosity: Reynolds number is inversely proportional to the viscosity of the fluid.
Lower viscosities result in higher Reynolds numbers, indicating a greater tendency for
turbulent flow

e Fluid density: Reynolds number also depends on the density of the fluid. Higher fluid
densities result in lower Reynolds numbers, indicating a greater tendency for laminar flow.

RESULTS AND DISCUSSION

ution of uyix.r) fora - 1 and varned N

100

Figure 2: The effect of Reynolds number at resonance on stratified deep water under modified
gravity.

From figure 2, shows the effect of resonance as the deep water stratifies leading to high amplitude
of oscillation and this can lead to mixing and less turbulence owing to Reynolds number. There is
symmetrical properties at this regime giving rise to dynamic pressure and the stratified deep water
is in dynamic equilibrium.

Solution of uyx.t) fora=1 and varned

Figure 3: The simulation showing unstable and stable stratification at resonance owing to increase
in mixing leading to turbulence due to Reynolds number.
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Solution of wa(x, t) for varied g

1.00 - — beta = 0.05
beta = 0,1

—— beta = 0.3

- bheta « 0.5

Figure 4: The effect of Reynolds number as the deep water stratifies at different velocities with
varied values of §.The Froude number is an important dimensionless number in fluid dynamics
and is used to describe the relationship between inertial and gravitational forces in a fluid flow.
In the context of deep water stratification, the Froude number is used to determine the stability of
the water column and the development of internal waves.

The analysis developed in this model demonstrates how dimensional scaling of the stratified deep
water equations under modified gravity and Coriolis influence naturally yields key nondimensional
quantities particularly the Reynolds number. This quantity encapsulates the balance between
inertial and viscous forces and therefore determines whether stratified flow remains laminar,
transitions, or evolves toward turbulent mixing. In a stratified oceanic or deep-water environment,
this is essential because mixing, internal wave dynamics, and interlayer momentum exchange are
highly Reynolds-number dependent.

Deriving Reynolds number in this context is significant because it provides a rigorous theoretical
bridge between the governing momentum equations and the observable behavior of stratified
layers. It allows the system to be characterized without requiring specific dimensional units,
meaning the same framework can be applied across scales from laboratory tanks to real ocean
basins. Moreover, its emergence from the scaled momentum equation confirms internal
consistency of the model and supports its physical realism.

The figures presented in the manuscript illustrate how Reynolds number modifies system response,
stratification strength, and mixing behavior. Figure 2 shows the effect of resonance under
stratification, where elevated Reynolds values intensify oscillatory responses of the layers. This
suggests enhanced dynamic pressure and temporary energetic equilibrium. Figure 3 demonstrates
the evolution from stable to unstable stratification regimes as Reynolds number increases: higher
Re produces stronger interfacial shear, enhanced mixing, and turbulence. Figure 4 complements
this by showing how changing velocities influence Reynolds number and, consequently, the degree
of stratification stability versus potential breakdown. Collectively, these figures visualize the
progressive transition from orderly, laminar stratified motion to increasingly energetic, mixed, and
turbulent states driven by Reynolds intensity.
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The findings also relate directly to the stability of stratified flows. Stable stratification occurs when
buoyancy forces dominate, suppressing vertical exchange; however, rising Reynolds number
increases inertial forcing, promotes shear instabilities, and reduces stability. Thus, the analyses
presented confirm that Reynolds number serves as a predictive stability indicator: low Re
corresponds to stable, layered flow, while high Re aligns with instability, mixing, wave
amplification, and turbulence consistent with modern oceanographic understanding of stratified
flows.

CONCLUSION

This manuscript developed and analyzed a mathematical model of stratified deep water flow under
modified gravity and Coriolis effects through dimensional and scaling analysis

The study successfully derived a key nondimensional parameter, the Reynolds number from the
scaled momentum equations and demonstrated its fundamental role in characterizing stratified
flow behavior. The numerical simulations and graphical results showed how Reynolds number
governs dynamic pressure, mixing tendencies, turbulence generation, and the transition between
stable and unstable stratification regimes. Overall, the work provides theoretical and interpretive
understanding of how inertial viscous balance influences deep water stratification dynamics,
offering insights applicable to geophysical fluid processes in oceanographic systems.

Conflict of interest: The authors declare no conflict of interest.

LIST OF SYMBOLS

A Wavelength
u=(uv,w) The velocity vector
p The density of flow
g The gravitational constant
g The modified gravity
f The coriolis parameter
u Velocity in the x-direction
v The velocity in the y-direction
L The length scale
h Vertical length scale
x x direction
y y direction
t The required time
% The total material derivative
E(x,y) Denotes the thermocline regime
The water height above each stratified column
U, Dimensional velocity
Uy Velocity in the first layer in the x — direction
U, Velocity in the second layer in the x — direction
12 Velocity in the first layer in the y — direction
2 Velocity in the second layer in the y — direction
t* Dimensional time
tg Scaled time
p* Dimensional pressure
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u; Dimensional velocity in the first layer
x* Scaled x

y* Scaled y

H Dimensionless height

a Measure of strength of the system
B Measure of stability of the system
F Sum of all forces

m Mass in (Kg)

a Acceleration in (m/s?)

L Length in meter

P Pressure in (Kg/ms?)
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